Skip to main content

Electron Scattering and Hydronamic Effects in Ionized Gases

  • Chapter
Electron Scattering

Part of the book series: Physics of Atoms and Molecules ((PAMO))

  • 1177 Accesses

Abstract

Intensive effort to understand the complex phenomenology of propagation and dispersion of shock wave in weakly ionized medium has been initiated recently, in view of the prospect for wide range of applications that could follow. Underlying mechanisms for the observed effects could be attributed to various electron collision processes. Although most applications involve molecular gases, the dispersion effects with a comparable intensity are observed in noble gases. Interaction of shock wave with ionized gas generates rapidly moving multiple electric layers, which form regions of increased electron density. Transient electric field in the electric layers enables new channels of communication between upstream and downstream regions. Time scale of collective interactions is comparable to the electron collision time and lifetime of excited states. In this environment electron scattering with excited atoms affects the macroscopic phenomenology as much as the transient field affects the collision itself. This results in an intricate ionization and recombination dynamics where the electron scattering with excited states is among the most important processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bletzinger, P. and B. N. Ganguly. (1999). Phys. Lett. A, 258:342–348.

    Article  ADS  Google Scholar 

  • Bletzinger, P., B. N. Ganguly and A. Garscadden. (2000). Phys. Plasmas, 7:4341–4346.

    Article  ADS  Google Scholar 

  • Bray, I.. (1994). Phys. Rev. Lett., 73:1088–1090.

    Article  ADS  Google Scholar 

  • Dixon, A. J., M. F. A. Harrison and A. C. H. Smith. (1976). J. Phys. B: At. Mol. Opt. Phys., 9:2617–2631.

    Article  ADS  Google Scholar 

  • Exton, R. J., R. J. Balla, B. Shirinzadeh, G. J. Brauckmann, G. C. Herring, W. C. Kelliher, J. Fugitt, C. J. Lazard and K. V. Khodataev. (2001). Phys. Plasmas, 8:5013–5017.

    Article  ADS  Google Scholar 

  • Ferreira, C. M., J. Louriero and A. Ricard. (1985). J. Appl. Phys., 57:82–90.

    Article  ADS  Google Scholar 

  • Horn, K. P., H. Wong and D. Bershader. (1967). Plasma Phys., 2:157–170.

    ADS  Google Scholar 

  • Johnson, A. R. and P. D. Burrow. (1995). Phys. Rev. A, 51:R1735–R1737.

    Article  ADS  Google Scholar 

  • Klimov, A. I., A. N. Kobolov, G. I. Mishin, Yu. I. Serov and I. P Yavor. (1982). Sov. Tech. Phys. Lett., 8:192–194.

    Google Scholar 

  • McGuire, E. J.. (1977). Phys. Rev. A, 16:62–72.

    Article  ADS  Google Scholar 

  • McIntyre, T. J., A. F. P. Houwing, R. J. Sandeman and H.-A. Bachor. (1991). J. Fluid Mech., 227:617–640.

    Article  ADS  Google Scholar 

  • Mishin, G. I., Yu. L. Serov and I. P. Yavor. (1991). Sov. Tech. Phys. Lett., 17:413–415.

    Google Scholar 

  • Popović, S. and L. Vušković. (1999a). Phys. Plasmas, 6:1448–1454.

    Article  ADS  Google Scholar 

  • Popović, S. and L. Vušković. (1999b). AIAA, 99–4905.

    Google Scholar 

  • Stevefelt, J., J. Boulmer and J-F. Delpech. (1975). Phys. Rev. A, 12:1246–1251.

    Article  ADS  Google Scholar 

  • Tan, W., Z. Shi, C. H. Ying and L. Vušković. (1996). Phys. Rev. A, 54:R3710–R3713.

    Article  ADS  Google Scholar 

  • Trajmar, S. and J. C. Nickel. (1992). Adv. Atom. Mol. Opt. Phys., 30:45–103.

    Article  Google Scholar 

  • Trajmar, S., J. C. Nickel and T. Antoni. (1986). Phys. Rev. A, 34:5154–5157.

    Article  ADS  Google Scholar 

  • Vriens, L.. (1969). Case in Atomic Collision Physics I, edited by E. W. McDaniel and M. R. C. McDowell, North-Holand, Amsterdam, Ch. 6, p.335.

    Google Scholar 

  • Vriens, L.. (1973). J. Appl. Phys., 44:3980–3989.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Vušković, L., Popovićs, S. (2005). Electron Scattering and Hydronamic Effects in Ionized Gases. In: Whelan, C.T., Mason, N.J. (eds) Electron Scattering. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/0-387-27567-3_25

Download citation

Publish with us

Policies and ethics