Genetics of Inositol Polyphosphates

  • Victor Raboy
  • David Bowen
Part of the Subcellular Biochemistry book series (SCBI, volume 39)


Phytic Acid Inositol Phosphate Aleurone Layer Inositol Polyphosphate Protein Storage Vacuole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, J.K., Labarca, P., Delgado, R., Jalink, K., and Zuker, C.S., 1998, Synaptic defects and compensatory regulation of inositol metabolism in inositol polyphosphate 1-phosphatase mutants. Neuron 20: 1219–1229.PubMedGoogle Scholar
  2. Almaguer, C., Cheng, W., Nolder, C., and Patton-Vogt, J., 2004, Glycerophosphoinositol, a novel phosphate source whose transport is regulated by multiple factors in Saccharomyces cerevisiae. J. Biol. Chem. 279: 31937–31942.PubMedGoogle Scholar
  3. Almaguer, C., Mantella, D., Perez, E., and Patton-Vogt, J., 2003, Inositol and phosphate regulate GIT1 trancscription and glycerophosphoinositol incorporation in Saccharomyces cerevisiae. Eukaryot. Cell 2: 729–736.PubMedGoogle Scholar
  4. Bentsink, L., Yuan, K., and Koornneef, V., 2003, The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor. Appl. Genet. 106: 1234–1243.PubMedGoogle Scholar
  5. Berridge, M.J., and Irvine, R.F., 1989, Inositol phosphates and cell signaling. Nature 341: 388–389.Google Scholar
  6. Biswas, B.B., Biswas, S., Chakrabarti, S., and De, B.P., 1978a, A novel metabolic cycle involving myo-inositol phosphates during formation and germination of seeds. In Wells, W.W. and Eisenberg, F., Jr. (eds.), Cyclitols and Phosphoinositides. Academic Press, New York, pp. 57–68.Google Scholar
  7. Biswas, S., Maity, I.B., Chakrabarti, S., and Biswas, B.B., 1978b, Purification and characterization of myo-inositol hexaphosphate-adenosine diphosphate phosphotransferase from Phaseolus aureus. Arch. Biochem. Biophys. 185: 557–566.PubMedGoogle Scholar
  8. Brearley, C.A., and Hanke, D.E., 1996a, Metabolic evidence for the order of addition of individual phosphate esters to the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. Biochem. J. 314: 227–233PubMedGoogle Scholar
  9. Brearley, C.A., and Hanke, D.E., 1996b, Inositol phosphates in barley (Hordeum vulgare L.) aleurone tissue are sterochemically similar to the products of breakdown of Ins P6 in vitro by wheat bran phytase. Biochem. J. 318: 279–286.PubMedGoogle Scholar
  10. Bryant, R.J., Dorsch, J.A., Rutger, J.N., and Raboy. V., 2005, Amount and distribution of phosphorus and minerals in low phytic acid 1 rice seed fractions. Cereal Chem. 82: 517–522.Google Scholar
  11. Caffrey, J.J., Safrany, S.T., Yang, X., and Shears, S.B., 2000, Discovery of molecular and catalytic diversity among human disphosphoinositol polyphosphate phosphohydrolases: An expanding NUDT family. J. Biol. Chem. 275: 12730–12736.PubMedGoogle Scholar
  12. Cantley, L.C., 2002, The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.PubMedGoogle Scholar
  13. Carland, F.M., and Nelson, T., 2004, COTYLDEDON VASCULAR PATTERN2-mediated Inositol (1,4,5) trisphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 16: 1263–1275.PubMedGoogle Scholar
  14. Carman, G.M., and Henry, S.A., 1989, Phospholipid biosynthesis in yeast. Annu. Rev. Biochem. 58: 635–669.PubMedGoogle Scholar
  15. Chang, S.-C., Miller, A.L., Feng, Y., Wente, S.R., and Majerus, P.W., 2002, The human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase. J. Biol. Chem. 277: 43836–43843.PubMedGoogle Scholar
  16. Cheek, S., Zhang, H., and Grishin, N.V., 2002, Sequence and structure classification of kinases. J. Mol. Biol. 320: 855–881.PubMedGoogle Scholar
  17. Donahue, T.F., and Henry, S.A., 1981, myo-Inositol-1-phosphate synthase: Characteristics of the enzyme and identification of its structural gene in yeast. J. Biol. Chem. 256: 7077–7085.PubMedGoogle Scholar
  18. Dorsch, J.A., Cook, A., Young, K.A., Anderson, J.M., Bauman, A.T., Volkmann, C.J., Murthy, P.P.N., and Raboy, V., 2003, Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochem. 62: 691–706.Google Scholar
  19. Drayer, A.L., Van der Kaay, J., Mayr, G.W., and Van Haastert, P.J.M., 1994, Role of phospholipase C in Dictyostelium: Formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J. 13: 1601–1609.PubMedGoogle Scholar
  20. El Alami, M., Messenguy, F., Scherens, B., and Dubois, E., 2003, Arg82p is a bifunctional protein whose inositol polyphosphate kinase activity is essential for nitrogen and PHO gene expression but not for Mcm1p chaperoning in yeast. Mol. Microbiol. 49: 457–468.PubMedGoogle Scholar
  21. English, P.D., Dietz, M., and Albersheim, P., 1966, Myoinositol kinase: Partial purification and identification of product. Science 151: 198–199.PubMedGoogle Scholar
  22. Ercetin, E.E., and Gillaspy, G.E., 2002, Molecular characterization of an Arabidopsis gene encoding a phospholipid-specific inositol polyphosphate 5-phosphatase. Plant Physiol. 135: 938–946.Google Scholar
  23. Europe-Finner, G.N., Gammon, B., Wood, C.A., and Newell, P.C., 1989, Inositol tris-and polyphosphate forming during chemotaxis of Dictyostelium. J. Cell. Sci. 93, 585–592.PubMedGoogle Scholar
  24. Flores, S., and Smart, C.C., 2000, Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta 211: 823–832.PubMedGoogle Scholar
  25. Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y., and Postlethwait., 1999, Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545.PubMedGoogle Scholar
  26. Fujii, M., and York, J.D., 2004, A role for rat inositol polyphosphate kinases, rIpk2 and rIpk1, in inositol pentakisphosphate and inositol hexakisphosphate production in Rat-1 cells. J. Biol. Chem.: In Press.Google Scholar
  27. Gillaspy, G.E., Keddie, J.S., Oda, K., and Gruissem, W., 1995, Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7: 2175–2185.PubMedGoogle Scholar
  28. González, B., Schell, M.J., Letcher, A.J., Veprintsev, D.B., Irvine, R.F., and Williams, R.L., 2004, Structure of a human inositol 1,4,5-trisphosphate 3-kinase: Substrate binding reveals why it is not a phosphoinositide 3-kinase. Mol. Cell 15: 689–701.PubMedGoogle Scholar
  29. Greenberg, M.L., and Lopes, J.M., 1996, Genetic regulation of phospholipids biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 60: 1–20.PubMedGoogle Scholar
  30. Greenwood, J.S., and Bewley, J.D., 1984, Subcellular distribution of phytin in the endosperm of developing castor bean: A possibility for its synthesis in the cytoplasm prior to deposition within protein bodies. Planta 160: 113–120.Google Scholar
  31. Guttieri, M., Bowen, D., Dorsch, J.A., Souza, E. and Raboy, V., 2004, Identification and characterization of a low phytic acid wheat. Crop Sci. 44.Google Scholar
  32. Hanakahi, L.A., Bartlet-Jones, M., Chappell, C., and West, S.C., 2000, Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102: 721–729PubMedGoogle Scholar
  33. Hanakahi, L.A., and West, S.C., 2002, Specific interaction of IP6 with human Ku70/80, the DNAbinding subunit of DNA-PK. EMBO J. 21: 2038–2044.PubMedGoogle Scholar
  34. Hatzack, F., Hubel, F., Zhang, W., Hansen, P.E., and Rasmussen, S.K., 2001, Inositol phosphates from barley low-phytate grain mutants analyzed by metal-dye detection HPLC and NMR. Biochem. J. 354: 473–480.PubMedGoogle Scholar
  35. Hegeman, C.E., Good, L.L., and Grabau, E.A., 2001, Expression of D-myo-Inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol. 125: 1941–1948.PubMedGoogle Scholar
  36. Hidaka, K., Caffrey, J.J., Hua, L., Zhang, T., Falck, J.R., Nickel, G.C., Carrel, L., Barnes, L.D., and Shears, S.B., 2002, An adjacent pair of human NUDT genes on chromosome X are preferentially expressed in testis and encode tow new isoforms of diphosphoinositol polyphosphate phosphohydrolase. J. Biol. Chem. 277: 32730–32738.PubMedGoogle Scholar
  37. Hitz, W.D., Carlson, T.J., Kerr, P.S, and Sebastian, S.A., 2002, Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol. 128: 650–660.PubMedGoogle Scholar
  38. Hua, L.V., Hidaka, K., Pesesse, X., Barnes, L.D., and Shears, S.B., 2003, Paralogous murine Nudt10 and Nudt11 genes have differential expression patterns but encode identical proteins that are physiologically competent disphosphoinositol polyphosphate phosphohydrolases. Biochem. J. 373: 81–89.PubMedGoogle Scholar
  39. Huang, C.-F., Voglmaier, S.M., Bembenek, M.E., Saiardi, A., and Snyder, S.H., 1998, Identification and purification of diphosphoinositol pentakisphosphate kinase, which synthesizes the inositol pyrophosphate bis(diphospho)inositol tetrakisphosphate. Biochem. 37: 14998–15004.Google Scholar
  40. Ishitani, M., Majumder, A.L., Bornhouser, A., Michalowski, C.B., Jensen, R.G., and Bohnert, H.J., 1996, Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 9: 537–548.PubMedGoogle Scholar
  41. Irigoin, F., Casaravilla, C., Iborra, F., Sim, R.B., Ferreira, F., and Diaz, A., 2004, Unique precipitation and exocytosis of a calcium salt of myo-inositol hexaphosphate in larval Echinococcus granulosus. J. Cellular Biochem. 93: 1272–1281.Google Scholar
  42. Irigoin, F., Ferreira, F., Fernandez, C., Sim, R.B., and Diaz, A., 2002, myo-inositol hexakisphosphate is a major component of an extracellular structure in the parasitic cestode Echinococcus granulosus. Biochem J. 362: 297–304.PubMedGoogle Scholar
  43. Irvine, R.F., and Schell, M.J., 2001, Back in the water: The return of the inositol phosphates. Nature Rev. Mol. Cell Biol. 2: 327–338.Google Scholar
  44. Jasinski, M., Ducos, E., Martinoia, E., and Boutry, M., 2003, The ATP-binding cassette transporters: Structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol. 131: 1169–1177.PubMedGoogle Scholar
  45. Jauh, G-Y., Phillips, T.E., and Rogers, J.C., 1999, Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11: 1867–1882.PubMedGoogle Scholar
  46. Jiang, L., Phillips, T.E., Hamm, C.A., Drozdowicz, Y.M., Rea, P.A., Maeshima, M., Rogers, S.W., and Rogers, J.C., 2001, The protein storage vacuole: A unique compound organelle. J. Cell Biol. 155: 991–1002.PubMedGoogle Scholar
  47. Karner, U., Peterbauer, T., Raboy, V., Jones, D.A., Hedley, C.L., and Richter. A., 2004, myo-Inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds. J. Exp. Bot. 55: 1981–1987.PubMedGoogle Scholar
  48. Lackey, K.H., Pope, P.M., and Dean Johnson, M., 2003, Expression of 1L-myoinositol-1-phosphate synthase in organelles. Plant Physiol. 2240–2247.Google Scholar
  49. Larson, S.R., and Raboy, V., 1999, Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences: Correspondence with a low phytic acid mutation. Theor. Appl. Genet. 99: 27–36.Google Scholar
  50. Larson, S.R., Rutger, J.N., Young, K.A., and Raboy, V., 2000, Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid mutation. Crop Sci. 40: 1397–1405.Google Scholar
  51. Larson, S.R., Young, K.A., Cook, A., Blake, T.K., and Raboy, V., 1998, Linkage mapping two mutations that reduce phytic acid content of barley grain. Theor. Appl. Genet. 97: 141–146.Google Scholar
  52. Laussmann, T., Pikzack, C., Thiel, U., Mayr, G.W., and Vogel, G., 2000, Diphospho-myo-inositol phosphates during the life cycle of Dictyostelium and Polysphondylium. Eur. J. Biochem. 267: 2447–2451.PubMedGoogle Scholar
  53. Lemtiri-Chlieh, F., MacRobbie, E.A.C., and Brearley, C.A., 2000, Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc. Natl. Acad. Sci. U.S.A. 97: 8687–8692.PubMedGoogle Scholar
  54. Lemtiri-Chlieh, F., MacRobbie, E.A.C., Webb, A.A.R., Mansion, N.F., Brownlee, C., Skepper, J.N., Chen, J., Prestwich, G.D., and Brearley, C.A., 2003, Inositol hexaphosphate mobilizes an endomembrane store of calcium in guard cells. Proc. Natl. Acad. Sci. U.S.A 100: 10091–10095.PubMedGoogle Scholar
  55. Liu, J.C., Ockenden, I., Truax, M., and Lott, J.N.A., 2004, Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid (lpa1-1) rice. Seed Sci. Res. 14: 109–116.Google Scholar
  56. Loewen, C.J.R., Gaspar, M.L., Jesch, S.A., Delon, C., Ktistakis, N.T., Henry, S.A., and Levine, T.P., 2004, Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304: 1644–1647.PubMedGoogle Scholar
  57. Loewus, F.A., and Murthy, P.P.N., 2000, myo-Inositol metabolism in plants. Plant Sci. 150: 1–19.Google Scholar
  58. Loewus, M.W., Sasaki, K., Leavitt, A.L., Munsell, L., Sherman, W.R., and Loewus, F.A., 1982, The enantiomeric form of myo-inositol-1-phosphate produced by myo-inositol 1-phosphate synthase and myo-inositol kinase in higher plants. Plant Physiol. 70: 1661–1663.PubMedGoogle Scholar
  59. Lott, J.N.A., 1984, Accumulation of seed reserves of phosphorus and other minerals. In: Murray, D.R. (ed.), Seed Physiology. Academic Press, New York, pp. 139–166.Google Scholar
  60. Lott, J.N.A., Ockenden, I., Raboy, V., and Batten, G.D., 2000, Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Sci. Res. 10: 11–33.Google Scholar
  61. Lynch, M., and Katju, V., 2004, The altered evolutionary trajectories of gene duplicates. Trends Genet. 20: 544–549.PubMedGoogle Scholar
  62. Maeshima, M., 2000, Vacuolar H+-pyrophosphatase. Biochimica. Biophysica. Acta. 1465: 37–51.Google Scholar
  63. Majee, M., Maitra, S., Dastidar, K.G., Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P., and Majumder, A.L., 2004, A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: Molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J. Biol. Chem. 279: 28539–28552.PubMedGoogle Scholar
  64. Majumder, A.L., Chatterjee, A., Dastidar, K.G., and Majee, M., 2003, Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.PubMedGoogle Scholar
  65. Martin, J.-B., Laussmann, T., Bakker-Grunwald, T., Vogel, G., and Klein, G., 2000, neo-Inositol polyphosphates in the amoeba Entamoeba histolytica. J. Biol. Chem. 275: 10134–10410.PubMedGoogle Scholar
  66. Martinoia, E., Massonneau, A., and Frangne, N., 2000, Transport processes of solutes across the vauolar membrane of higher plants. Plant Cell Physiol. 41: 1175–1186.PubMedGoogle Scholar
  67. Meis, S.J., Fehr, W.R., and Schnebly, S.R., 2003, Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Sci. 43: 1336–1339.Google Scholar
  68. Mitra, P., Zhang, Y., Rameh, L.E., Ivshina, M.P., McCollum, D., Nunnari, J.J., Hendricks, G.M., Kerr, M.L., Field, S.J., Cantley, L.C., and Ross, A.H., 2004, A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. J. Cell Biol. 166: 205–211.PubMedGoogle Scholar
  69. Morton, R.K., and Raison, J.K., 1963, A complete intracellular unit for incorporation of aminoacid into storage protein utilizing adenosine triphosphate generated from phytate. Nature 200: 429–433.PubMedGoogle Scholar
  70. Ockenden, I., Dorsch, J.A., Reid, M.M., Lin, L., Grant, L.K., Raboy, V., and Lott, J.N.A., 2004, Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes. Plant Sci. 167: 1131–1142.Google Scholar
  71. Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D., 2000, A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287: 2026–2029.PubMedGoogle Scholar
  72. Ogas, J., Kaufmann, S., Henderson, J., and Somerville, S., 1999, Pickle is a CHD3 chromatinremodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 96: 13839–13844.PubMedGoogle Scholar
  73. Ogawa, M., Tanaka, K., and Kasai, Z., 1979, Accumulation of phosphorus, magnesium, and potassium in developing rice grains: Followed by electron microprobe X-ray analysis focusing on the aleurone layer. Plant Cell Physiol. 20: 19–27.Google Scholar
  74. O’Neill, E.M., Kaffman, A., Jolly, E.R., O’Shea, E.K. 1996. Regulation of PHO4 nuclear localization by the PHO80–PHO85 cyclin-CDK complex. Science 271: 209–212.PubMedGoogle Scholar
  75. Otegui, M.S., Capp, R., and Staehelin, L.A., 2002, Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endosplasmic reticulum. Plant Cell 14: 1311–1327.PubMedGoogle Scholar
  76. Phillippy, B.Q., Ullah, A.H.J., and Ehrlich, K.C., 1994, Purification and some properties of inositol 1,3,4,5,6-pentakisphosphate 2-kinase from immature soybean seeds. J. Biol. Chem. 269: 28393–28399.PubMedGoogle Scholar
  77. Raboy, V., 1997, Accumulation and storage of phosphate and minerals. In: Larkins, B.A., Vasil, I.K. (eds.), Cellular and Molecular Biology of Plant Seed Development. Kluwer Academic Publishers, Dordrecht Netherlands, pp. 441–477.Google Scholar
  78. Raboy, V., 2001, Seeds for a better future: “Low phytate” grains help to overcome malnutrition and reduce pollution. Trends in Plant Sci. 6: 458–462.Google Scholar
  79. Raboy, V., and Gerbasi, P., 1996, Genetics of myo-inositol phosphate synthesis and accumulation. In: Biswas, B.B., Biswas, S. (eds.), myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction. Plenum Press, New York, pp. 257–285.Google Scholar
  80. Raboy, V., Gerbasi, P.F., Young, K.A., Stoneberg, S.D., Pickett, S.G., Bauman, A.T., Murthy, P.P.N., Sheridan, W.F., and Ertl, D.S., 2000, Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol. 124: 355–368.PubMedGoogle Scholar
  81. Raboy, V., Young, K.A., Dorsch, J.A., and Cook, A., 2001, Genetics and breeding of seed phosphorus and phytic acid. J. Plant Physiol. 158: 489–497.Google Scholar
  82. Rider, S.D., Jr., Hemm, M.R., Hostetler, H.A., Li, H.-C., Chapple, C., and Ogas. J., 2004, Metabolic profiling of the Arabidopsis pkl mutant reveals selective derepression of embryonic traits. Planta 219: 489–499.PubMedGoogle Scholar
  83. Safrany, S.T., Caffrey, J.J., Yang, X., Bembenek, M.E., Moyer, M.B., Burkhart, W.A., and Shears, S.B., 1998, A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J. 17: 6599–6607.PubMedGoogle Scholar
  84. Safrany, S.T., Caffrey, J.J., Yang, X., and Shears, S.B., 1999, Diphosphoinositol polyphosphates: The final frontier for inositide research? Biol. Chem. 380: 945–951.PubMedGoogle Scholar
  85. Saiardi, A., Bhandari, R., Resnick, A.C., Snowman, A.M., and Snyder, S.H., 2004, Phosphorylation of proteins by inositol pyrophosphates. Science 306: 2101–2105.PubMedGoogle Scholar
  86. Saiardi, A., Caffrey, J.J., Snyder, S.H., and Shears, S.B., 2000a, The inositol hexakisphosphate kinase family: Catalytic flexibility and function in yeast vacuole biogenesis. J. Biol. Chem. 275: 24686–24692.PubMedGoogle Scholar
  87. Saiardi, A., Caffrey, J.J., Snyder, S.H., and Shears, S.B., 2000b, Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett. 468: 28–32.PubMedGoogle Scholar
  88. Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., and Snyder, S.H., 1999, Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9: 1323–1326.PubMedGoogle Scholar
  89. Saiardi, A., Nagata, E., Luo, H.R., Sawa, A., Luo, X., Snowman, A.M., and Snyder, S.H., 2001a, Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate. Proc. Natl. Acad. Sci. U.S.A 98: 2306–3211.PubMedGoogle Scholar
  90. Saiardi, A., Nagata, E., Luo, H.R., Snowman, A.M., and Snyder, S.H., 2001b, Identification and characterization of a novel inositol hexakisphosphate kinase. J. Biol. Chem. 276: 39179–39185.PubMedGoogle Scholar
  91. Saiardi, A., Sciambi, C., McCaffery, J.M., Wendland, B., and Snyder, S.H., 2002, Inositol polyphosphates regulate endocytic trafficking. Proc. Natl. Acad. Sci. U.S.A. 99: 14206–14211.PubMedGoogle Scholar
  92. Sasakawa, N., Sharif, M., and Hanley, M.R., 1995, Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem. Pharmacol. 50: 137–146.PubMedGoogle Scholar
  93. Schell, M.J., Letcher, A.J., Brearley, C.A., Biber, J., Murer, H., and Irvine, R.F., 1999, PiUS (Pi uptake stimulator) is an inositol hexaphosphate kinase. FEBS Lett. 461: 169–172.PubMedGoogle Scholar
  94. Seeds, A.M., Sandquist, J.C., Spana, E.P., and York, J.D., 2004, A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster. J. Biol. Chem. 279: 47222–47232.PubMedGoogle Scholar
  95. Shears, S.B., 2001, Assessing the omnipotence of inositol hexakisphosphate. Cell. Signal. 13: 151–158.PubMedGoogle Scholar
  96. Shears, S.B., 2004, How versatile are inositol phosphate kinases? Biochem. J. 377: 265–280.PubMedGoogle Scholar
  97. Shen, X., Xiao, H., Ranallo, R., Wu, W.-H., and Wu, C., 2003, Modulation of ATP-dependent chromatin-remodeling complexes by inositol phosphates. Science 299: 112–114.PubMedGoogle Scholar
  98. Shi, J., Wang, H., Wu, Y., Hazebroek, J., Meeley, R.B., and Ertl, D.S., 2003, The maize low phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol. 131: In Press.Google Scholar
  99. Shukla, S., VanToai, T.T., and Pratt, R.C., 2004, Expression and nucleotide sequence of an INS(3)P1 synthase gene associated with low-phytate kernels in maize (Zea mays L.). J. Agric. Food Chem. 52: 4565–4570.PubMedGoogle Scholar
  100. Smart, C.C., and Fleming, A.J., 1993, A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during an abscisic-acid-induced morphogenic response in Spirodela polyrrhiza. Plant J. 4: 279–293.PubMedGoogle Scholar
  101. Sobolev, A.M., Buzulukova, N.P., Dmitrieva, M.I., and Barbashova, A.K., 1976, Structuralbiochemical organization of aleurone grains in yellow lupin. Soviet Plant Physiol. 23: 739–746.Google Scholar
  102. Steger, E.J., Haswell, E.S., Miller, A.L., Wente, S.R., and O’Shea, E.K, 2003, Regulation of chromatin remodeling by inositol polyphosphates. Science 299: 114–116.PubMedGoogle Scholar
  103. Stephens, L.R., and Irvine, R.F., 1990, Stepwise phosphorylation of myo-inositol leading to myoinositol hexakisphosphate in Dictyostelium. Nature 346: 580–583.PubMedGoogle Scholar
  104. Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.-H., Dell, A., Jackson, T.R., Hawkins, P.T., and Mayr, G.W., 1993, The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J. Biol. Chem. 268: 4009–4015.PubMedGoogle Scholar
  105. Stevenson-Paulik, J., Odom, A.R., and York, J.D., 2002, Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J. Biol. Chem. 277: 42711–42718.PubMedGoogle Scholar
  106. Styer, J.C., Keddie, J., Spence, J., and Gillaspy, G.E., 2004, Genomic organization and regulation of the LeIMP-1 and LeIMP-2 genes encoding myo-inositol monophosphatase in tomato. Gene 326: 35–41.PubMedGoogle Scholar
  107. Takahashi, H., Rai, M., Kitagawa, T., Morita, S., Masumura, T., and Tanaka, K., 2004, Differential localization of tonoplast intrinsic proteins on the membrane of protein body type II and aleurone grain in rice seeds. Biosci. Biotchnol. Biochem. 68: 1728–1736.Google Scholar
  108. Verbsky, J.W., Chang, S.-C., Wilson, M.P., Mochizuki, Y., and Majerus, P.W., 2004, The pathway for the production of inositol hexakisphosphate (InsP6) in human cells. J. Biol. Chem.: In Press.Google Scholar
  109. Welters, P., Takegawa, K., Emr, S.D., and Chrispeels, M.J., 1994, ATVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding protein. Proc. Natl. Acad. Sci. U.S.A. 91: 11398–11402.PubMedGoogle Scholar
  110. Wilson, M.P., and Majerus, P.W., 1996, Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, cDNA cloning and expression of the recombinant enzyme. J. Biol. Chem. 271: 11904–11910.PubMedGoogle Scholar
  111. Wilson, M.P., and Majerus, P.W., 1997, Characterization of a cDNA encoding Arabidopsis thaliana Insoitol 1,3,4-trisphosphate 5/6-kinase. Biochem. Biophys. Res. Comm. 232: 678–681.PubMedGoogle Scholar
  112. Xia, H.-J., Brearley, C., Elge, S., Kaplan, B., Fromm, H., and Mueller-Roeber, B., 2003, Arabidopsis inositol polyphosphate 6-/3-kinase is a nuclear protein that complements a yeast mutant lacking a functional Arg-Mcm1 transcription complex. Plant Cell 15: 449–463.PubMedGoogle Scholar
  113. Xiong, L., Lee, B., Ishitani, M., Lee, H., Zhang, C., and Zhu, J.-K., 2001, Fiery1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Devel. 15: 1971–1984.PubMedGoogle Scholar
  114. Yang, X., and Shears, S.B., 2000, Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P4 1-kinase/Ins(1,3,4)P3 5/6-kinase. Biochem. J. 351: 551–555.PubMedGoogle Scholar
  115. York, J.D., Odom, A.R., Murphy, R., Ives, E.B., and Wente, S.R., 1999, A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285: 96–100.PubMedGoogle Scholar
  116. Yoshida, K.T., Wada, T., Koyama, H., Mizobuchi-Fukuoka, R., and Naito, S., 1999, Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol. 119: 65–72.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Victor Raboy
    • 1
  • David Bowen
    • 1
  1. 1.USDA-ARS and University of IdahoAberdeenUSA

Personalised recommendations