Advertisement

Inositol Phosphates and Phosphoinositides in Health and Disease

  • Yihui Shi
  • Abed N. Azab
  • Morgan N. Thompson
  • Miriam L. Greenberg
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 39)

4. Summary

In the past two decades, considerable progress has been made toward understanding inositol phosphates and PI metabolism. However, there is still much to learn. The present challenge is to understand how inositol phosphates and PIs are compartmentalized, identify new targets of inositol phosphates and PIs, and elucidate the mechanisms underlying spatial and temporal regulation of the enzymes that metabolize inositol phosphates and PIs. Answers to these questions will help clarify the mechanisms of the diseases associated with these molecules and identify new possibilities for drug design.

Keywords

Inositol Phosphate Malignant Hyperthermia Malignant Hyperthermia GLUT4 Translocation Inositol Polyphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addis, M., Loi, M., Lepiani, C., Cau, M., and Melis, M.A., 2004, OCRL mutation analysis in Italian patients with Lowe syndrome. Hum. Mutat. 23: 524–525.PubMedGoogle Scholar
  2. Aisen, P.S., 1997, Inflammation and Alzheimer’s disease: Mechanisms and therapeutic strategies. Gerontology 43: 143–149.PubMedGoogle Scholar
  3. Atack, J.R., 2000, Lithium, phosphatidylinositol signaling, and bipolar disorder. In: Manji, H.K., Bowden, C.L., and Belmaker, R.H. (eds.), Bipolar Medications: Mechanism of Action. American Psychiatric Press, Inc., Washington, DC.Google Scholar
  4. Attree, O., Olivos, I.M., Okabe, I., Bailey, L.C., Nelson, D.L., Lewis, R.A., McInnes, R.R., and Nussbaum, R.L., 1992, The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358: 239–242.PubMedGoogle Scholar
  5. Azzedine, H., Bolino, A., Taieb, T., Birouk, N., Di Duca, M., Bouhouche, A., Benamou, S., Mrabet, A., Hammadouche, T., Chkili, T., Gouider, R., Ravazzolo, R., Brice, A., Laporte, J., and LeGuern, E., 2003, Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am. J. Hum. Genet. 72: 1141–1153.PubMedGoogle Scholar
  6. Bachhawat, N., and Mande, S.C., 1999, Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol-1-phosphate synthase enzyme. J. Mol. Biol. 291: 531–536.PubMedGoogle Scholar
  7. Baumann, C.A., Ribon, V., Kanzaki, M., Thurmond, D.C., Mora, S., Shigematsu, S., Bickel, P.E., Pessin, J.E., and Saltiel, A.R., 2000, CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407: 202–207.PubMedGoogle Scholar
  8. Belmaker, R.H., 2004, Bipolar disorder. N. Engl. J. Med. 351: 476–486.PubMedGoogle Scholar
  9. Berger, P., Bonneick, S., Willi, S., Wymann, M., and Suter, U., 2002, Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum. Mol. Genet. 11: 1569–1579.PubMedGoogle Scholar
  10. Berridge, M.J., 1987, Inositol trisphosphate and diacylglycerol: Two interacting second messengers. Annu. Rev. Biochem. 56: 159–193.PubMedGoogle Scholar
  11. Berridge, M.J., 1993, Inositol trisphosphate and calcium signalling. Nature 361: 315–325.PubMedGoogle Scholar
  12. Berridge, M.J., Downes, C.P., and Hanley, M.R., 1982, Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206: 587–595.PubMedGoogle Scholar
  13. Berridge, M.J., and Irvine, R.F., 1989, Inositol phosphates and cell signalling. Nature 341: 197–205.PubMedGoogle Scholar
  14. Blero, D., De Smedt, F., Pesesse, X., Paternotte, N., Moreau, C., Payrastre, B., and Erneux, C., 2001, The SH2 domain containing inositol 5-phosphatase SHIP2 controls phosphatidylinositol 3,4,5-trisphosphate levels in CHO-IR cells stimulated by insulin. Biochem. Biophys. Res. Commun. 282: 839–843.PubMedGoogle Scholar
  15. Blondeau, F., Laporte, J., Bodin, S., Superti-Furga, G., Payrastre, B., and Mandel, J.L., 2000, Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum. Mol. Genet. 9: 2223–2229.PubMedGoogle Scholar
  16. Bloom, F.E., 2001, Neurotransmission and the central nervous system. In: Hradman, J.G., Limbird, L.E., and Gilman, A.G. (eds.), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th ed., Section III, Chapter 12. The McGraw-Hill companies.Google Scholar
  17. Bolino, A., Muglia, M., Conforti, F.L., LeGuern, E., Salih, M.A., Georgiou, D.M., Christodoulou, K., Hausmanowa-Petrusewicz, I., Mandich, P., Schenone, A., Gambardella, A., Bono, F., Quattrone, A., Devoto, M., and Monaco, A.P., 2000, Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. 25: 17–19.PubMedGoogle Scholar
  18. Brookmeyer, R., Gray, S., and Kawas, C., 1998, Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88: 1337–1342.PubMedGoogle Scholar
  19. Buj-Bello, A., Laugel, V., Messaddeq, N., Zahreddine, H., Laporte, J., Pellissier, J.F., and Mandel, J.L., 2002, The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc. Natl. Acad. Sci. U. S. A. 99: 15060–15065.PubMedGoogle Scholar
  20. Calera, M.R., Martinez, C., Liu, H., Jack, A.K., Birnbaum, M.J., and Pilch, P.F., 1998, Insulin increases the association of Akt-2 with Glut4-containing vesicles. J. Biol. Chem. 273: 7201–7204.PubMedGoogle Scholar
  21. Cantley, L.C., 2002, The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.PubMedGoogle Scholar
  22. Cantley, L.C., and Neel, B.G., 1999, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. U. S. A. 96: 4240–4245.PubMedGoogle Scholar
  23. Carman, G.M., and Henry, S.A., 1999, Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38: 361–399.PubMedGoogle Scholar
  24. Chen, G., Huang, L.D., Jiang, Y.M., and Manji, H.K., 1999a, The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. 72: 1327–1330.PubMedGoogle Scholar
  25. Chen, G., Zeng, W.Z., Yuan, P.X., Huang, L.D., Jiang, Y.M., Zhao, Z.H., and Manji, H.K., 1999b, The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem. 72: 879–882.PubMedGoogle Scholar
  26. Chen, L., Zhou, C., Yang, H., and Roberts, M.F., 2000, Inositol-1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase. Biochemistry 39: 12415–12423.PubMedGoogle Scholar
  27. Clement, S., Krause, U., Desmedt, F., Tanti, J.F., Behrends, J., Pesesse, X., Sasaki, T., Penninger, J., Doherty, M., Malaisse, W., Dumont, J.E., Le Marchand-Brustel, Y., Erneux, C., Hue, L., and Schurmans, S., 2001, The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409: 92–97.PubMedGoogle Scholar
  28. Connolly, T.M., Bansal, V.S., Bross, T.E., Irvine, R.F., and Majerus, P.W., 1987, The metabolism of tris-and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J. Biol. Chem. 262: 2146–2149.PubMedGoogle Scholar
  29. de Gouyon, B.M., Zhao, W., Laporte, J., Mandel, J.L., Metzenberg, A., and Herman, G.E., 1997, Characterization of mutations in the myotubularin gene in twenty six patients with X-linked myotubular myopathy. Hum. Mol. Genet. 6: 1499–1504.PubMedGoogle Scholar
  30. Deliliers, G.L., Servida, F., Fracchiolla, N.S., Ricci, C., Borsotti, C., Colombo, G., and Soligo, D., 2002, Effect of inositol hexaphosphate (IP(6)) on human normal and leukaemic haematopoietic cells. Br. J. Haematol. 117: 577–587.PubMedGoogle Scholar
  31. Dressman, M.A., Olivos-Glander, I.M., Nussbaum, R.L., and Suchy, S.F., 2000, Ocrl1, a PtdIns(4,5)P(2) 5-phosphatase, is localized to the trans-Golgi network of fibroblasts and epithelial cells. J. Histochem. Cytochem. 48: 179–190.PubMedGoogle Scholar
  32. Druzijanic, N., Juricic, J., Perko, Z., and Kraljevic, D., 2002, IP-6 & inosito: Adjuvant chemotherapy of colon cancer. A pilot clinical trial. Rev. Oncologia 4: 171.Google Scholar
  33. Efanov, A.M., Zaitsev, S.V., and Berggren, P.O., 1997, Inositol hexakisphosphate stimulates non-Ca2+-mediated and primes Ca2+-mediated exocytosis of insulin by activation of protein kinase C. Proc. Natl. Acad. Sci. U. S. A. 94: 4435–4439.PubMedGoogle Scholar
  34. Fox, C.H., and Eberl, M., 2002, Phytic acid (IP6), novel broad spectrum anti-neoplastic agent: A systematic review. Complement. Ther. Med. 10: 229–234.PubMedGoogle Scholar
  35. Freeburn, R.W., Wright, K.L., Burgess, S.J., Astoul, E., Cantrell, D.A., and Ward, S.G., 2002, Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J. Immunol. 169: 5441–5450.PubMedGoogle Scholar
  36. Fujii, S., Matsumoto, M., Igarashi, K., Kato, H., and Mikoshiba, K., 2000, Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors. Learn. Mem. 7: 312–320.PubMedGoogle Scholar
  37. Garlind, A., Cowburn, R.F., Forsell, C., Ravid, R., Winblad, B., and Fowler, C.J., 1995, Diminished [3H]inositol(1,4,5)P3 but not [3H]inositol(1,3,4,5)P4 binding in Alzheimer’s disease brain. Brain Res. 681: 160–166.PubMedGoogle Scholar
  38. Geier, S.J., Algate, P.A., Carlberg, K., Flowers, D., Friedman, C., Trask, B., and Rohrschneider, L.R., 1997, The human SHIP gene is differentially expressed in cell lineages of the bone marrow and blood. Blood 89: 1876–1885.PubMedGoogle Scholar
  39. Gould, T.D., Einat, H., Bhat, R., and Manji, H.K., 2004c, AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int. J. Neuropsychopharmacol. 1–4.Google Scholar
  40. Gould, T.D., Quiroz, J.A., Singh, J., Zarate, C.A., and Manji, H.K., 2004a, Emerging experimental therapeutics for bipolar disorder: Insights from the molecular and cellular actions of current mood stabilizers. Mol. Psychiatry 9: 734–755.PubMedGoogle Scholar
  41. Gould, T.D., Zarate, C.A., and Manji, H.K., 2004b, Glycogen synthase kinase-3: A target for novel bipolar disorder treatments. J. Clin. Psychiatry. 65: 10–21.PubMedGoogle Scholar
  42. Grases, F., Perello, J., Prieto, R.M., Simonet, B.M., and Torres, J.J., 2004, Dietary myo-inositol hexaphosphate prevents dystrophic calcifications in soft tissues: A pilot study in Wistar rats. Life Sci. 75: 11–19.PubMedGoogle Scholar
  43. Hallcher, L.M., and Sherman, W.R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255: 10896–10901.PubMedGoogle Scholar
  44. Haug, L.S., Ostvold, A.C., Cowburn, R.F., Garlind, A., Winblad, B., Bogdanovich, N., and Walaas, S.I., 1996, Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer’s disease cerebral cortex: Selectivity of changes and possible correlation to pathological severity. Neurodegeneration 5: 169–176.PubMedGoogle Scholar
  45. Hawkins, P.T., Poyner, D.R., Jackson, T.R., Letcher, A.J., Lander, D.A., and Irvine, R.F., 1993, Inhibition of iron-catalysed hydroxyl radical formation by inositol polyphosphates: A possible physiological function for myo-inositol hexakisphosphate. Biochem. J. 294(Pt 3): 929–934.PubMedGoogle Scholar
  46. Helgason, C.D., Damen, J.E., Rosten, P., Grewal, R., Sorensen, P., Chappel, S.M., Borowski, A., Jirik, F., Krystal, G., and Humphries, R.K., 1998, Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12: 1610–1620.PubMedGoogle Scholar
  47. Herman, G.E., Kopacz, K., Zhao, W., Mills, P.L., Metzenberg, A., and Das, S., 2002, Characterization of mutations in fifty North American patients with X-linked myotubular myopathy. Hum. Mutat. 19: 114–121.PubMedGoogle Scholar
  48. Heslop, J.P., Irvine, R.F., Tashjian, A.H., Jr., and Berridge, M.J., 1985, Inositol tetrakis-and pentakisphosphates in GH4 cells. J. Exp. Biol. 119: 395–401.PubMedGoogle Scholar
  49. Inhorn, R.C., and Majerus, P.W., 1988, Properties of inositol polyphosphate 1-phosphatase. J. Biol. Chem. 263: 14559–14565.PubMedGoogle Scholar
  50. Irvine, R.F., Letcher, A.J., Lander, D.J., and Downes, C.P., 1984, Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223: 237–243.PubMedGoogle Scholar
  51. Irvine, R.F., and Schell, M.J., 2001, Back in the water: The return of the inositol phosphates. Nat. Rev. Mol. Cell Biol. 2: 327–338.PubMedGoogle Scholar
  52. Ismailov, II, Fuller, C.M., Berdiev, B.K., Shlyonsky, V.G., Benos, D.J., and Barrett, K.E., 1996, A biologic function for an “orphan” messenger: D-myo-inositol 3,4,5,6-tetrakisphosphate selectively blocks epithelial calcium-activated chloride channels. Proc. Natl. Acad. Sci. U. S. A. 93: 10505–10509.PubMedGoogle Scholar
  53. Jacobsen, A.N., Du, X.J., Lambert, K.A., Dart, A.M., and Woodcock, E.A., 1996, Arrhythmogenic action of thrombin during myocardial reperfusion via release of inositol 1,4,5-triphosphate. Circulation 93: 23–26.PubMedGoogle Scholar
  54. Janne, P.A., Suchy, S.F., Bernard, D., MacDonald, M., Crawley, J., Grinberg, A., Wynshaw-Boris, A., Westphal, H., and Nussbaum, R.L., 1998, Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J. Clin. Invest. 101: 2042–2053.PubMedGoogle Scholar
  55. Jope, R.S., 2003, Lithium and GSK-3: One inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol. Sci. 24: 441–443.PubMedGoogle Scholar
  56. Ju, S., Greenberg, M.L., in press, 1D-myo-inositol 3-phosphate synthase: Conversion, regulation, and putative target of mood stabilizers. Clin. Neurosci. Res. Google Scholar
  57. Ju, S., Shaltiel, G., Shamir, A., Agam, G., and Greenberg, M.L., 2004, Human 1-D-myo-inositol-3-phosphate synthase is functional in yeast. J. Biol. Chem. 279: 21759–21765.PubMedGoogle Scholar
  58. Kaidanovich-Beilin, O., Milman, A., Weizman, A., Pick, C.G., and Eldar-Finkelman, H., 2004, Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol. Psychiatry 55: 781–784.PubMedGoogle Scholar
  59. Kanai, F., Ito, K., Todaka, M., Hayashi, H., Kamohara, S., Ishii, K., Okada, T., Hazeki, O., Ui, M., and Ebina, Y., 1993, Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem. Biophys. Res. Commun. 195: 762–768.PubMedGoogle Scholar
  60. Kanzaki, M., and Pessin, J.E., 2003, Insulin signaling: GLUT4 vesicles exit via the exocyst. Curr. Biol. 13: R574–R576.PubMedGoogle Scholar
  61. Katagiri, H., Asano, T., Ishihara, H., Inukai, K., Shibasaki, Y., Kikuchi, M., Yazaki, Y., and Oka, Y., 1996, Overexpression of catalytic subunit p110alpha of phosphatidylinositol 3-kinase increases glucose transport activity with translocation of glucose transporters in 3T3-L1 adipocytes. J. Biol. Chem. 271: 16987–16990.PubMedGoogle Scholar
  62. Kijima, Y., Saito, A., Jetton, T.L., Magnuson, M.A., and Fleischer, S., 1993, Different intracellular localization of inositol 1,4,5-trisphosphate and ryanodine receptors in cardiomyocytes. J. Biol. Chem. 268: 3499–3506.PubMedGoogle Scholar
  63. Kitamura, N., Hashimoto, T., Nishino, N., and Tanaka, C., 1989, Inositol 1,4,5-trisphosphate binding sites in the brain: Regional distribution, characterization, and alterations in brains of patients with Parkinson’s disease. J. Mol. Neurosci. 1: 181–187.PubMedGoogle Scholar
  64. LaFerla, F.M., 2002, Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat. Rev. Neurosci. 3: 862–872.PubMedGoogle Scholar
  65. Laporte, J., Biancalana, V., Tanner, S.M., Kress, W., Schneider, V., Wallgren-Pettersson, C., Herger, F., Buj-Bello, A., Blondeau, F., Liechti-Gallati, S., and Mandel, J.L., 2000, MTM1 mutations in X-linked myotubular myopathy. Hum. Mutat. 15: 393–409.PubMedGoogle Scholar
  66. Laporte, J., Blondeau, F., Buj-Bello, A., Tentler, D., Kretz, C., Dahl, N., and Mandel, J.L., 1998, Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human. Hum. Mol. Genet. 7: 1703–1712.PubMedGoogle Scholar
  67. Laporte, J., Hu, L.J., Kretz, C., Mandel, J.L., Kioschis, P., Coy, J.F., Klauck, S.M., Poustka, A., and Dahl, N., 1996, A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 13: 175–182.PubMedGoogle Scholar
  68. Larsson, O., Barker, C.J., Sj-oholm, A., Carlqvist, H., Michell, R.H., Bertorello, A., Nilsson, T., Honkanen, R.E., Mayr, G.W., Zwiller, J., and Berggren, P.O., 1997, Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate. Science 278: 471–474.PubMedGoogle Scholar
  69. Leung, A.Y., Wong, P.Y., Gabriel, S.E., Yankaskas, J.R., and Boucher, R.C., 1995, cAMP-but not Ca(2+)-regulated Cl-conductance in the oviduct is defective in mouse model of cystic fibrosis. Am. J. Physiol. 268: C708–C712.PubMedGoogle Scholar
  70. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S.H., Giovanella, B.C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M.H., and Parsons, R., 1997, PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.PubMedGoogle Scholar
  71. Liang, Y., Hua, Z., Liang, X., Xu, Q., and Lu, G., 2001, The crystal structure of bar-headed goose hemoglobin in deoxy form: The allosteric mechanism of a hemoglobin species with high oxygen affinity. J. Mol. Biol. 313: 123–137.PubMedGoogle Scholar
  72. Liaw, D., Marsh, D.J., Li, J., Dahia, P.L., Wang, S.I., Zheng, Z., Bose, S., Call, K.M., Tsou, H.C., Peacocke, M., Eng, C., and Parsons, R., 1997, Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16: 64–67.PubMedGoogle Scholar
  73. Lin, T., Orrison, B.M., Leahey, A.M., Suchy, S.F., Bernard, D.J., Lewis, R.A., and Nussbaum, R.L., 1997, Spectrum of mutations in the OCRL1 gene in the Lowe oculocerebrorenal syndrome. Am. J. Hum. Genet. 60: 1384–1388.PubMedGoogle Scholar
  74. Liu, Q., Shalaby, F., Jones, J., Bouchard, D., and Dumont, D.J., 1998, The SH2-containing inositol polyphosphate 5-phosphatase, ship, is expressed during hematopoiesis and spermatogenesis. Blood 91: 2753–2759.PubMedGoogle Scholar
  75. Loewus, M.W., Loewus, F.A., Brillinger, G.U., Otsuka, H., and Floss, H.G., 1980, Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J. Biol. Chem. 255: 11710–11712.PubMedGoogle Scholar
  76. Lorenzon, N.M., and Beam, K.G., 2000, Calcium channelopathies. Kidney Int. 57: 794–802.PubMedGoogle Scholar
  77. Lu, P.J., Shieh, W.R., and Chen, C.S., 1996, Antagonistic effect of inositol pentakisphosphate on inositol triphosphate receptors. Biochem. Biophys. Res. Commun. 220: 637–642.PubMedGoogle Scholar
  78. Luckhoff, A., and Clapham, D.E., 1992, Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature 355: 356–358.PubMedGoogle Scholar
  79. Luo, J., Manning, B.D., and Cantley, L.C., 2003, Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell 4: 257–262.PubMedGoogle Scholar
  80. Luo, J.M., Yoshida, H., Komura, S., Ohishi, N., Pan, L., Shigeno, K., Hanamura, I., Miura, K., Iida, S., Ueda, R., Naoe, T., Akao, Y., Ohno, R., and Ohnishi, K., 2003, Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 17: 1–8.PubMedGoogle Scholar
  81. Maehama, T., and Dixon, J.E., 1998, The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273: 13375–13378.PubMedGoogle Scholar
  82. Maehama, T., Taylor, G.S., and Dixon, J.E., 2001, PTEN and myotubularin: Novel phosphoinositide phosphatases. Annu. Rev. Biochem. 70: 247–279.PubMedGoogle Scholar
  83. Majumder, A.L., Chatterjee, A., Ghosh Dastidar, K., and Majee, M., 2003, Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.PubMedGoogle Scholar
  84. Manji, H.K., Moore, G.J., and Chen, G., 1999, Lithium at 50: Have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry 46: 929–940.PubMedGoogle Scholar
  85. Marion, E., Kaisaki, P.J., Pouillon, V., Gueydan, C., Levy, J.C., Bodson, A., Krzentowski, G., Daubresse, J.C., Mockel, J., Behrends, J., Servais, G., Szpirer, C., Kruys, V., Gauguier, D., and Schurmans, S., 2002, The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51: 2012–2017.PubMedGoogle Scholar
  86. Marsh, D.J., Coulon, V., Lunetta, K.L., Rocca-Serra, P., Dahia, P.L., Zheng, Z., Liaw, D., Caron, S., Duboue, B., Lin, A.Y., Richardson, A.L., Bonnetblanc, J.M., Bressieux, J.M., Cabarrot-Moreau, A., Chompret, A., Demange, L., Eeles, R.A., Yahanda, A.M., Fearon, E.R., Fricker, J.P., Gorlin, R.J., Hodgson, S.V., Huson, S., Lacombe, D., and Eng, C., 1998, Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum. Mol. Genet. 7: 507–515.PubMedGoogle Scholar
  87. Martelli, A.M., Manzoli, L., and Cocco, L., 2004, Nuclear inositides: Facts and perspectives. Pharmacol. Ther. 101: 47–64.PubMedGoogle Scholar
  88. Martin, T.F., 1998, Phosphoinositide lipids as signaling molecules: Common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol. 14: 231–264.PubMedGoogle Scholar
  89. Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., Takano, H., Minowa, O., Kuno, J., Sakakibara, S., Yamada, M., Yoneshima, H., Miyawaki, A., Fukuuchi, Y., Furuichi, T., Okano, H., Mikoshiba, K., and Noda, T., 1996, Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379: 168–171.PubMedGoogle Scholar
  90. Mattson, M.P., LaFerla, F.M., Chan, S.L., Leissring, M.A., Shepel, P.N., and Geiger, J.D., 2000a, Calcium signaling in the ER: Its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23: 222–229.PubMedGoogle Scholar
  91. Mattson, M.P., Zhu, H., Yu, J., and Kindy, M.S., 2000b, Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: Involvement of perturbed calcium homeostasis. J. Neurosci. 20: 1358–1364.PubMedGoogle Scholar
  92. McGeer, P.L., and McGeer, E.G., 1995, The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev. 21: 195–218.PubMedGoogle Scholar
  93. Mellstrom, B., and Naranjo, J.R., 2001, Mechanisms of Ca(2+)-dependent transcription. Curr. Opin. Neurobiol. 11: 312–319.PubMedGoogle Scholar
  94. Menniti, F.S., Miller, R.N., Putney, J.W., Jr., and Shears, S.B., 1993, Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J. Biol. Chem. 268: 3850–3856.PubMedGoogle Scholar
  95. Missiaen, L., Robberecht, W., van den Bosch, L., Callewaert, G., Parys, J.B., Wuytack, F., Raeymaekers, L., Nilius, B., Eggermont, J., and De Smedt, H., 2000, Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 28: 1–21.PubMedGoogle Scholar
  96. Modiano, G., Bombieri, C., Ciminelli, B.M., Belpinati, F., Giorgi, S., Georges, M.D., Scotet, V., Pompei, F., Ciccacci, C., Guittard, C., Audrezet, M.P., Begnini, A., Toepfer, M., Macek, M., Ferec, C., Claustres, M., and Pignatti, P.F., 2004, A large-scale study of the random variability of a coding sequence: A study on the CFTR gene. Eur. J. Hum. Genet. Google Scholar
  97. Monnier, N., Satre, V., Lerouge, E., Berthoin, F., and Lunardi, J., 2000, OCRL1 mutation analysis in French Lowe syndrome patients: Implications for molecular diagnosis strategy and genetic counseling. Hum. Mutat. 16: 157–165.PubMedGoogle Scholar
  98. Moore, G.J., Bebchuk, J.M., Parrish, J.K., Faulk, M.W., Arfken, C.L., Strahl-Bevacqua, J., and Manji, H.K., 1999, Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am. J. Psychiatry 156: 1902–1908.PubMedGoogle Scholar
  99. Morris, A.P., Gallacher, D.V., Irvine, R.F., and Petersen, O.H., 1987, Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature 330: 653–655.PubMedGoogle Scholar
  100. Mouton, R., Huisamen, B., and Lochner, A., 1991, Increased myocardial inositol trisphosphate levels during alpha 1-adrenergic stimulation and reperfusion of ischaemic rat heart. J. Mol. Cell. Cardiol. 23: 841–850.PubMedGoogle Scholar
  101. Murray, C.J.L., and Lopez, A.D. (eds.), 1996, The Global Burden of Disease. Harvard University Press, Cambridge, MA.Google Scholar
  102. Naccarato, W.F., Ray, R.E., and Wells, W.W., 1974, Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch. Biochem. Biophys. 164: 194–201.PubMedGoogle Scholar
  103. Nakashima, N., Sharma, P.M., Imamura, T., Bookstein, R., and Olefsky, J.M., 2000, The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes. J. Biol. Chem. 275: 12889–12895.PubMedGoogle Scholar
  104. Narrow, W.E., Rae, D.S., Robins, L.N., and Regier, D.A., 2002, Revised prevalence estimates of mental disorders in the United States: Using a clinical significance criterion to reconcile 2 surveys’ estimates. Arch. Gen. Psychiatry 59: 115–123.PubMedGoogle Scholar
  105. Nelen, M.R., van Staveren, W.C., Peeters, E.A., Hassel, M.B., Gorlin, R.J., Hamm, H., Lindboe, C.F., Fryns, J.P., Sijmons, R.H., Woods, D.G., Mariman, E.C., Padberg, G.W., and Kremer, H., 1997, Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum. Mol. Genet. 6: 1383–1387.PubMedGoogle Scholar
  106. Nishino, I., Minami, N., Kobayashi, O., Ikezawa, M., Goto, Y., Arahata, K., and Nonaka, I., 1998, MTM1 gene mutations in Japanese patients with the severe infantile form of myotubular myopathy. Neuromuscul. Disord. 8: 453–458.PubMedGoogle Scholar
  107. Okada, T., Sakuma, L., Fukui, Y., Hazeki, O., and Ui, M., 1994, Blockage of chemotactic peptideinduced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem. 269: 3563–3567.PubMedGoogle Scholar
  108. Olivos-Glander, I.M., Janne, P.A., and Nussbaum, R.L., 1995, The oculocerebrorenal syndrome gene product is a 105-kD protein localized to the Golgi complex. Am. J. Hum. Genet. 57: 817–823.PubMedGoogle Scholar
  109. Ono, H., Katagiri, H., Funaki, M., Anai, M., Inukai, K., Fukushima, Y., Sakoda, H., Ogihara, T., Onishi, Y., Fujishiro, M., Kikuchi, M., Oka, Y., and Asano, T., 2001, Regulation of phosphoinositide metabolism, Akt phosphorylation, and glucose transport by PTEN (phosphatase and tensin homolog deleted on chromosome 10) in 3T3-L1 adipocytes. Mol Endocrinol. 15: 1411–1422.PubMedGoogle Scholar
  110. Patterson, R.L., Boehning, D., and Snyder, S.H., 2004, Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73: 437–465.PubMedGoogle Scholar
  111. Pendaries, C., Tronchere, H., Plantavid, M., and Payrastre, B., 2003, Phosphoinositide signaling disorders in human diseases. FEBS Lett. 546: 25–31.PubMedGoogle Scholar
  112. Pollack, S.J., Atack, J.R., Knowles, M.R., McAllister, G., Ragan, C.I., Baker, R., Fletcher, S.R., Iversen, L.L., and Broughton, H.B., 1994, Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. U. S. A. 91: 5766–5770.PubMedGoogle Scholar
  113. Posternak, S., 1919, Sur la synthese de l’ ether hexaphosphorique de l’ inosite avec le principe phosphoorganique de reserve des plantes vertes. C. R. Acad. Sci. 169: 138–140.Google Scholar
  114. Riekse, R.G., Leverenz, J.B., McCormick, W., Bowen, J.D., Teri, L., Nochlin, D., Simpson, K., Eugenio, C., Larson, E.B., and Tsuang, D., 2004, Effect of vascular lesions on cognition in Alzheimer’s disease: A community-based study. J. Am. Geriatr. Soc. 52: 1442–1448.PubMedGoogle Scholar
  115. Riera, M., Fuster, J.F., and Palacios, L., 1991, Role of erythrocyte organic phosphates in blood oxygen transport in anemic quail. Am. J. Physiol. 260: R798–R803.PubMedGoogle Scholar
  116. Rudolf, M.T., Dinkel, C., Traynor-Kaplan, A.E., and Schultz, C., 2003, Antagonists of myo-inositol 3,4,5,6-tetrakisphosphate allow repeated epithelial chloride secretion. Bioorg. Med. Chem. 11: 3315–3329.PubMedGoogle Scholar
  117. Saltiel, A.R., and Kahn, C.R., 2001, Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799–806.PubMedGoogle Scholar
  118. Sarnat, H.B., 1990, Myotubular myopathy: Arrest of morphogenesis of myofibres associated with persistence of fetal vimentin and desmin. Four cases compared with fetal and neonatal muscle. Can. J. Neurol. Sci. 17: 109–123.PubMedGoogle Scholar
  119. Sattler, M., Verma, S., Byrne, C.H., Shrikhande, G., Winkler, T., Algate, P.A., Rohrschneider, L.R., and Griffin, J.D., 1999, BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol. Cell. Biol. 19: 7473–7480.PubMedGoogle Scholar
  120. Sbrissa, D., Ikonomov, O.C., Strakova, J., and Shisheva, A., 2004, Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145: 4853–4865.PubMedGoogle Scholar
  121. Selkoe, D.J., 1991, The molecular pathology of Alzheimer’s disease. Neuron 6: 487–498.PubMedGoogle Scholar
  122. Selkoe, D.J., 2001, Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 81: 741–766.PubMedGoogle Scholar
  123. Senderek, J., Bergmann, C., Weber, S., Ketelsen, U.P., Schorle, H., Rudnik-Schoneborn, S., Buttner, R., Buchheim, E., and Zerres, K., 2003, Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum. Mol. Genet. 12: 349–356.PubMedGoogle Scholar
  124. Shaltiel, G., Shamir, A., Shapiro, J., Ding, D., Dalton, E., Bialer, M., Harwood, J.A., Belmaker, R.H., Greenberg, M.L., and Agam, G., in press, Valproate decreases inositol biosynthesis. Mol. Psychiatry. Google Scholar
  125. Sharma, P.M., Egawa, K., Huang, Y., Martin, J.L., Huvar, I., Boss, G.R., and Olefsky, J.M., 1998, Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. J. Biol. Chem. 273: 18528–18537.PubMedGoogle Scholar
  126. Shepherd, P.R., Withers, D.J., and Siddle, K., 1998, Phosphoinositide 3-kinase: The key switch mechanism in insulin signalling. Biochem. J. 333(Pt 3): 471–490.PubMedGoogle Scholar
  127. Shulman, G.I., 2000, Cellular mechanisms of insulin resistance. J. Clin. Invest. 106: 171–176.PubMedGoogle Scholar
  128. Silverstone, P.H., Wu, R.H., O’Donnell, T., Ulrich, M., Asghar, S.J., and Hanstock, C.C., 2002, Chronic treatment with both lithium and sodium valproate may normalize phosphoinositol cycle activity in bipolar patients. Hum. Psychopharmacol. 17: 321–327.PubMedGoogle Scholar
  129. Smith, P.M., Harmer, A.R., Letcher, A.J., and Irvine, R.F., 2000, The effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-induced Ca2+ mobilization in freshly isolated and cultured mouse lacrimal acinar cells. Biochem. J. 347(Pt 1): 77–82.PubMedGoogle Scholar
  130. Steck, P.A., Pershouse, M.A., Jasser, S.A., Yung, W.K., Lin, H., Ligon, A.H., Langford, L.A., Baumgard, M.L., Hattier, T., Davis, T., Frye, C., Hu, R., Swedlund, B., Teng, D.H., and Tavtigian, S.V., 1997, Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15: 356–362.PubMedGoogle Scholar
  131. Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.H., Dell, A., Jackson, T.R., Hawkins, P.T., and Mayr, G.W., 1993, The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J. Biol. Chem. 268: 4009–4015.PubMedGoogle Scholar
  132. Stephens, L.R., Hawkins, P.T., Stanley, A.F., Moore, T., Poyner, D.R., Morris, P.J., Hanley, M.R., Kay, R.R., and Irvine, R.F., 1991, myo-Inositol pentakisphosphates. Structure, biological occurrence and phosphorylation to myo-inositol hexakisphosphate. Biochem. J. 275(Pt 2): 485–499.PubMedGoogle Scholar
  133. Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–69.PubMedGoogle Scholar
  134. Street, V.A., Bosma, M.M., Demas, V.P., Regan, M.R., Lin, D.D., Robinson, L.C., Agnew, W.S., and Tempel, B.L., 1997, The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J. Neurosci. 17: 635–645.PubMedGoogle Scholar
  135. Stutzmann, G.E., Caccamo, A., LaFerla, F.M., and Parker, I., 2004, Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J. Neurosci. 24: 508–513.PubMedGoogle Scholar
  136. Suchy, S.F., and Nussbaum, R.L., 2002, The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am. J. Hum. Genet. 71: 1420–1427.PubMedGoogle Scholar
  137. Suchy, S.F., Olivos-Glander, I.M., and Nussabaum, R.L., 1995, Lowe syndrome, a deficiency of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus. Hum. Mol. Genet. 4: 2245–2250.PubMedGoogle Scholar
  138. Sylvia, V., Curtin, G., Norman, J., Stec, J., and Busbee, D., 1988, Activation of a low specific activity form of DNA polymerase alpha by inositol-1,4-bisphosphate. Cell 54: 651–658.PubMedGoogle Scholar
  139. Tang, T.S., Tu, H., Chan, E.Y., Maximov, A., Wang, Z., Wellington, C.L., Hayden, M.R., and Bezprozvanny, I., 2003, Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39: 227–239.PubMedGoogle Scholar
  140. Tanner, S.M., Schneider, V., Thomas, N.S., Clarke, A., Lazarou, L., and Liechti-Gallati, S., 1999, Characterization of 34 novel and six known MTM1 gene mutations in 47 unrelated X-linked myotubular myopathy patients. Neuromuscul. Disord. 9: 41–49.PubMedGoogle Scholar
  141. Tantivejkul, K., Vucenik, I., Eiseman, J., and Shamsuddin, A.M., 2003, Inositol hexaphosphate (IP6) enhances the anti-proliferative effects of adriamycin and tamoxifen in breast cancer. Breast Cancer Res. Treat. 79: 301–312.PubMedGoogle Scholar
  142. Taylor, G.S., Maehama, T., and Dixon, J.E., 2000, Inaugural article: Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc. Natl. Acad. Sci. U. S. A. 97: 8910–8915.PubMedGoogle Scholar
  143. Toker, A., 2002, Phosphoinositides and Signal Transduction.Google Scholar
  144. Tonner, P.H., Scholz, J., Richter, A., Loscher, W., Steinfath, M., Wappler, F., Wlaz, P., Hadji, B., Roewer, N., and Schulte am Esch, J., 1995, Alterations of inositol polyphosphates in skeletal muscle during porcine malignant hyperthermia. Br. J. Anaesth. 75: 467–471.PubMedGoogle Scholar
  145. Tsubokawa, H., Oguro, K., Robinson, H.P., Masuzawa, T., and Kawai, N., 1996, Intracellular inositol 1,3,4,5-tetrakisphosphate enhances the calcium current in hippocampal CA1 neurones of the gerbil after ischaemia. J. Physiol. 497(Pt 1): 67–78.PubMedGoogle Scholar
  146. Tsujita, K., Itoh, T., Ijuin, T., Yamamoto, A., Shisheva, A., Laporte, J., and Takenawa, T., 2004, Myotubularin regulates the function of the late endosome through the gram domainphosphatidylinositol 3,5-bisphosphate interaction. J. Biol. Chem. 279: 13817–13824.PubMedGoogle Scholar
  147. Ueki, K., Yamamoto-Honda, R., Kaburagi, Y., Yamauchi, T., Tobe, K., Burgering, B.M., Coffer, P.J., Komuro, I., Akanuma, Y., Yazaki, Y., and Kadowaki, T., 1998, Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J. Biol. Chem. 273: 5315–5322.PubMedGoogle Scholar
  148. Ungewickell, A.J., and Majerus, P.W., 1999, Increased levels of plasma lysosomal enzymes in patients with Lowe syndrome. Proc. Natl. Acad. Sci. U. S. A. 96: 13342–13344.PubMedGoogle Scholar
  149. Ungewickell, A., Ward, M.E., Ungewickell, E., and Majerus, P.W., 2004, The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc. Natl. Acad. Sci. U. S. A. 101: 13501–13506.PubMedGoogle Scholar
  150. Vaden, D.L., Ding, D., Peterson, B., and Greenberg, M.L., 2001, Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J. Biol. Chem. 276: 15466–15471.PubMedGoogle Scholar
  151. Vajanaphanich, M., Schultz, C., Rudolf, M.T., Wasserman, M., Enyedi, P., Craxton, A., Shears, S.B., Tsien, R.Y., Barrett, K.E., and Traynor-Kaplan, A., 1994, Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature 371: 711–714.PubMedGoogle Scholar
  152. Vivanco, I., and Sawyers, C.L., 2002, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2: 489–501.PubMedGoogle Scholar
  153. Voglmaier, S.M., Bembenek, M.E., Kaplin, A.I., Dorman, G., Olszewski, J.D., Prestwich, G.D., and Snyder, S.H., 1996, Purified inositol hexakisphosphate kinase is an ATP synthase: Diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc. Natl. Acad. Sci. U. S. A. 93: 4305–4310.PubMedGoogle Scholar
  154. Vucenik, I., and Shamsuddin, A.M., 2003, Cancer inhibition by inositol hexaphosphate (IP6) and inositol: From laboratory to clinic. J. Nutr. 133: 3778S–3784S.PubMedGoogle Scholar
  155. Wappler, F., Scholz, J., Kochling, A., Steinfath, M., Krause, T., and Schulte am Esch, J., 1997, Inositol 1,4,5-trisphosphate in blood and skeletal muscle in human malignant hyperthermia. Br. J. Anaesth. 78: 541–547.PubMedGoogle Scholar
  156. Warsh, J.J., Politsky, J.M., Li, P.P., Kish, S.J., and Hornykiewicz, O., 1991, Reduced striatal [3H]inositol 1,4,5-trisphosphate binding in Huntington’s disease. J. Neurochem. 56: 1417–1422.PubMedGoogle Scholar
  157. Whitman, M., Kaplan, D.R., Schaffhausen, B., Cantley, L., and Roberts, T.M., 1985, Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315: 239–242.PubMedGoogle Scholar
  158. Williams, R.S., Cheng, L., Mudge, A.W., and Harwood, A.J., 2002, A common mechanism of action for three mood-stabilizing drugs. Nature 417: 292–295.PubMedGoogle Scholar
  159. Wishart, M.J., Taylor, G.S., Slama, J.T., and Dixon, J.E., 2001, PTEN and myotubularin phosphoinositide phosphatases: Bringing bioinformatics to the lab bench. Curr. Opin. Cell Biol. 13: 172–181.PubMedGoogle Scholar
  160. Woodcock, E.A., 1997, Inositol phosphates and inositol phospholipids: How big is the iceberg? Mol. Cell. Endocrinol. 127: 1–10.PubMedGoogle Scholar
  161. Woodcock, E.A., Lambert, K.A., and Du, X.J., 1996, Ins(1,4,5)P3 during myocardial ischemia and its relationship to the development of arrhythmias. J. Mol. Cell. Cardiol. 28: 2129–2138.PubMedGoogle Scholar
  162. Woodcock, E.A., Lambert, K.A., Phan, T., and Jacobsen, A.N., 1997, Inositol phosphate metabolism during myocardial ischemia. J. Mol. Cell. Cardiol. 29: 449–460.PubMedGoogle Scholar
  163. Yamamoto, K., Hashimoto, K., Nakano, M., Shimohama, S., and Kato, N., 2002, A distinct form of calcium release down-regulates membrane excitability in neocortical pyramidal cells. Neuroscience 109: 665–676.PubMedGoogle Scholar
  164. Ye, W., Ali, N., Bembenek, M.E., Shears, S.B., and Lafer, E.M., 1995, Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J. Biol. Chem. 270: 1564–1568.PubMedGoogle Scholar
  165. York, J.D., Guo, S., Odom, A.R., Spiegelberg, B.D., and Stolz, L.E., 2001, An expanded view of inositol signaling. Adv. Enzyme Regul. 41: 57–71.PubMedGoogle Scholar
  166. York, J.D., Odom, A.R., Murphy, R., Ives, E.B., and Wente, S.R., 1999, A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285: 96–100.PubMedGoogle Scholar
  167. York, J.D., Saffitz, J.E., and Majerus, P.W., 1994, Inositol polyphosphate 1-phosphatase is present in the nucleus and inhibits DNA synthesis. J. Biol. Chem. 269: 19992–19999.PubMedGoogle Scholar
  168. Zecevic, N., Milosevic, A., and Ehrlich, B.E., 1999, Calcium signaling molecules in human cerebellum at midgestation and in ataxia. Early Hum. Dev. 54: 103–116.PubMedGoogle Scholar
  169. Zhang, X., Hartz, P.A., Philip, E., Racusen, L.C., and Majerus, P.W., 1998, Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 273: 1574–1582.PubMedGoogle Scholar
  170. Zhang, X., Jefferson, A.B., Auethavekiat, V., and Majerus, P.W., 1995, The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc. Natl. Acad. Sci. U. S. A. 92: 4853–4856.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Yihui Shi
    • 1
  • Abed N. Azab
    • 1
  • Morgan N. Thompson
    • 1
  • Miriam L. Greenberg
    • 1
  1. 1.Department of Biological SciencesWayne State UniversityDetroitUSA

Personalised recommendations