Advertisement

Inositol in Bacteria and Archaea

  • Mary F. Roberts
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 39)

Keywords

Mycobacterium Tuberculosis Inositol Phosphate Ino1 Gene Methanosarcina Barkeri Methanobacterium Thermoautotrophicum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agam, G., Shamir, A., Shaltiel, G., and Greenberg, M.L., 2002, myo-Inositol-1-phosphate (MIP) synthase: A possible target for antibipolar drugs. Bipolar Disord. 4(Suppl 1): 15–20.PubMedGoogle Scholar
  2. Bachawarat, N., and Mande, S.C., 1999, Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol-1-phosphate synthase enzyme. J. Mol. Biol. 291: 531–536.Google Scholar
  3. Bachawarat, N., and Mande, S.C., 2000, Complex evolution of the inositol-1-phosphate synthase gene among archaea and eubacteria. Trends Genet. 16: 111–113.Google Scholar
  4. Balmer, Y., Stritt-Etter, A., Hirasawa, M., Jacquot, J.P., Keryer, E., Knaff, D.B., and Schurmann, P., 2001, Oxidation-reduction and activation properties of chloroplast fructose 1,6-bisphosphatase with mutated regulatory site. Biochemistry 40: 15444–15450.PubMedGoogle Scholar
  5. Belisle, J.T., Brandt, M.E., Radolf, J.D., and Norgard, M.V., 1994, Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J. Bacteriol. 176: 2151–2157.PubMedGoogle Scholar
  6. Brennan, P.J., 2003, Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83: 91–97.PubMedGoogle Scholar
  7. Brennan, P.J., and Ballou, C.E., 1968, Phosphatidylmyoinositol monomannoside in Propionibacterium shermanii. Biochem. Biophys. Res. Commun. 30: 69–75.PubMedGoogle Scholar
  8. Brennan, P.J., and Lehane, D.P., 1971, The phospholipids of corynebacteria. Lipids 6: 401–409.PubMedGoogle Scholar
  9. Buchmeier, N.A., Newton, G.L., Koledin, T., and Fahey, R.C., 2003, Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol. Microbiol. 47: 1723–1732.PubMedGoogle Scholar
  10. Chang, S.F., Ng, D., Baird, L., and Georgopoulos, C., 1991, Analysis of an Escherichia coli dnaB temperature-sensitive insertion mutation and its cold-sensitive extragenic suppressor. J. Biol. Chem. 266: 3654–3660.PubMedGoogle Scholar
  11. Chen, L., and Roberts, M.F., 1998, Cloning and expression of the inositol monophosphatase gene from Methanococcus jannaschii and characterization of the enzyme. Appl. Environ. Microbiol. 64: 2609–2615.PubMedGoogle Scholar
  12. Chen, L., and Roberts, M.F., 1999, Characterization of a tetrameric inositol monophosphatase from the hyperthermophilic bacterium Thermotoga maritima. Appl. Environ. Microbiol. 65: 4559–4567.PubMedGoogle Scholar
  13. Chen, L., and Roberts, M.F., 2000, Overexpression, purification, and analysis of complementation behavior of E. coli SuhB protein: Comparison with bacterial and archaeal inositol monophosphatases. Biochemistry 39: 4145–4153.PubMedGoogle Scholar
  14. Chen, L., Spiliotis, E., and Roberts, M.F., 1998, Biosynthesis of Di-myo-inositol-1,1′-phosphate, a novel osmolyte in hyperthermophilic archaea. J. Bacteriol. 180: 3785–3792.PubMedGoogle Scholar
  15. Chen, L., Zhou, C., Yang, H., and Roberts, M.F., 2000, Inositol-1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase. Biochemistry 39: 12415–12423.PubMedGoogle Scholar
  16. Chi, H., Tiller, G.E., Dasouki, M.J., Romano, P.R., Wang, J., O’Keefe, R.J., Puzas, J.E., Rosier, R.N., and Reynolds, P.R., 1999, Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10–23 and 19. Genomics 56: 324–336.PubMedGoogle Scholar
  17. Cho, J.S., Lee, C.W., Kang, S.H., Lee, J.C., Bok, J.D., Moon, Y.S., Lee, H.G., Kim, S.C., and Choi, Y.J., 2003, Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr. Microbiol. 47: 290–294.PubMedGoogle Scholar
  18. Ciulla, R.A., Burggraf, S., Stetter, K O., and Roberts, M.F., 1994, Occurrence and role of di-myo-inositol-1,1′-phosphate in Methanococcus igneus. Appl. Environ. Microbiol. 60: 3660–3664.PubMedGoogle Scholar
  19. Downing, J.F., Pasula, R., Wright, J.R., Twigg, H.L., III, and Martin, W.J., II, 1995 Surfactant protein A promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 92: 4848–4852.PubMedGoogle Scholar
  20. Elsbach, P., and Weiss, J., 1988, Phagocytosis of bacteria and phospholipid degradation. Biochim. Biophys. Acta 947: 29–52.PubMedGoogle Scholar
  21. Essen, L.O., Perisic, O., Cheung, R., Katan, M., and Williams, R.L., 1996, Crystal structure of a mammalian phosphoinositide-specific phospholipase C δ. Nature 380: 595–602.PubMedGoogle Scholar
  22. Feng, J., Wehbi, H., and Roberts, M.F., 2002, Role of tryptophan residues in interfacial binding of phosphatidylinositol-specific phospholipase C. J. Biol. Chem. 277: 19867–19875.PubMedGoogle Scholar
  23. Ferguson, J.S., Voelker, D.R., McCormack, F.X., and Schlessinger, L.S., 1999, Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol. 163: 312–321.PubMedGoogle Scholar
  24. Ferguson, M.A., Low, M.G., and Cross, G.A., 1985, Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J. Biol. Chem. 260: 14547–14555.PubMedGoogle Scholar
  25. Fisher, S.K., Novak, J.E., and Agranoff, W., 2002, Inositol and higher inositol phosphates in neural tissues: Homeostasis, metabolism and functional significance. J. Neurochem. 82: 736–754.PubMedGoogle Scholar
  26. Goren, M.B., 1984. Biosynthesis and structures of phospholipids and sulfatides. In: Kubica, G.P., and Wayne, L.G. (eds.), The Mycobacteria: A Sourcebook. Marcel Dekker, Inc., New York, pp. 379–415.Google Scholar
  27. Greiner, R., Farouk, A., Alminger, M.L., and Carlsson, N.G., 2002, The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytate-degrading enzymes of different Bacillus sp. Can. J. Microbiol. 48: 986–994.PubMedGoogle Scholar
  28. Griffith, O.H., and Ryan, M., 1999, Bacterial phosphatidylinositol-specific phospholipase C: Structure, function, and interaction with lipids. Biochim. Biophys. Acta 1441: 237–254.PubMedGoogle Scholar
  29. Heinz, D.W., Essen, L.O., and Williams, R.L., 1998, Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C. J. Mol. Biol. 275: 635–650.PubMedGoogle Scholar
  30. Heinz, D.W., Ryan, M., Bullock, T.L., and Griffith, O.H., 1995, Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myo-inositol. EMBO J. 14: 3855–3863.PubMedGoogle Scholar
  31. Hirst, P.H., Riley, A.M., Mills, S.J., Spiers, I.D., Poyner, D.R., Freeman, S., Potter, B.V., Smith, A.W., 1999, Inositol polyphosphate-mediated iron transport in Pseudomonas aeruginosa. J. Appl. Microbiol. 86: 537–543.PubMedGoogle Scholar
  32. Hoppe, H.C., de Wet, B.J., Cywes, C., Daffe, M., and Ehlers, M.R., 1997, Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating both direct and opsonic binding to nonphagocytic mammalian cells. Infect. Immun. 65: 3896–3905.PubMedGoogle Scholar
  33. Inada, T., and Nakamura, Y., 1995, Lethal double-stranded RNA processing activity of ribonuclease III in the absence of suhB protein of Escherichia coli. Biochimie 77: 294–302.PubMedGoogle Scholar
  34. Inada, T., and Nakamura, Y., 1996, Autogenous control of the suhB gene expression of Escherichia coli. Biochimie 78: 209–212.PubMedGoogle Scholar
  35. Jackson, M., Crick, D.C., and Brennan, P.J., 2000, Phosphatidylinositol is an essential phospholipids of mycobacteria. J. Biol. Chem. 275: 30092–30099.PubMedGoogle Scholar
  36. Jacquot, J.P., Lopez-Jaramillo, J., Miginiac-Maslow, M., Lemaire, S., Cherfils, J., Chueca, A., and Lopez, J., 1997, Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. FEBS Lett. 401: 143–147.PubMedGoogle Scholar
  37. Janczarek, M., and Skorupska, A., 2001, The Rhizobium leguminosarum bv. Trifolii pssB gene product is an inositol monophosphatase that influences exopolysaccharide synthesis. Arch. Microbiol. 175: 143–151.PubMedGoogle Scholar
  38. Johnson, K.A., Chen, L., Yang, H., Roberts, M.F., and Stec, B., 2001, Crystal structure and catalytic mechanism of the MJ0109 gene product: A bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities. Biochemistry 40: 618–630.PubMedGoogle Scholar
  39. Kataoka, T., and Nojima, S., 1967, The phospholipid compositions of some Actinomycetes. Biochim. Biophys. Acta 144: 681–683.PubMedGoogle Scholar
  40. Klichko, V.I., Miller, J., Wu, A., Popv, S.G., and Alibekk, K., 2003, Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem. Biophys. Res. Commun. 303: 855–862.PubMedGoogle Scholar
  41. Kozloff, L.M., Turner, M.A., and Arellanno, F., 1991a, Formation of bacterial membrane icenucleating lipoglcoprotein complexes. J. Bacteriol. 173: 6528–6536.PubMedGoogle Scholar
  42. Kozloff, L.M., Turner, M.A., Arellanno, F., and Lute, M., 1991b, Phosphatidylinositol, a phospholipid of ice-nucleating bacteria. J. Bacteriol. 173: 2053–2060.PubMedGoogle Scholar
  43. Lee, D.C., Cottrill, M.A., Forsberg, C.W., and Jia, Z., 2003, Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase. J. Biol. Chem. 278: 31412–31418.PubMedGoogle Scholar
  44. Levery, S.B., Toledo, M.S., Straus, A.H., and Takahashi, H.K., 1998, Structure elucidation of sphingolipids from the mycopathogen Paracoccidiodes brasiliensis: An immunodominant β-galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen. Biochemistry 37: 8764–8775.PubMedGoogle Scholar
  45. Lewis, K., Garigapati, V., Zhou, C., and Roberts, M.F., 1993, Substrate requirements of bacterial phosphatidylinositol-specific phospholipase C. Biochemistry 32: 8836–8841.PubMedGoogle Scholar
  46. Lim, D., Golovan, S., Forsberg, C.W., and Jia, Z., 2000, Crystal structures of Escherichia coli phytase and its complex with phytate. Nat. Struct. Biol. 7: 108–113.PubMedGoogle Scholar
  47. Loewus, M.W., 1977, Hydrogen isotope effects in the cyclization of D-glucose 6-phosphate by myo-inositol-1-phosphate synthase. J. Biol. Chem. 252: 7221–7223.PubMedGoogle Scholar
  48. Loewus, M.W., Loewus, F.A., Brillinger, G.U., Otsuka, H., and Floss, H.G., 1980, Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J. Biol. Chem. 255: 11710–11712.PubMedGoogle Scholar
  49. Majumdar, A.L., Chatterjee, A., Dastidar, K.G., and Majee, M., 2003, Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.Google Scholar
  50. Majumder, A.L., Johnson, M.D., and Henry, S.A., 1997, 1L-myo-inositol-1-phosphate synthase. Biochim. Biophys. Acta 1348: 245–256.PubMedGoogle Scholar
  51. Martin, D.D., Ciulla, R.A., and Roberts, M.F., 1999, Osmoadaptation in archaea. Appl. Environ. Microbiol. 65: 1815–1825.PubMedGoogle Scholar
  52. Martins, L.O., Carreto, L.S., Da Costa, M.S., and Santos, H., 1996, New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J. Bacteriol. 178: 5644–5651.PubMedGoogle Scholar
  53. Martins, L.O., Huber, R., Huber, H., Stetter, K.O., da Costa, M.S., and Santos, H., 1997, Organic solutes in hyperthermophilic Archaea. Appl. Environ. Microbiol. 63: 896–902.PubMedGoogle Scholar
  54. Matsuhisa, A., Suzuki, N., Noda, T., and Shiba, K., 1995, Inositol monophosphatase activity from the Escherichia coli suhB gene product. J. Bacteriol. 177: 200–205.PubMedGoogle Scholar
  55. McCarthy, A.A., Peterson, N.A., Knijff, R., and Baker, E.N., 2004, Crystal structure of MshB from Mycobacterium tuberculosis, a deacetylase involved in mycothiol biosynthesis. J. Mol. Biol. 335: 1131–1141.PubMedGoogle Scholar
  56. Mihai, C., Kravchuk, A.V., Tsai, M.D., and Bruzik, K.S., 2003, Application of Bronsted-type LFER in the study of the phospholipase C mechanism. J. Amer. Chem. Soc. 125: 3236–3242.Google Scholar
  57. Morii, H., Yagi, H., Akutsu, H., Nomura, N., Sako, Y., and Koga, Y., 1999, A novel phosphoglycolipid archaetidyl(glucosyl)inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1.Google Scholar
  58. Morii, H., and Koga, Y., 1994, Asymmetrical topology of diether-and tetraether-type polar lipids in membranes of Methanobacterium thermoautotrophicum cells. J. Biol. Chem. 269: 10492–10497.PubMedGoogle Scholar
  59. Moser, J., Gerstel, B., Meyer, J.E., Chakraborty, T., Wehland, J., and Heinz, D.W., 1997, Crystal structure of the phosphatidylinositol-specific phospholipase C from the human pathogen Listeria monocytogenes. J. Mol. Biol. 273: 269–282.PubMedGoogle Scholar
  60. Movahedzadeh, F., Smith, D.A., Norman, R.A., Dinadayala, P., Murray-Rust, J., Russell, D.G., Kendall, S.L., Rison, S.C., McAlister, M.S., Bancroft, G.J., McDonald, N.Q., Daffe, M., Av-Gay, Y., and Stoker, N.G., 2004, The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Mol. Microbiol. 51: 1003–1014.PubMedGoogle Scholar
  61. Nagiec, M.M., Nagiec, E.E., Baltisberger, J.A., Wells, G.B., Lester, R.L., and Dickson, R.C., 1997, Sphingolipid synthesis as a target for antifungal drugs. Complementation of the insoitol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem. 272: 9809–9817.PubMedGoogle Scholar
  62. Nakamura, M., Mori, Y., Okuyama, K., Tanikawa, K., Yasuda, S., Hanada, K., and Kobayashi, S., 2003, Chemistry and biology of khafrefungin. Large-scale synthesis, design, and structureactivity relationship of khafrefungin, an antifungal agent. Org. Biomol. Chem. 1: 3362–3376.PubMedGoogle Scholar
  63. Nesbo, C.L., L’Haridon, S., Stetter, K.O., and Doolittle, W.F., 2001, Phylogenetic analyses of two “archaeal” genes in Thermotoga maritima reveal multiple transfers between archaea and bacteria. Mol. Biol. Evol. 18: 362–375.PubMedGoogle Scholar
  64. Neuwald, A.F., York, J.D., and Majerus, P.W., 1991, Diverse proteins homologous to inositol monophosphatase. FEBS Lett. 294: 16–18.PubMedGoogle Scholar
  65. Newton, G.L., Bewley, C.A., Dwyer, T.J., Horn, R., Abaromowitz, Y., Cohen, G., Davies, J., Faulkner, D.J., and Fahey, R.C., 1995, The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur. J. Biochem. 230: 821–825.PubMedGoogle Scholar
  66. Newton, G.L., and Fahey, R.C., 2002, Mycothiol biochemistry. Arch. Microbiol. 178: 388–394.PubMedGoogle Scholar
  67. Nigou, J., Dover, L.G., and Besra, G.S., 2002, Purification and biochemical characterization of Mycobacterium tuberculosis SuhB, an inositol monophosphatase involved in inositol biosynthesis. Biochemistry 41: 4392–4398.PubMedGoogle Scholar
  68. Nikawa, J., and Yamashita, S., 1997, Phosphatidylinositol synthase from yeast. Biochim. Biophys. Acta 1348: 173–178.PubMedGoogle Scholar
  69. Nishihara, M., and Koga, Y., 1991, Hydroxyarchaetidylserine and hydroxyarchaetidyl-myo-inositol in Methanosarcina barkeri: Polar lipids with a new ether core portion. Biochim. Biophys. Acta 1082: 211–217.PubMedGoogle Scholar
  70. Nishihara, M., Utagawa, M., Akutsu, H., and Koga, Y., 1992, Archaea contain a novel diether phosphoglycolipid with a polar head group identical to the conserved core of eucaryal glycosyl phosphatidylinositol. J. Biol. Chem. 267: 12432–12435.PubMedGoogle Scholar
  71. Norman, R.A., McAlister, M.S., Murray-Rust, J., Movahedzadeh, F., Stoker, N.G., and McDonald, N.Q., 2002, Crystal structure of inositol 1-phosphate synthase from Mycobacterium tuberculosis, a key enzyme in phosphatidylinositol synthesis. Structure 10: 393–402.PubMedGoogle Scholar
  72. Parish, T., Liu, J., Nikaido, H., and Stoker, N.G., 1997, A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J. Bacteriol. 179: 7827–7833.PubMedGoogle Scholar
  73. Raboy, V., 2003, myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64: 1033–1043.PubMedGoogle Scholar
  74. Rashid, N., Imanaka, H., Kanai, T., Fukui, T., Atomi, H., and Imanaka, T., 2002, A novel candidate for the true fructose-1,6-bisphosphatase in archaea. J. Biol. Chem. 277: 30649–30655.PubMedGoogle Scholar
  75. Raynaud, C., Guilhot, C., Rauzier, J., Bordat, Y., Pelicic, V., Manganelli, R., Smith, I., Gicquel, B., and Jackson, M., 2002, Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol. Microbiol. 45: 203–217.PubMedGoogle Scholar
  76. Sakoh, H., Sugimoto, Y., Imamura, H., Sakuraba, S., Jona, H., Bamba-Nagano, R., Yamada, K., Hashizume, T., and Morishima, H., 2004, Novel galbonolide derivatives as IPC synthase inhibitors: Design, synthesis and in vitro antifungal activities. Bioorg. Med. Chem. Lett. 14: 143–145.PubMedGoogle Scholar
  77. Salman, M., Lonsdale, J.T., Besra, G.S., and Brennan, P.J., 1999, Phosphatidylinositol synthesis in mycobacteria. Biochim. Biophys. Acta 1436: 437–450.PubMedGoogle Scholar
  78. Scholz, S., Sonnenbichler, J., Schafer, W., and Hensel, R., 1992, Di-myo-inositol-1,1′-phosphate: A new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 306: 239–242.PubMedGoogle Scholar
  79. Scholz, S., Wolff, S., and Hensel, R., 1998, The biosynthesis pathway of di-myo-inositol-1,1′-phosphate in Pyrococcus woesei. FEMS Microbiol. Lett. 168: 37–42.Google Scholar
  80. Sharom, F.J., and Lehto, M.T., 2002, Glycosylphosphatidylinositol-anchored proteins: Structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem. Cell. Biol. 80: 535–549.PubMedGoogle Scholar
  81. Shin, S., Ha, N.C., Oh, B.C., Oh, T.K., and Oh, B.H., 2001, Enzyme mechanism and catalytic property of beta propeller phytase. Structure 9: 851–858.PubMedGoogle Scholar
  82. Sibelius, U., Schulz, E.C., Rose, F., Hattar, K., Jacobs, T., Weiss, S., Chakraborty, T., Seeger, W., and Grimminger, F., 1999, Role of Listeria monocytogenes exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C in activation of human neutrophils. Infect. Immun. 67: 1125–1130PubMedGoogle Scholar
  83. Sidobre, S., Nigou, J., Puzo, G., and Riviere, M., 2000, Lipoglycans are putative ligands for the human pulmonary surfactant protein A attachment to mycobacteria. J. Biol. Chem. 275: 2415–2422.PubMedGoogle Scholar
  84. Spies, H.S.C., and Steenkamp, D.J., 1994, Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur. J. Biochem. 224: 203–213.PubMedGoogle Scholar
  85. Stec, B., Yang, H., Johnson, K.A., Chen, L., and Roberts, M.F., 2000, MJ0109 is an enzyme that is both an inositol monophosphatase and the ‘missing’ archaeal fructose-1,6-bisphosphatase. Nat. Struct. Biol. 7: 1046–1050.PubMedGoogle Scholar
  86. Stein, A.J., and Geiger, J.H., 2002, The crystal structure and mechanism of 1-L-myo-inositol-1-phosphate synthase. J. Biol. Chem. 277: 9484–9491.PubMedGoogle Scholar
  87. Stieglitz, K.A., Johnson, K.A., Yang, H., Roberts, M.F., Seaton, B.A., Head, J.F., and Stec, B., 2002, Crystal structure of a dual activity IMPase/FBPase (AF2372) from Archaeoglobus fulgidus. The story of a mobile loop. J. Biol. Chem. 277: 22863–22874.PubMedGoogle Scholar
  88. Stieglitz, K.A., Yang, H., Roberts, M.F., and Stec, B., 2005, Reaching for mechanistic consensus across life kingdoms: Structure and insights into catalysis of the inositol-1-phosphate synthase (MIPS) from Archaeoglobus fulgidus. Biochemistry 44: 213–224.PubMedGoogle Scholar
  89. Stieglitz, K.A., Seaton, B.A., Head, J.F., Stec, B., and Roberts, M.F., 2003, Unexpected similarity in regulation between an archaeal inositol monophosphatase/fructose bisphosphatase and chloroplast fructose bisphosphatase. Protein Sci. 12: 760–767.PubMedGoogle Scholar
  90. Tabaud, H., Tisnovska, H., and Vilkas, E., 1971, Phospholipids and glycolipids of a Micromonospora strain. Biochimie 53: 55–61.PubMedGoogle Scholar
  91. Tian, F., Migaud, M.E., and Frost, J.W., 1999, Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J. Biol. Chem. 255: 11710–11712.Google Scholar
  92. Toledo, M.S., Levery, S.B., Glushka, J., Straus, A.H., and Takahashi, H.K., 2001, Structure elucidation of sphingolipids from the mycopathogen Sporothrix schenckii: Identification of novel glycosylinositol phosphorylceramides with core Manα→6Ins linkage. Biochem. Biophys. Res. Commun. 280: 19–24.PubMedGoogle Scholar
  93. Vohra, A., and Satyanarayana, T., 2003, Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol. 23: 29–60.PubMedGoogle Scholar
  94. Volwerk, J.J., Shashidhar, M.S., Kuppe, A., and Griffith, O.H., 1990, Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A 31P NMR study. Biochemistry 29: 8056–8062.PubMedGoogle Scholar
  95. Wadsworth, S.J., and Goldfine, H., 2002, Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect. Immun. 70: 4650–4660.PubMedGoogle Scholar
  96. Walker, J.B., 1995, Enzymatic synthesis of aminocyclitol moieties of aminoglycoside antibiotics from inositol by Streptomyces spp.: Detection of glutamine-aminocyclitol aminotransferase and diaminocyclitol aminotransferase activities in a spectinomycin producer. J. Bacteriol. 177: 818–822.PubMedGoogle Scholar
  97. Wu, Y., Perisic, O., Williams, R.L., Katan, M., and Roberts, M.F., 1997, Phosphoinositide-specific phospholipase C δ 1 activity toward micellar substrates, inositol 1,2-cyclic phosphate, and other water-soluble substrates: A sequential mechanism and allosteric activation. Biochemistry 36: 11223–11233.PubMedGoogle Scholar
  98. Yague, G., Segovia, M., and Valero-Guillen, P.L., 2003, Phospholipid composition of several clinically relevant Corynebacterium species as determined by mass spectrometry: An unusual fatty acyl moiety is present in inositol-containing phospholipids of Corynebacterium urealyticum. Microbiology 149: 1675–1685.PubMedGoogle Scholar
  99. Yano, I., Furukawa, Y., and Kusunose, M., 1969, Phospholipids of Nocardia coeliaca. J. Bacteriol. 98: 124–130.PubMedGoogle Scholar
  100. Yano, R., Nagai, H., Shiba, K., and Yura, T., 1990, A mutation that enhances synthesis of σ32 and suppresses temperature-sensitive growth of the rpoH15 mutant of Escherichia coli. J. Bacteriol. 172: 2124–2130.PubMedGoogle Scholar
  101. York, J.D., Ponder, J.W., and Majerus, P.W., 1995, Definition of a metal-dependent/Li+-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. USA 92: 5149–5153.PubMedGoogle Scholar
  102. Zhang, X., Wehbi, H., and Roberts, M.F., 2004, Crosslinking phosphatidylinositol-specific phospholipase C traps two activating phosphatidylcholine molecules on the enzyme. J. Biol. Chem. 279: 20490–20500.PubMedGoogle Scholar
  103. Zhou, C., and Roberts, M.F., 1998, Nonessential activation and competitive inhibition of bacterial phosphatidylinositol-specific phospholipase C by short-chain phospholipids and analogues. Biochemistry 37: 16430–16439.PubMedGoogle Scholar
  104. Zhou, C., Wu, Y., and Roberts, M.F., 1997, Activation of phosphatidylinositol-specific phospholipase C toward inositol 1,2-(cyclic)-phosphate. Biochemistry 36: 347–355.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mary F. Roberts
    • 1
  1. 1.Department of ChemistryBoston CollegeChestnut HillUSA

Personalised recommendations