Structure and Nomenclature of Inositol Phosphates, Phosphoinositides, and Glycosylphosphatidylinositols

  • Pushpalatha P. N. Murthy
Part of the Subcellular Biochemistry book series (SCBI, volume 39)

6. Conclusions

Inositol is a deceptively simple molecule. On closer study, a number of sophisticated stereochemical, prochiral, chiral, and conformational issues associated with inositols and their derivatives become evident. Inositols, in particular myo-inositol, play a central role in cellular metabolism. An array of complicated molecules that incorporate the inositol moiety are found in nature. Structural heterogeneity of inositol derivatives is compounded by the presence of stereo- and regioisomers of the inositol unit. Because of the large number of isomeric inositols and their derivatives present in nature, a detailed understanding of the structural, stereochemical, and nomenclature issues involving inositol and its derivatives is essential to investigate biological aspects. A discussion of the stereochemical, conformational, prochiral, chiral, and nomenclature issues associated with inositols and the structural variety of insoitol derivatives is presented in this chapter.


Phytic Acid Inositol Phosphate Conformational Isomer Inositol Hexakisphosphate Meso Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agranoff, B.W., 1978, Textbook errors: Cyclitol confusion. Trends Biochem. Sci. 3: N283–N285.CrossRefGoogle Scholar
  2. Agranoff, B.W., Murthy, P.P.N., and Sequin, E.B., 1983, Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J. Biol. Chem. 258:2076–2078.PubMedGoogle Scholar
  3. Ballou, C.E., and Pizer, L.I., 1960, The absolute configuration of the myo-inositol 1-phosphates and a confirmation of the bornesitol configuration. J. Am. Chem. Soc. 82: 3333–3335.CrossRefGoogle Scholar
  4. Barrientos, L.G., and Murthy, P.P.N., 1996, Conformational studies of myo-inositol phosphates. Carbohydr. Res. 296: 39–54.PubMedCrossRefGoogle Scholar
  5. Bauman, A.T., Chateauneuf, G.M., Boyd, B.R., Brown, R.E., and Murthy, P.P.N., 1999, Conformational inversion processes in phytic acid: NMR spectroscopic and molecular modeling studies. Tetrahedron Lett. 40: 4489–4492.CrossRefGoogle Scholar
  6. Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecumj, J., and Zako, M., 1999, Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68:729–777.PubMedCrossRefGoogle Scholar
  7. Blank, G.E., Pletcher, J., and Sax, M., 1971, The structure of myo-inositol hexaphosphate dodecasodium salt octatriacontahydrate: A single crystal X-ray analysis. 44: 319–325.Google Scholar
  8. Carey, F.A., and Sundberg, R.J., 2000, Advanced Organic Chemistry, Part A, Structure and Mechanism, 4th ed. Kluwer Academic/Plenum Publishers, New York, pp. 123–185.Google Scholar
  9. Deitz, M.P., and Albersheim, P., 1965, The enzymic phosphorylation of myo-inositol. Biochem. Biophys. Res. Commun. 19: 598–602.CrossRefGoogle Scholar
  10. Folch, J., and Woolley, D.W., 1942, Inositol, a constituent of a brain phosphatide. J. Biol. Chem. 142: 963–964.Google Scholar
  11. Hokin, M.R., and Hokin, L.E., 1953, Enzyme secretion and the incorporation of P32 into phospholipides of pancreatic slices. J. Biol. Chem. 203: 967–977.PubMedGoogle Scholar
  12. Irvine, R.F., and Schell, M.J., 2001, Back in the water: The return of the inositol phosphates. Nat. Rev. Mol. Cell. Biol. 2: 327–338.PubMedCrossRefGoogle Scholar
  13. Isbrandt, L.R., and Oertei, R.P., 1980, Conformational states of myo-inositol hexakis(phosphate)in aqueous solution. A 13C NMR, 31P NMR, and Raman spectroscopic investigation. J. Am. Chem. Soc. 102: 3144–3148.CrossRefGoogle Scholar
  14. IUB Nomenclature Committee, 1989, Numbering of atoms in myo-inositol. Biochem. J. 258: 1–2.Google Scholar
  15. IUPAC Commission on the Nomenclature of Organic Chemistry and IUPAC-IUB Commission on Biochemical Nomenclature, 1976, Nomenclature of cyclitols. Biochem. J. 153: 23–31.Google Scholar
  16. Kunze, M., Riedel, J., Lange, U., Hurwitz, R., and Tischner, R., 1997, Evidence for the presence of GPI-anchored PM-NR in leaves of Beta vulgaris and from PM-NR in barley leaves. Plant Physiol. Biochem. 35: 507–512.Google Scholar
  17. Larner, J., Huang, L.C., Schwartz, C.F.W., Oswald, A.S., Shen, T.-Y., Kinter, M., Tang, G., and Zeller, K., 1988, Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphatase contains galatosamine and D-chiroinositol. Biochem. Biophys. Res. Commun. 151: 1416–1426.PubMedCrossRefGoogle Scholar
  18. Lasztity, R., and Lasztity, L., 1990, Phytic acid in cereal technology. Adv. Cereal Sci. Technol. 10:309–371.Google Scholar
  19. Loewus, F.A., 1990a, Inositol biosynthesis, metabolism: Precursor role and breakdown. In: Morre, D.J., Boss, W.F., and Loewus, F.A. (eds.), Inositol Metabolism in Plants. Wiley-Liss, New York, NY, pp. 13–19.Google Scholar
  20. Loewus, F.A., 1990b, Inositol metabolism: Precursor role and breakdown. In: Morre, D.J., Boss, W.F., and Loewus, F.A. (eds.), Inositol Metabolism in Plants. Wiley-Liss, New York, pp. 21–45.Google Scholar
  21. Loewus, F.A., and Murthy, P.P.N., 2000, myo-Inositol metabolism in plants. Plant Sci. 150: 1–19.CrossRefGoogle Scholar
  22. Loewus, M.W., Sasaki, K., Laevitt, A.L., Munsell, L., Sherman, W.R., and Loewus, F.A., 1982, The enantiomeric form of myo-inositol-1-phosphate produced by myo-inositol 1-phosphate synthase and myo-inositol kinase in higher plants. Plant Physiol. 70: 1661–1663.PubMedCrossRefGoogle Scholar
  23. Low, M.G., 1989, The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim. Biophys. Acta 988: 427–454.PubMedGoogle Scholar
  24. Low, M.G., 2000, Glycosylphosphatidylinositol-anchored proteins and their phospholipases. In: Cockcroft, S. (ed.), Frontiers in Molecular Biology, Vol. 27, Biology of Phosphoinositides. Oxford University Press, New York, pp. 211–238.Google Scholar
  25. Low, M.G., and Saltiel, A.R., 1988, Structural and functional roles of glycosylphosphatidylinositol in membranes. Science 239: 268–275.PubMedGoogle Scholar
  26. Mato, J.M., Kelly, K.L., Abler, A., and Jarett, L. 1987, Identification of a novel insulin-sensitive glycophospholipid from H35 hepatoma cells. J. Biol. Chem. 262: 2131–2137.PubMedGoogle Scholar
  27. Murthy, P.P.N., 1996, Metabolism of inositol phosphates in plants. In: Biswas, B.B. and Biswas, S. (eds.), Inositol Phosphates, Phosphoinositides, and Signal Transduction, Subcellular Biochemistry Series, Vol. 26, Plenum Press, New York, pp. 227–255.Google Scholar
  28. Narasimhan, B., Pliska-Matyshak, G., Kinnard, R., Carstensen, S., Ritter, M.A., von Weymarn L., and Murthy, P.P.N., 1997, Novel phosphoinositides in barley aleurone cells, additional evidence for the presence of phosphatidyl-scyllo-inositol. Plant Physiol. 113: 1385–1393.PubMedGoogle Scholar
  29. Pak, Y., and Larner, J., 1992, Identification and characterization of chiroinositol-containing phospholipids form bovine liver. Biochem. Biophys. Res. Commun. 184: 1042–1047.PubMedCrossRefGoogle Scholar
  30. Parthasarathy, R., and Eisenberg, F., Jr., 1986, The inositol phospholipids: A stereochemical view of biological activity. Biochem. J. 235: 313–322.PubMedGoogle Scholar
  31. Parthasarathy, R., and Eisenberg, F., Jr., 1990, Biochemistry, stereochemistry, and nomenclature of the inositol phosphates, In: Reitz, A.B. (ed.), Inositol Phosphates and Derivatives: Synthesis, Biochemistry, and Therapeutic Potential. ACS Symposium Series 463. American Chemical Society, Washington, DC, pp. 1–19.Google Scholar
  32. Posternak, T., 1965, The Cyclitols. Holden-Day, Inc., Publishers, San Francisco, CA, pp. 7–48.Google Scholar
  33. Saltiel, A. R., 1996, Structural and functional roles of glycosylphosphoinositides. In: Biswas, B.B. and Biswas, S. (eds.), Inositol Phosphates, Phosphoinositides, and Signal Transduction, Subcellular Biochemistry Series, Vol. 26. Plenum Press, New York, pp. 165–185.Google Scholar
  34. Shears, S.B., 1998, The versatility of inositol phosphates as cellular signals. Biochim. Biophys. Acta 1436: 49–67.PubMedGoogle Scholar
  35. Shears, S.B., 2000, Inositol pentakis-and hexakisphosphate metabolism adds versatility to the actions of inositol polyphosphates novel effects on ion channels and protein traffic. In: Biswas, B.B. and Biswas, S. (eds.), Inositol Phosphates, Phosphoinositides, and Signal Transduction, Subcellular Biochemistry Series, Vol. 26. Plenum Press, New York, pp. 187–226.Google Scholar
  36. Shears, S.B., 2001, Assessing the omnipotence of inositol hexakisphosphate. Cell Signal. 13: 151–158.PubMedCrossRefGoogle Scholar
  37. Shears, S.B., 2004, How versatile are inositol phosphate kinases? Biochem. J. 377: 265–280.PubMedCrossRefGoogle Scholar
  38. Stephens, L., McGregor, A., and Hawkins, P., 2000, Phosphoinositide 3-kinases: Regulation by cell-surface receptors and function of 3-phosphorylated lipids. In: S. Cockcroft (ed.), Frontiers in Molecular Biology, Vol. 27, Biology of phosphoinositides. Oxford University Press, New York, pp. 32–108.Google Scholar
  39. Stöhr, C., Schuler, F., and Tischner, R., 1995, Glycosyl-phosphatidylinositol-anchored proteins exist in the plasma membranes of Chlorella Saccharophila (Kruger) Nadson: Plasmamembrane-bound nitrate reductase as an example. Planta 196: 284–287.CrossRefGoogle Scholar
  40. Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–69.PubMedCrossRefGoogle Scholar
  41. Toker, A., 2002, Phosphoinositides and signal transduction. Cell. Mol. Life Sci. 59: 761–779.PubMedCrossRefGoogle Scholar
  42. Toker, A., and Cantley, L.C., 1997, Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature. 387: 673–676.PubMedCrossRefGoogle Scholar
  43. Vanhaesebroek, B., Leevers, S., Ahmadi, K., Timms, J., Katso, R., Driscoll, P.C., Woscholski, R., Parker, P.J., and Waterfield, M.D., 2001, Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70: 535–602.CrossRefGoogle Scholar
  44. Volkmann, C.J., Chateauneuf, G.M., Pradhan, J., Bauman, A.T., Brown, R.E., and Murthy, P.P.N., 2002, Conformational flexibility of inositol phosphates: Influence of structural characteristics. Tetrahedron Lett. 43: 4853–4856.CrossRefGoogle Scholar
  45. Whitman, M., Downes, C.P., Keeler, M., Keeler, T., and Cantley, L.C., 1988, Type-1 phosphatidylinostiol kinase makes a novel inositol phospholipid, phosphatidylinostiol-3-phosphate. Nature 332: 644–646.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Pushpalatha P. N. Murthy
    • 1
  1. 1.Department of ChemistryMichigan Technological UniversityHoughtonUSA

Personalised recommendations