Advertisement

Functional Genomics of Inositol Metabolism

  • Javad Torabinejad
  • Glenda E. Gillaspy
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 39)

Keywords

MIPS Gene Nostoc Punctiforme Inositol Monophosphatase Inositol Metabolism MIPS Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambroziak, J., and Henry, S.A., 1994, Ino2 and ino4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the ino1 promoter. J. Biol. Chem. 269: 15344–15349.PubMedGoogle Scholar
  2. Arner, R.J., Prabhu, K.S., Thompson, J.T., Hildenbrandt, G.R., Liken, A.D., and Reddy, C.C., 2001, myo-Inositol oxygenase: Molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and D-chiro-inositol. Biochem. J. 360: 313–320.PubMedGoogle Scholar
  3. Banhegyi, G., Braun, L., Csala, M., Puskas, F., and Mandl, J., 1997, Ascorbate metabolism and its regulation in animals. Free Radic. Biol. Med. 23: 793–803.PubMedGoogle Scholar
  4. Berridge, M.J., Downes, C.P., and Hanley, M.R., 1989, Neural and developmental actions of lithium: A unifying hypothesis. Cell 59: 411–419.PubMedGoogle Scholar
  5. Bohnert, H.J., Nelson, D.E., and Jensen, R.G., 1995, Adaptations to environmental stresses. Plant Cell 7: 1099–1111.PubMedGoogle Scholar
  6. Busa, W., and Gimlich, R., 1989, Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. Dev. Biol. 132: 315–324.PubMedGoogle Scholar
  7. Chang, S.F., Ng, D., Baird, L., and Georgopoulos, C., 1991, Analysis of an Escherichia coli DNAb temperature-sensitive insertion mutation and its cold-sensitive extragenic suppressor. J. Biol. Chem. 266: 3654–3660.PubMedGoogle Scholar
  8. Charalampous, F.C., and Lyras, C., 1957, Biochemical studies on inositol. IV. Conversion of inositol to glucuronic acid by rat kidney extracts. J. Biol. Chem. 228: 1–13.PubMedGoogle Scholar
  9. Chen, I.W., and Charalampous, C.F., 1966, Biochemical studies on D-inositol 1-phosphate as an intermediate in the biosynthesis of inositol from glucose-6-phosphate, and characteristics of two reactions in this biosynthesis. J. Biol. Chem. 241: 2194–2199.PubMedGoogle Scholar
  10. Chen, L., and Roberts, M.F., 1998, Cloning and expression of the inositol monophosphatase gene from Methanococcus jannaschii and characterization of the enzyme. Appl. Environ. Microbiol. 64: 2609–2615.PubMedGoogle Scholar
  11. Chen, L., and Roberts, M.F., 1999, Characterization of a tetrameric inositol monophosphatase from the hyperthermophilic bacterium Thermotoga maritima. Appl. Environ. Microbiol. 65: 4559–4567.PubMedGoogle Scholar
  12. Chen, L., and Roberts, M.F., 2000, Overexpression, purification, and analysis of complementation behavior of E. coli Suhb protein: Comparison with bacterial and archaeal inositol monophosphatases. Biochemistry 39: 4145–4153.PubMedGoogle Scholar
  13. Conklin, P.L., Saracco, S.A., Norris, S.R., and Last, R.L., 2000, Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154: 847–856.PubMedGoogle Scholar
  14. Dean-Johnson, M., and Henry, S.A., 1989, Biosynthesis of inositol in yeast. Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the ino1 locus. J. Biol. Chem. 264: 1274–1283.PubMedGoogle Scholar
  15. Dean-Johnson, M., and Wang, X., 1996, Differentially expressed forms of 1L-myo-inositol-1-phosphate synthase in Phaseolus vulgaris. J. Biol. Chem. 271: 17215–17218.Google Scholar
  16. Dichtl, B., Stevens, A., and Tollervey, D., 1997, Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes. EMBO J. 16: 7184–7195.PubMedGoogle Scholar
  17. Doering, T., 2000, How does Cryptococcus get its coat? Trends Microbiol. 8: 545–551.Google Scholar
  18. Dunn, T.M., Lynch, D.V., Michaelson, L.V., and Napier, J.A., 2004, A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann. Bot. (Lond.) 93: 483–497.Google Scholar
  19. Eisenberg, F.J., 1967, D-myo inositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J. Biol. Chem. 242: 1375–1382.PubMedGoogle Scholar
  20. Eisenberg, F., Bolden, A.H., and Loewus, F.A., 1964, Inositol formation by cyclization of glucose chain in rat testis. Biochem. Biophys. Res. Commun. 14: 419–424.PubMedGoogle Scholar
  21. English, P.D., Deitz, M., and Albersheim, P., 1966, Myoinositol kinase: Partial purification and identification of product. Science 151: 198–199.PubMedGoogle Scholar
  22. Flores, S., and Smart, C.C., 2000, Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta 211: 823–832.PubMedGoogle Scholar
  23. Gainey, P.A., and Phelps, C.F., 1975, Interactions of uridine diphosphate glucose dehydrogenase with the inhibitor uridine diphosphate xylose. Biochem. J. 145: 129–134.PubMedGoogle Scholar
  24. Gillaspy, G., and Gruissem, W., 2001, Li+ induces hypertrophic growth and downregulation of IMP activity in tomato. J. Plant Growth Regul. 20: 78–86.Google Scholar
  25. Gillaspy, G.E., Keddie, J.S., Oda, K., and Gruissem, W., 1995, Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7: 2175–2185.PubMedGoogle Scholar
  26. Gil-Mascarell, R., Lopez-Coronado, J.M., Belles, J.M., Serrano, R., Rodriguez, P.L., Murguia, J.R., Quintero, F.J., Garciadeblas, B., and Rodriguez-Navarro, A., 1999, The Arabidopsis Hal2-like gene family includes a novel sodium-sensitive phosphatase. Plant J. 17: 373–383.PubMedGoogle Scholar
  27. Guan, G., Dai, P., and Shechter, I., 2003, cDNA cloning and gene expression analysis of human myo-inositol 1-phosphate synthase. Arch. Biochem. Biophys. 417: 251–259.PubMedGoogle Scholar
  28. Hallcher, L.M., and Sherman, W.R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol 1-phosphatase from bovine brain. J. Biol. Chem. 255: 10896–10901.PubMedGoogle Scholar
  29. Hasegawa, R., and Eisenberg, F., Jr., 1981, Selective hormonal control of myo-inositol biosynthesis in reproductive organs and liver of the male rat. Proc. Natl. Acad. Sci. U.S.A. 78: 4863–4866.PubMedGoogle Scholar
  30. Hayama, R., Izawa, T., and Shimamoto, K., 2002, Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol. 43: 494–504.PubMedGoogle Scholar
  31. Hegeman, C.E., Good, L.L., and Grabau, E.A., 2001, Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol. 125: 1941–1948.PubMedGoogle Scholar
  32. Hegeman, C.E., and Grabau, E.A., 2001, A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol. 126: 1598–1608.PubMedGoogle Scholar
  33. Hirsch, J.P., and Henry, S.A., 1986, Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (ino1) gene is regulated by factors that affect phospholipid synthesis. Mol. Cell Biol. 6: 3320–3328.PubMedGoogle Scholar
  34. Hitz, W.D., Carlson, T.J., Kerr, P.S., and Sebastian, S.A., 2002, Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol. 128: 650–660.PubMedGoogle Scholar
  35. Inada, T., and Nakamura, Y., 1995, Lethal double-stranded RNA processing activity of ribonuclease III in the absence of Suhb protein of Escherichia coli. Biochimie 77: 294–302.PubMedGoogle Scholar
  36. Inada, T., and Nakamura, Y., 1996, Autogenous control of the Suhb gene expression of Escherichia coli. Biochimie 78: 209–212.PubMedGoogle Scholar
  37. Ishitani, M., Majumder, A.L., Bornhouser, A., Michalowski, C.B., Jensen, R., and Bohnert, H., 1996, Coordinate transcription induction of myo-inositol metabolism during environmental stress. Plant J. 9: 537–548.PubMedGoogle Scholar
  38. Janczarek, M., Krol, J., and Skorupska, A., 1999, The pssb gene product of Rhizobium leguminosarum bv. Trifolii is homologous to a family of inositol monophosphatases. FEMS Microbiol. Lett. 173: 319–325.PubMedGoogle Scholar
  39. Janczarek, M., and Skorupska, A., 2004, Regulation of pssa and pssb gene expression in Rhizobium leguminosarum bv. Trifolii in response to environmental factors. Antonie Van Leeuwenhoek 85: 217–227.PubMedGoogle Scholar
  40. Jian, A., and Nessler, C., 2000, Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol. Breeding 6: 73–78.Google Scholar
  41. Jin, X., Foley, K.M., and Geiger, J.H., 2004, The structure of the 1L-myo-inositol-1-phosphate synthase-NAD2+-deoxy-D-glucitol 6-(e)-vinylhomophosphonate complex demands a revision of the enzyme mechanism. J. Biol. Chem. 279: 13889–13895.PubMedGoogle Scholar
  42. Johnson, M.D., and Sussex, I.M., 1994, Il-myo-inositol 1-phosphate synthase from Arabidopsis thaliana. Plant Physiol. 107: 613–619.Google Scholar
  43. Kao, K.R., Masiu, R.P., and Elinson, R., 1986, Respecification of pattern in Xenopus laevis embryos — a novel effect of lithium. Nature 322: 371–373.Google Scholar
  44. Keller, R., Brearley, C., Trethewey, R., and Muller-Rober, B., 1998, Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D-myo-inositol 3-phosphate synthase. Plant J. 16: 403–410.Google Scholar
  45. Klein, P.S., and Melton, D.A., 1996, A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. U.S.A. 93: 8455–8459.PubMedGoogle Scholar
  46. Lachman, H.M., and Papolos, D.F., 1989, Abnormal signal transduction: A hypothetical model for bipolar affective disorder. Life Sci. 45: 1413–1426.PubMedGoogle Scholar
  47. Larner, J., 2002, D-chiro-inositol — its functional role in insulin action and its deficit in insulin resistance. Int. J. Exp. Diabetes Res. 3: 47–60.PubMedGoogle Scholar
  48. Loertscher, R., and Lavery, P., 2002, The role of glycosyl phosphatidyl inositol (gpi)-anchored cell surface proteins in T-cell activation. Transpl. Immunol. 9: 93–96.PubMedGoogle Scholar
  49. Loewus, F., 1963, Tracer studies of ascorbic acid formation in plants. Phytochemistry 2: 109–128.Google Scholar
  50. Loewus, F., 1965, Inositol metabolism and cell wall formation in plants. Fed. Proc. 24: 855–862.PubMedGoogle Scholar
  51. Loewus, F., 1969, Metabolism of inositol in higher plants. Ann. N. Y. Acad. Sci. 165: 577–598.PubMedGoogle Scholar
  52. Loewus, M.W., Bedgar, D.L., and Loewus, F.A., 1984, 1L-myo-inositol 1-phosphate synthase from pollen of Lilium longiflorum. An ordered sequential mechanism. J. Biol. Chem. 259: 7644–7647.PubMedGoogle Scholar
  53. Loewus, F., Kelly, S., and Neufeld, E., 1962, Metabolism of myo-inositol in plants: Conversion to pectin, hemicellulose, D-xylose, and sugar acids. Proc. Natl. Acad. Sci. U.S.A. 48: 421–425.PubMedGoogle Scholar
  54. Loewus, M.W., and Loewus, F.A., 1980, The C-5 hydrogen isotope-effect in myo-inositol 1-phosphate synthase as evidence for the myo-inositol oxidation-pathway. Carbohydr. Res. 82: 333–342.PubMedGoogle Scholar
  55. Loewus, F.A., and Loewus, M.W., 1983, myo-Inositol: Its biosynthesis and metabolism. Annu. Rev. Plant Physiol. 34: 137–161.Google Scholar
  56. Loewus, F.A., and Murthy, P.P.N., 2000, myo-Inositol metabolism in plants. Plant Sci. 150: 1–19.Google Scholar
  57. Lopez, F., Leube, M., Gil-Mascarell, R., Navarro-Avino, J.P., and Serrano, R., 1999, The yeast inositol monophosphatase is a lithium-and sodium-sensitive enzyme encoded by a nonessential gene pair. Mol. Microbiol. 31: 1255–1264.PubMedGoogle Scholar
  58. Lorence, A., Chevone, B.I., Mendes, P., and Nessler, C.L., 2004, myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 134: 1200–1205.PubMedGoogle Scholar
  59. Maeda, T., and Eisenberg, F., Jr., 1980, Purification, structure, and catalytic properties of l-myo-inositol-1-phosphate synthase from rat testis. J. Biol. Chem. 255: 8458–8464.PubMedGoogle Scholar
  60. Majee, M., Maitra, S., Ghosh Dastidar, K., Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P., and Majumder, A.L., 2004, A novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.)Tateoka, a halophytic wild rice. Molecular cloning, bacterial overexpression, characterization and functional introgression into tobacco conferring salttolerance phenotype. J. Biol. Chem. 279: 28539–28552.PubMedGoogle Scholar
  61. Majerus, P.W., Kisseleva, M.V., and Norris, F.A., 1999, The role of phosphatases in inositol signaling reactions. J. Biol. Chem. 274: 10669–10672.PubMedGoogle Scholar
  62. Majumder, A.L., Chatterjee, A., Ghosh Dastidar, K., and Majee, M., 2003, Diversification and evolution of l-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.PubMedGoogle Scholar
  63. Majumder, A.L., Johnson, M.D., and Henry, S.A., 1997, 1L-myo-inositol-1-phosphate synthase. Biochim. Biophys. Acta 1348: 245–256.PubMedGoogle Scholar
  64. Majumder, A.L., Mandal N.C., and Biswas, B.B., 1972, Phosphoinositol kinase from germinating mung bean seeds. Phytochemistry 11: 503–508.Google Scholar
  65. Maslanski, J.A., Leshko, L., and Busa, W.B., 1992, Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. Science 256: 243–245.PubMedGoogle Scholar
  66. Matsuhisa, A., Suzuki, N., Noda, T., and Shiba, K., 1995, Inositol monophosphatase activity from the Escherichia coli Suhb gene product. J. Bacteriol. 177: 200–205.PubMedGoogle Scholar
  67. McAllister, G., Whiting, P., Hammond, E.A., Knowles, M.R., Atack, J.R., Bailey, F.J., Maigetter, R., and Ragan, C. I., 1992, cDNA cloning of human and rat brain myo-inositol monophosphatase: Expression and characterization of the human recombinant enzyme. Biochem. J. 284: 749–754.PubMedGoogle Scholar
  68. Mehta, D.V., Kabir, A., and Bhat, P.J., 1999, Expression of human inositol monophosphatase suppresses galactose toxicity in Saccharomyces cerevisiae: Possible implications in galactosemia. Biochim. Biophys. Acta 1454: 217–226.PubMedGoogle Scholar
  69. Meijer, H.J., and Munnik, T., 2003, Phospholipid-based signaling in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 54: 265–306.Google Scholar
  70. Moore, G.J., Bebchuk, J.M., Parrish, J.K., Faulk, M.W., Arfken, C.L., Strahl-Bevacqua, J., and Manji, H.K., 1999, Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am. J. Psychiatry 156: 1902–1908.PubMedGoogle Scholar
  71. Murguia, J.R., Belles, J.M., and Serrano, R., 1996, The yeast Hal2 nucleotidase is an in vivo target of salt toxicity. J. Biol. Chem. 271: 29029–29033.PubMedGoogle Scholar
  72. Murray, M., and Greenberg, M.L., 1997, Regulation of inositol monophosphatase in Saccharomyces cerevisiae. Mol. Microbiol. 25: 541–546.PubMedGoogle Scholar
  73. Murray, M., and Greenberg, M.L., 2000, Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. Mol. Microbiol. 36: 651–661.PubMedGoogle Scholar
  74. Nelson, D.E., Rammesmayer, G., and Bohnert, H.J., 1998, Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10: 753–764.PubMedGoogle Scholar
  75. Neuwald, A.F., Krishnan, B.R., Brikun, I., Kulakauskas, S., Suziedelis, K., Tomcsanyi, T., Leyh, T.S., and Berg, D.E., 1992, CysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J. Bacteriol. 174: 415–425.PubMedGoogle Scholar
  76. Neuwald, A.F., York, J.D., and Majerus, P.W., 1991, Diverse proteins homologous to inositol monophosphatase. FEBS Lett. 294: 16–18.PubMedGoogle Scholar
  77. Nigou, J., and Besra, G.S., 2002, Characterization and regulation of inositol monophosphatase activity in Mycobacterium smegmatis. Biochem. J. 361: 385–390.PubMedGoogle Scholar
  78. Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N., and Yagi, K., 1994, Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 269: 13685–13688.PubMedGoogle Scholar
  79. Odorizzi, G., Babst, M., and Emr, S.D., 2000, Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem. Sci. 25: 229–235.PubMedGoogle Scholar
  80. Ordman, A.B., and Kirkwood, S., 1977, UDP glucose dehydrogenase. Kinetics and their mechanistic implications. Biochim. Biophys. Acta 481: 25–32.PubMedGoogle Scholar
  81. Ouyang, Q., Ruiz-Noriega, M., and Henry, S.A., 1999, The reg1 gene product is required for repression of ino1 and other inositol-sensitive upstream activating sequence-containing genes of yeast. Genetics 152: 89–100.PubMedGoogle Scholar
  82. Parthasarathy, L., Vadnal, R.E., Parthasarathy, R., Shyamala, and Devi, C.S., 1994, Biochemical and molecular properties of lithium-sensitive myo-inositol monophosphatase. Life Sci. 54: 1127–1142.PubMedGoogle Scholar
  83. Paul, M., and Cockburn, W., 1989, Pinitol, a compatible solute in Mesembryanthemum crystallinum L. J. Exp. Bot. 40: 1093–1098.Google Scholar
  84. Payrastre, B., Missy, K., Giuriato, S., Bodin, S., Plantavid, M., and Gratacap, M., 2001, Phosphoinositides: Key players in cell signalling, in time and space. Cell. Signal. 13: 377–387.PubMedGoogle Scholar
  85. Quintero, F.J., Garciadeblas, B., and Rodriguez-Navarro, A., 1996, The Sal1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′(-bisphosphate nucleotidase and inositol polyphosphatase 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 8: 529–537.PubMedGoogle Scholar
  86. Rammesmayer, G., Pichorner, H., Adams, P., Jensen, R., and Bohnert, H.J., 1995, Characterization of IMT1, myo-inositol O-methyltransferase, from Mesembryanthemum crystallinum. Arch. Biochem. Biophys. 322: 183–188.PubMedGoogle Scholar
  87. Reddy, C.C., Swan, J.S., and Hamilton, G.A., 1981, myo-Inositol oxygenase from hog kidney. I. Purification and characterization of the oxygenase and of an enzyme complex containing the oxygenase and D-glucuronate reductase. J. Biol. Chem. 256: 8510–8518.PubMedGoogle Scholar
  88. Rivera-Gonzalez, R., Petersen, D.N., Tkalcevic, G., Thompson, D.D., and Brown, T.A., 1998, Estrogen-induced genes in the uterus of ovariectomized rats and their regulation by droloxifene and tamoxifen. J. Steroid Biochem. Mol. Biol. 64: 13–24.PubMedGoogle Scholar
  89. Roberts, R.M., Shah, R., and Loewus, F., 1967. Conversion of myo-inositol-2-14C to labeled 4-Omethyl-glucuronic acid in the cell wall of maize root tips. Arch. Biochem. Biophys. 119: 590–593.PubMedGoogle Scholar
  90. Seitz, B., Klos, C., Wurm, M., and Tenhaken, R., 2000, Matrix polysaccharide precursors in arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns. Plant J. 21: 537–546.PubMedGoogle Scholar
  91. Shaldubina, A., Ju, S., Vaden, D.L., Ding, D., Belmaker, R.H., and Greenberg, M.L., 2002, epi-Inositol regulates expression of the yeast ino1 gene encoding inositol-1-P synthase. Mol. Psychiatry 7: 174–180.PubMedGoogle Scholar
  92. Shamir, A., Shaltiel, G., Greenberg, M.L., Belmaker, R.H., and Agam, G., 2003, The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model. Brain Res. Mol. Brain Res. 115: 104–110.PubMedGoogle Scholar
  93. Shamir, A., Sjoholt, G., Ebstein, R.P., Agam, G., and Steen, V.M., 2001, Characterization of two genes, impa1 and impa2 encoding mouse myo-inositol monophosphatases. Gene 271: 285–291.PubMedGoogle Scholar
  94. Shen, X., Xiao, H., Ranallo, R., Wu, W.H., and Wu, C., 2003, Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299: 112–114.PubMedGoogle Scholar
  95. Sims, K.J., Spassieva, S.D., Voit, E.O., and Obeid, L.M., 2004, Yeast sphingolipid metabolism: Clues and connections. Biochem. Cell Biol. 82: 45–61.PubMedGoogle Scholar
  96. Smart, C., and Fleming, A., 1993, A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during ABA-induced morphogenic response in Spirodela polrrhiza. Plant J. 4: 279–293.PubMedGoogle Scholar
  97. Smirnoff, N., Conklin, P.L., and Loewus, F.A., 2001, Biosynthesis of ascorbic acid in plants: A renaissance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 437–467.PubMedGoogle Scholar
  98. Spiegelberg, B.D., Xiong, J.P., Smith, J.J., Gu, R.F., and York, J.D., 1999, Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3′-nucleotidase inhibited by inositol 1,4-bisphosphate. J. Biol. Chem. 274: 13619–13628.PubMedGoogle Scholar
  99. Stevenson, J.M., Perera, I.Y., Heilmann, I.I., Persson, S., and Boss, W.F., 2000, Inositol signaling and plant growth. Trends Plant Sci. 5: 357.PubMedGoogle Scholar
  100. Styer, J.C., Keddie, J., Spence, J., and Gillaspy, G.E., 2004, Genomic organization and regulation of the LeIMP1 and LeIMP2 genes encoding myo-inositol monophosphatase in tomato. Gene 326: 35–41.PubMedGoogle Scholar
  101. Tolias, K.F., and Cantley, L.C., 1999, Pathways for phosphoinositide synthesis. Chem. Phys. Lipids 98: 69–77.PubMedGoogle Scholar
  102. Vaden, D.L., Ding, D., Peterson, B., and Greenberg, M.L., 2001, Lithium and valproate decrease inositol mass and increase expression of the yeast ino1 and ino2 genes for inositol biosynthesis. J. Biol. Chem. 276: 15466–15471.PubMedGoogle Scholar
  103. Van Dijken, P., Bergsma, J.C., Hiemstra, H.S., De Vries, B., Van Der Kaay, J., and Van Haastert, P.J., 1996, Dictyostelium discoideum contains three inositol monophosphatase activities with different substrate specificities and sensitivities to lithium. Biochem. J. 314: 491–495.PubMedGoogle Scholar
  104. Wheeler, G.L., Jones, M.A., and Smirnoff, N., 1998, The biosynthetic pathway of Vitamin C in higher plants. Nature 393: 365–369.PubMedGoogle Scholar
  105. White, M.J., Hirsch, J.P., and Henry, S.A., 1991, The opi1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J. Biol. Chem. 266: 863–872.PubMedGoogle Scholar
  106. Whiting, P.H., Palmano, K.P., and Hawthorne, J.N., 1979, Enzymes of myo-inositol and inositol lipid metabolism in rats with streptozotocin-induced diabetes. Biochem. J. 179: 549–553.PubMedGoogle Scholar
  107. Wong, Y.H., Mauck, L.A., and Sherman, W.R., 1982, L-myo-inositol-1-phosphate synthase from bovine testis. Methods Enzymol. 90 (Pt E): 309–314.PubMedGoogle Scholar
  108. Xiong, L., Lee, B., Ishitani, M., Lee, H., Zhang, C., and Zhu, J.K., 2001, Fiery1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev. 15: 1971–1984.PubMedGoogle Scholar
  109. Yoon, I.S., Li, P.P., Siu, K.P., Kennedy, J.L., Cooke, R.G., Parikh, S.V., and Warsh, J.J., 2001, Altered IMPA2 gene expression and calcium homeostasis in bipolar disorder. Mol. Psychiatry 6: 678–683.PubMedGoogle Scholar
  110. York, J.D., and Majerus, P.W., 1990, Isolation and heterologous expression of a cDNA encoding bovine inositol polyphosphate 1-phosphatase. Proc. Natl. Acad. Sci. 87: 9548–9552.PubMedGoogle Scholar
  111. York, J.D., Ponder, J.W., and Majerus, P.W., 1995, Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. U.S.A. 92: 5149–5153.PubMedGoogle Scholar
  112. York, J.D., Veile, R.A., Donis-Keller, H., and Majerus, P.W., 1993, Cloning, heterologous expression, and chromosomal localization of human inositol polyphosphate 1-phosphatase. Proc. Natl. Acad. Sci. U.S.A. 90: 5833–5837.PubMedGoogle Scholar
  113. Yoshida, K.T., Fujiwara, T., and Naito, S., 2002, The synergistic effects of sugar and abscisic acid on myo-inositol-1-phosphate synthase expression. Physiol. Plant. 114: 581–587.PubMedGoogle Scholar
  114. Yoshida, K.T., Wada, T., Koyama, H., Mizobuchi-Fukuoka, R., and Naito, S., 1999, Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol. 119: 65–72.PubMedGoogle Scholar
  115. Zhu, X., and Eichberg, J., 1990, A myo-inositol pool utilized for phosphatidylinositol synthesis is depleted in sciatic nerve from rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. U.S.A. 87: 9818–9822.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Javad Torabinejad
    • 1
  • Glenda E. Gillaspy
    • 1
  1. 1.Department of Biochemistry, Virginia Tech306 Fralin Biotechnology CenterBlacksburgUSA

Personalised recommendations