Advertisement

Evolutionary Divergence of L-myo-Inositol 1-Phosphate Synthase: Significance of a “Core Catalytic Structure”

  • Krishnarup Ghosh Dastidar
  • Aparajita Chatterjee
  • Anirban Chatterjee
  • Arun Lahiri Majumder
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 39)

Keywords

INO1 Gene MIPS Gene Core Catalytic Domain MIPS Protein Active Site Amino Acid Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-abied, M., and Holland, D., 1994, The gene cINO1 from Citrus paradisi is highly homologous to tur1 and Ino1 from the yeast and Spirodela encoding for myo-inositol 1-phosphate synthase. Plant Physiol. 106: 1689.PubMedCrossRefGoogle Scholar
  2. Adhikari, J., Majumder, A.L., Bhaduri, T.J., Dasgupta, S., and Majumder, A.L., 1987, Chloroplast as a locale of L-myo-inositol 1-phosphate synthase. Plant Physiol. 85: 611–614.PubMedGoogle Scholar
  3. Bachhawat, N., and Mande, S.C., 1999, Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol 1-phosphate synthase enzyme. J. Mol. Biol. 291: 531–536.PubMedCrossRefGoogle Scholar
  4. Bachhawat, N., and Mande, S.C., 2000, Complex evolution of the inositol-1-phosphate synthase gene among archaea and Eubacteria. Trends Genet. 16: 111–113.PubMedCrossRefGoogle Scholar
  5. Benaroya, R.O., Zamski, E., and Tel-Or, E., 2004, L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem. 42: 97–102.PubMedCrossRefGoogle Scholar
  6. Chatterjee, A., Majee, M., Ghosh, S., and Majumder, A.L., 2004, sll1722, an unassigned ORF of Synechocystis PCC 6803, codes for L-myo-Inositol 1-Phosphate Synthase. Planta 218: 989–998.PubMedCrossRefGoogle Scholar
  7. Chen, L., Zhou, C., Yang, H., and Roberts, M.F., 2000, Inositol 1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase. Biochemistry. 39: 12415–12423.PubMedCrossRefGoogle Scholar
  8. Chun, J.-A., Jin, U.-H., Lee, J.-W., Yi, Y.-B., Hyung, N.-I., Kang, M.-H., Pyee, J.-H., Suh, M.C., Kang, C.-W., Seo, H.-Y., Lee, S.-W., and Chung, C.-H., 2003,. Isolation and Characterization of a myo-Inositol 1-phospahte synthase cDNA from developing sesame (Sesamum indicum L.) seeds: Functional and differential expression, and salt-induced transcritption during germination. Planta 216: 874–880.PubMedGoogle Scholar
  9. Corpet, F., 1988, Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16: 10881–10890.PubMedGoogle Scholar
  10. DasGupta, S., Adhikari, J., and Majumder, A.L., 1984, L-myo-inositol 1-phosphate-synthase from lower plant groups: Partial purification and properties of the enzyme from Euglena gracilis. Physiol. Plant. 61: 408–416.Google Scholar
  11. Donahue, T.F., and Henry, S.A., 1981, Myo-inositol 1-phosphate synthase: Characteristics of the enzyme and identification of its structural gene in yeast. J. Biol. Chem. 256: 7077–7085.PubMedGoogle Scholar
  12. Funkhouser, E.A., and Loewus, F.A., 1975, Purification of myo-inositol 1-phosphate synthase from the rice cell culture by affinity chromatography. Plant Physiol. 56: 786–790.PubMedCrossRefGoogle Scholar
  13. Hait, N.C., Ray Chaudhury, A., Das, A., Bhattacharyya, S., and Majumder, A.L., 2002, Processing and activation of chloroplast L-myo-inositol 1-phosphate synthase from Oryza sativa requires signals from both light and salt. Plant Sc. 162(4): 559–568.CrossRefGoogle Scholar
  14. Harris, H., 1966, Enzyme polymorphisms in man. Proc. R. Soc. Lond. B 164: 298–310.PubMedCrossRefGoogle Scholar
  15. Hayakawa T., and Kurasawa F., 1976, Biochemical studies on inositol in rice seed. Part V. Some enzymatic properties of myo inositol 1 phosphate synthase in the milky stage of rice seed. Nippon Nogel Kagaku Kaishi. 50: 339–343.Google Scholar
  16. Hayama, R., Izawa, T., and Shimamoto, K., 2002, Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol. 43: 494–504.PubMedCrossRefGoogle Scholar
  17. Hinchliffe, K., and Irvine, R., 1997, Inositol lipid pathways turn turtle. Nature 390: 123–124.PubMedCrossRefGoogle Scholar
  18. Hirsh, A.E., and Fraser, H.B., 2001, Protein dispensability and rate of evolution. Nature 411: 1046–1049.PubMedCrossRefGoogle Scholar
  19. Hirsh, A.E., and Fraser, H.B., 2003, Genomic function: Rate of evolution and gene dispensability. Nature 421: 497–498.CrossRefGoogle Scholar
  20. Holsinger, K.E., 2004, The neutral theory of molecular evolution. Creative Commons Attribution. 1–6.Google Scholar
  21. Hubby, J.L., and Lewontin, R.C., 1966, A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54: 577–594.PubMedGoogle Scholar
  22. Imhoff, V., and Bourdu, R., 1973,. Formation, d’ inositol par les chloroplasts isoles de pois. Phytochemistry 12: 331–336.CrossRefGoogle Scholar
  23. Iqbal, M.J., Afzal, A.J., Yaegashi, S., Ruben, E., Triartayakorn, K., Njiti, V.N., Ahsan, R., Wood, A.J., and Lightfoot, D.A., 2002, A Pyramid of loci for partial resistance to Fusarium solani f. sp. Glycines maintains Myo-inositol-1-phosphate synthase expression in soybean roots. Theor. Appl. Genet. 105: 1115–1123.PubMedCrossRefGoogle Scholar
  24. Irvine, R.F., and Schell, M.J., 2001, Back in the water: The return of the inositol phosphates. Nat. Rev. Mol. Cell Biol. 5: 327–338.CrossRefGoogle Scholar
  25. Ishitani, M., Majumder, A.L., Bornhouser, A., Michalowski, C.B., Jensen, R.G., and Bohnert, H.J., 1996, Co-ordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 9: 537–548.PubMedCrossRefGoogle Scholar
  26. Jin, X., Foley, K.M., and Geiger, J.H., 2004, The structure of the 1L-myo-inositol-1-phosphate synthase-NAD+-2-deoxy-D-glucitol 6-(E)-vinylhomophosphonate complex demands a revision of the enzyme mechanism. J. Biol. Chem. 279: 13889–13895.PubMedCrossRefGoogle Scholar
  27. Jin, X., and Geiger, J.H., 2003, Structures of NAD+-and NADH-bound 1-l-myo-inositol 1-phosphate synthase. Acta Crystallogr. D 59, 1154–1164.PubMedCrossRefGoogle Scholar
  28. Johnson, M.D., 1994, The Arabidopsis thaliana myo-inositol 1-phosphate synthase (EC 5.5.1.4). Plant Physiol. 105: 1023–1024.PubMedCrossRefGoogle Scholar
  29. Johnson, M.D., and Henry, S.A., 1989, Biosynthesis of inositol in yeast: Primary structure of myoinositol 1-phosphate synthase locus and functional characterization of its structural gene, the Ino1 locus. J. Biol. Chem. 264: 1274–1283.Google Scholar
  30. Johnson, M.D., and Sussex, I.M., 1995, L-myo-inositol 1-phosphate synthase from Arabidopsis thaliana. Plant physiol. 107: 613–619.PubMedGoogle Scholar
  31. Johnson, M.D., and Wang, X., 1996, Differentially expressed forms of myo-inositol 1-phosphate synthase (EC 5.5.1.4) in Phaseolus vulgaris. J. Biol. Chem. 271: 17215–17218.PubMedCrossRefGoogle Scholar
  32. Joint Center for Structural Genomics, (Jcsg), To be Published Crystal Structure Of Myo-Inositol-1-Phosphate Synthase-Related Protein (Tm1419) From Thermotoga Maritima At 1.70 A Resolution, (Release date Mar 23, 2004) Joint Center for Structural Genomics, (Jcsg), To be Published Crystal Structure Of Inositol-3-Phosphate Synthase (Ce21227) From Caenorhabditis Elegans At 2.30 A Resolution, (Release date Aug 17, 2004)Google Scholar
  33. Keller, R., Brearly, C.A., Tretheway, R.N., and Müller-Röber, B., 1998, Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D-myo-inositol 3-phosphate synthase. Plant J. 16; 403–410.CrossRefGoogle Scholar
  34. Kimura, M., 1968, Evolutionary rate at the molecular level. Nature 217: 624–626.PubMedCrossRefGoogle Scholar
  35. Kimura, M., and Ohta, T., 1974, Probability of gene fixation in an expanding finite population. PNAS, 71: 3377–3379.PubMedCrossRefGoogle Scholar
  36. King, J.L., and Jukes, T.L., 1969, Non-darwinian evolution. Science 164: 788–798.PubMedGoogle Scholar
  37. Kleiger, G., and Eisenberg, D., 2002, GXXXG and GXXXA motifs stabilize FAD and NAD (P)-binding Rossmann folds through C (alpha)-H. O hydrogen bonds and van der waals interactions. J. Mol. Biol. 323: 69–76.PubMedCrossRefGoogle Scholar
  38. Klig, L.S., and Henry, S.A., 1984, Isolation of INO1 gene on an autonomously replicating plasmid, the gene is fully regulated. Proc. Natl. Acad. Sci. U.S.A. 81: 3816–3820.PubMedCrossRefGoogle Scholar
  39. Kniewel R., Buglino JA., Shen V., Chadha T., Beckwith A., Lima CD. Structural analysis of Saccharomyces cerevisiae myo-inositol phosphate synthase. J Struct Funct Genomics. 2002; 2(3): 129–34.PubMedCrossRefGoogle Scholar
  40. Koshland, D.E., 1958, Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 44: 98–105.PubMedCrossRefGoogle Scholar
  41. Lackey, K.H., Pope, P.M., and Johnson, M.D., 2003, Expression of 1L-myoinositol-1-phosphate synthase in organelles. Plant Physiol. 132: 2240–2247.PubMedCrossRefGoogle Scholar
  42. Larson, S.R., and Raboy, V., 1999, Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences: Correspondence with low phytic acid mutation. Theor. Appl. Genet. 99: 27–36.CrossRefGoogle Scholar
  43. Majee, M., Maitra, S., Dastidar, K.G., Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P., and Majumder, A.L., 2004, A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: Molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco conferring salt tolerance phenotype. J. Biol. Chem. 279: 28539–28552.PubMedCrossRefGoogle Scholar
  44. Molecular cloning, Bacterial overexpression and characterization of L-myo-inositol 1 Phosphate Synthase from a monocotyledonous Resurrection Plant, Xerophyta viscosa Baker Manoj Majee, Barunava Patra, Sagadevan G., Mundree and Arun Lahiri Majumder. J. Plant Biochemistry & Biotechnology, vol-14, 71–75, July 2005.Google Scholar
  45. Majee, M., Majumder, A.L., and Mundree, S., 2003, Xerophyta viscosa myo-inositol-1-phosphate synthase complete cds (Gen Bank accession no. AY323824).Google Scholar
  46. Majumder, A.L., 1981, Coupling between fructose 1,6-bisphosphatase and myo-inositol synthase: An hypothesis for ‘rescue synthesis’ of myo-inositol. FEBS Lett. 133: 189–193.PubMedCrossRefGoogle Scholar
  47. Majumder, A.L., and Biswas, B.B., 1973, Metabolism of inositol phosphates: Part V Biosynthesis of inositol phosphates during ripening of Mung bean (Phaseolus aureus) seeds. Ind. J. Exp. Biol. 11: 120–123.Google Scholar
  48. Majumder, A.L., Chatterjee, A., Ghosh Dastidar, K., and Majee, M., 2003, Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.PubMedCrossRefGoogle Scholar
  49. Majumder, A.L., Johnson, M.D., and Henry, S.A., 1997, 1L-myo-inositol-1-phosphate synthase. Biochim. Biophys. Acta. 1348: 245–256.PubMedGoogle Scholar
  50. Neelon, K., Wang, Y., Stec, B., and Roberts, M.F., 2005, Probing the mechanism of the Archaeoglobus fulgidus inositol-1-phosphate-synthase. J. Biol. Chem. 280: 11475–11482.PubMedCrossRefGoogle Scholar
  51. Norman, R.A., McAlister, M.S., Murray-Rust, J., Movahedzadeh, F., Stoker, N.G., and McDonald, N.Q., 2002, Crystal structure of inositol 1-phosphate synthase from Mycobacterium tuberculosis, a key enzyme in phosphatidylinositol synthesis. Structure 10: 393–402.PubMedCrossRefGoogle Scholar
  52. Pal, C., Papp, B., and Hurst, L.D., 2003, Genomic function: Rate of evolution and gene dispensability. Nature 421: 496–497.PubMedCrossRefGoogle Scholar
  53. Park, S.H., and Kim, J.I., 2004, Characterization of recombinant Drosophila melanogaster myoinositol-1-phosphate synthase expressed in Escherichia coli. J. Microbiol. 42: 20–24.PubMedGoogle Scholar
  54. Pittner, F., Tovorova, J.J., Karnitskaya, E.Y., Khoklov, A.S., and Hoffmann-Ostenhof, O. 1979, Myo-inositol 1-phosphate synthase from Streptomyces griseus. Studies on the biosynthesis of cyclitol XXXVIII. Mol. Cell. Biochem. 25: 43.PubMedCrossRefGoogle Scholar
  55. RayChaudhuri, A., Hait, N.C., DasGupta, S., Bhaduri, T.J., Deb, R., and Majumder, A.L., 1997, L-myo-Inositol 1-phosphate synthase from plant sources: Characteristics of the chloroplastic and cytosolic enzymes. Plant Physiol. 115: 727–736.PubMedGoogle Scholar
  56. Rocha, E.P., and Danchin, A., 2004, An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol. Biol. Evol. 21: 108–116.PubMedCrossRefGoogle Scholar
  57. Sarich, V.M., and Wilson, A.C., 1967, Immunological time scale for hominid evolution. Science 158: 1200–1203.PubMedGoogle Scholar
  58. Smart, C.C., and Fleming, A.J., 1993, A plant gene with homology to D-myo-inositol-phosphate synthase is rapidly and specially upregulated during an abscsic acid induced response in Spirodela polyrrihiza. Plant J. 4: 279–293.PubMedCrossRefGoogle Scholar
  59. Stein, A.J., and Geiger, J.H., 2002, The crystal structure and mechanism of 1-L-myo-inositol-1-phosphate synthase. J. Biol. Chem. 277: 9484–9491.PubMedCrossRefGoogle Scholar
  60. Stieglitz, K.A., Yang, H., Roberts, M.F., and Stec, B., Reaching for mechanistic consensus across life kingdoms: Structure and insights into catalysis of the inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus. Biochemistry, (2005), 44, pp. 213–224.PubMedCrossRefGoogle Scholar
  61. Vieille, C., and Zeikus, G.J., 2001, Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1–43.PubMedCrossRefGoogle Scholar
  62. Wilson, A.C., Carlson, S.S. and White, T.J., 1977, Biochemical evolution. Ann. Rev. Biochem. 46: 573–639.PubMedCrossRefGoogle Scholar
  63. Yang, J., Gu, Z., and Li, W.H., 2003, Rate of protein evolution versus fitness effect of gene deletion. Mol. Biol. Evol. 20: 772–774.PubMedCrossRefGoogle Scholar
  64. York, J.D., Odom, A.R., Murphy, R., Ives, E.B., and Wente, S.R., 1999, A phospholipase C dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285: 96–100.PubMedCrossRefGoogle Scholar
  65. Yoshida KT., Wada T., Koyama H., Mizobuchi-Fukuoka R., Naito S. Temporal and spatial patterns of accumulation of the transcript of Myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol. 1999 Jan; 119(1): 65–72.PubMedCrossRefGoogle Scholar
  66. Yoshida, K.T., Fujiwara, T., and Naito, S., 2002, The synergistic effects of sugar and abscisic acid on myo-inositol-1-phosphate synthase expression. Physiol. Plant. 114: 581–587.PubMedCrossRefGoogle Scholar
  67. Zhang, J., and He, X., 2005, Significant impact of protein dispensability on the instantaneous rate of protein evolution. Mol. Biol. Evol. 22: 1147–1155.PubMedCrossRefGoogle Scholar
  68. Zuckerkandl, E., and Pauling, L., 1965, Evolutionary divergence and convergence in proteins. In: Bryson V. and Vogel H. J. (eds.), Evolving Genes and Proteins, Academic Press, New York, NY, pp. 97–166.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Krishnarup Ghosh Dastidar
    • 1
  • Aparajita Chatterjee
    • 1
  • Anirban Chatterjee
    • 1
  • Arun Lahiri Majumder
    • 1
  1. 1.Plant Molecular and Cellular GeneticsBose Institute (Centenary Campus)KolkataIndia

Personalised recommendations