Skip to main content

Determinants of G Protein Inhibition of Presynaptic Calcium Channels

  • Chapter
Book cover Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 1419 Accesses

Summary

The modulation of presynaptic calcium channels following the activation of G-protein coupled receptors is a key regulatory mechanism of synaptic transmission. The past two decades have yielded a tremendous advance in our understanding of this phenomenon at the molecular level. It is now widely accepted that the closed conformation of the channel is stabilized upon binding of G protein βγ dimers directly to the cytoplasmic region linking domains I and II, and perhaps also to the C-terminus region, of the calcium channel α1 subunit. The channels consequently become reluctant to open, resulting in inhibition of current activity. The molecular mechanisms that control G protein regulation of calcium channels are immensely complex, as the extent of modulation depends on the membrane potential, Gβ subunit subtype, the presence of ancillary calcium channel subunits, PKC-dependent phosphorylation of the channel, RGS proteins, and on interactions with the presynaptic vesicle release protein complex. These intricate interactions between second messenger pathways, synaptic release proteins, calcium channels and G proteins allow for the potential of fine tuning the entry of calcium into the presynapse, and consequently, neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsien RW, Lipscombe D, Madison DV et al. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 1988; 11(10):431–438.

    Article  PubMed  CAS  Google Scholar 

  2. Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol 1989a; 51:367–384.

    Article  PubMed  CAS  Google Scholar 

  3. Wheeler DB, Randall A, Tsien RW. Roles of N-type and Q-type channels in supporting hippocampal synaptic transmission. Science 1994; 264(5155):107–111.

    Article  PubMed  CAS  Google Scholar 

  4. Dunlap K, Luebke JL, Turner TJ. Exocytotic Ca++ channels in the mammalian central nervous system. Trends Neurosci 1995; 18(2):89–98.

    Article  PubMed  CAS  Google Scholar 

  5. Sutton KG, McRory JE, Guthrie H et al. P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-lA. Nature 1999; 401(6755):800–804.

    Article  PubMed  CAS  Google Scholar 

  6. Dolmetsch RE, Pajvani U, Fife K et al. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 2001; 294(5541):333–339.

    Article  PubMed  CAS  Google Scholar 

  7. Westenbroek RE, Hell JW, Warberm C et al. Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 1992; 9(6);1099–1115.

    Article  PubMed  CAS  Google Scholar 

  8. Westenbroek RE, Sakurai T, Elliott EM et al. Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 1995; 15(10):6403–6418.

    PubMed  CAS  Google Scholar 

  9. Hell JW, Westenbroek RE, Warner C et al. Identification and subcellular localization of the neuronal class C and D L-type calcium channel alpha 1 subunits. J Cell Biol 1993; 123(4):949–962.

    Article  PubMed  CAS  Google Scholar 

  10. Maximov A, Bezprozvanny I. Synaptic targeting of N-type calcium channels in hippocampal neurons. J Neurosci 2002; 22(16):6939–52.

    PubMed  CAS  Google Scholar 

  11. Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 1994; 17(12):531–536.

    Article  PubMed  CAS  Google Scholar 

  12. Beedle AM, Zamponi GW. Molecular determinants of opioid analgesia: Modulation of presynaptic calcium channels. Drug Dev Res 2001; 54:118–128.

    Article  CAS  Google Scholar 

  13. Dunlap K, Fischbach GD. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol 1981; 317:519–535.

    PubMed  CAS  Google Scholar 

  14. Forscher P, Oxford G, Schulz D. Noradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling. J Physiol 1986; 379:131–144.

    PubMed  CAS  Google Scholar 

  15. Holz GG, Rane SG, Dunlap K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 1986; 319(6055):670–672.

    Article  PubMed  CAS  Google Scholar 

  16. Ikeda SR, Schofield G. Somatostatin blocks a calcium current in rat sympathetic ganglion neurones. J Physiol 1989; 409:221–240.

    PubMed  CAS  Google Scholar 

  17. Kasai H, Aosaki T. Modulation of Ca-channel current by an adenosine analog mediated by a GTP-binding protein in chick sensory neurons. Pfluegers Arch 1989; 414(2):145–149.

    Article  CAS  Google Scholar 

  18. Lipscombe D, Kongsamut S, Tsien RW. α-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 1989; 340(6235):639–642.

    Article  PubMed  CAS  Google Scholar 

  19. Ikeda SR. Prostaglandin modulation of Ca2+ channels in rat sympathetic neurones is mediated by guanine nucleotide binding proteins. J Physiol 1992; 459 ():339–359.

    Google Scholar 

  20. Beech DJ, Bernheim L, Hille B. Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron 1992; 8(1):97–106.

    Article  PubMed  CAS  Google Scholar 

  21. Bernheim L, Mathie A, Hille B. Characterization of muscarinic receptor subtype inhibiting Ca2+ current and M current in rat sympathetic neurons. Proc Natl Acad Sci USA 1992; 89(20):9544–9548.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu Y, Ikeda SR. Adenosine modulates voltage-gated Ca2+ channels in adult rat sympathetic neurons. J Neurophysiol 1993; 70(2):610–620.

    PubMed  CAS  Google Scholar 

  23. Mintz IM, Bean BP. GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 1993; 10(5):889–898.

    Article  PubMed  CAS  Google Scholar 

  24. Shapiro MS, Hille B. Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways. Neuron 1993; 10(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  25. Golard A, Siegelbaum SA. Kinetic basis for the voltage-dependent inhibition of N-type calcium current by somatostatin and norepinephrine in chick sympathetic neurons. J Neurosci 1993; 13(9):3884–3894.

    PubMed  CAS  Google Scholar 

  26. Caulfield MP, Jones S, Vallis Y et al. Muscarinic M-current inhibition via Gαq/11 and α-adrenoreceptor inhibition of Ca2+ current via Gα0 in rat sympathetic neurons. J Physiol 1994; 477(Pt 3):415–422.

    PubMed  CAS  Google Scholar 

  27. Bean BP. Neurotransmitter inhibition of neuronal calcium channels by changes in channel voltage dependence. Nature 1989b; 340(6229):153–156.

    Article  PubMed  CAS  Google Scholar 

  28. Zamponi GW, Snutch TP. Decay of prepulse facilitation of N-type calcium channels during G protein inhibition is consistent with binding of a single Gβγ subunit. Proc Natl Acad Sci USA 1998a; 95(7):4035–4039.

    Article  PubMed  CAS  Google Scholar 

  29. Zamponi GW, Snutch TP. Modulation of voltage-dependent calcium channels by G proteins. Curr Opin Neurobiol 1998b; 8(3):351–356.

    Article  PubMed  CAS  Google Scholar 

  30. Arnot MI, Stotz SC, Jarvis SE et al. Differential modulation of N-type (α1B) and P/Q-type (α1B) by different G protein β subunit isoforms. J Physiol 2000; 527 (Pt 2):203–212.

    Article  PubMed  CAS  Google Scholar 

  31. Brody DL, Patil PG, Mulle JG et al. Bursts of action potential waveforms relieve G-protein inhibition of recombinant P/Q-type Ca2+ channels in HEK 293 cells. J Physiol 1997; 499 (Pt 3):637–644.

    PubMed  CAS  Google Scholar 

  32. Williams S, Serafin M, Mühlethaler M et al. Facilitation of N-type calcium current is dependent on the frequency of action potential-like depolarizations in dissociated cholinergic basal forebrain neurons of the Guinea Pig. J Neurosci 1997; 17(19):1625–1632.

    PubMed  CAS  Google Scholar 

  33. Brody DL, Yue DT. Release-independent short-term synaptic depression in cultured hippocampal neurons. J Neurosci 2000; 20(3):2480–2494.

    PubMed  CAS  Google Scholar 

  34. Bertram R, Behan M. Implications of G-protein-mediated Ca2+ channel inhibition for neurotransmitter release and facilitation. J Computational Neurosci 1999; 7(3):197–211.

    Article  CAS  Google Scholar 

  35. Patil PG, deLeon M, Reed RR et al. Elementary events underlying voltage-dependent G protein inhibition of N-type calcium channels. Biophys J 1996; 71(5):2509–2521.

    Article  PubMed  CAS  Google Scholar 

  36. Boland LM, Bean BP. Modulation of N-type calcium channels in bullfrog sympathetic neurons by luteinizing hormone-releasing hormone: Kinetics and voltage dependence. J Neurosci 1993; 13(2):516–533.

    PubMed  CAS  Google Scholar 

  37. Elmslie KS, Kammermeir PJ, Jones SW. Reevaluation of Ca2+ channel types and their modulation in bullfrog sympathetic neurons. J Physiol 1992; 456:107–123.

    PubMed  CAS  Google Scholar 

  38. Colecraft HM, Patil PG, Yue DT. Differential occurrence of reluctant openings in G-protein-inhibited N-and P/Q-type calcium channels. J Gen Physiol 2000; 115(2):175–192.

    Article  PubMed  CAS  Google Scholar 

  39. Lee HK, Elmslie KS. Reluctant gating of single N-type calcium channels during transmitter-induced inhibition in bullfrog sympathetic neurons. J Neurosci 2000; 20(9):3115–3128.

    PubMed  CAS  Google Scholar 

  40. Currie KP, Fox AP. Comparison of N-and P/Q-type voltage-gated calcium channel current inhibition. J Neurosci 1997; 17(12):4570–4579.

    PubMed  CAS  Google Scholar 

  41. Bourinet E, Soong TW, Stea A et al. Determinants of the G-protein dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci USA 1996; 93(4):1486–1491.

    Article  PubMed  CAS  Google Scholar 

  42. Campbell V, Berrow NS, Fitzgerald EM et al. Inhibition of the interaction of G protein G0 with calcium channels by the calcium channel β-subunit in rat neurones. J Physiol 1995; 485(Pt 2):365–372.

    PubMed  CAS  Google Scholar 

  43. Toth PT, Shekter LR, Ma GH et al. Selective G-protein regulation of neuronal calcium channels. J Neurosci 1996; 16(15):4617–4624.

    PubMed  CAS  Google Scholar 

  44. Page KM, Stephens GJ, Berrow NS et al. The intracellular loop between domains I and II of the B-type calcium channel confers aspects of G protein sensitivity to the E-type calcium channel. J Neurosci 1997; 17(4):1330–1338.

    PubMed  CAS  Google Scholar 

  45. Stephens GJ, Canti C, Page KM et al. Role of domain I in neuronal Ca2+ channel alpha 1 sub-units in G protein modulation. J Physiol 1998; 509(Pt 1):163–169.

    Article  PubMed  CAS  Google Scholar 

  46. Mehrke G, Pereverzev A, Grabsch H et al. Receptor-mediated modulation of recombinant neuronal class E calcium channels. FEBS Lett. 1997; 408(3):261–270.

    Article  PubMed  CAS  Google Scholar 

  47. Qin N, Platano D, Olcese R et al. Direct interaction of gbetagamma with a C-terminal gbetagamma-binding domain of Ca2+ channel alpha1 subunit is responsible for channel inhibition by G protein-coupled receptors. Proc Natl Acad Sci USA 1997; 94(16):8866–8871.

    Article  PubMed  CAS  Google Scholar 

  48. Meir A, Dolphin AC. Kinetics and Gbetagamma modulation of Ca(v)2.2 channels with different auxiliary beta subunits. Pflugers Arch 2002; 444(1):263–75.

    Article  PubMed  CAS  Google Scholar 

  49. Canti C, Bogdanoy Y, Dolphin AC. Interaction between G proteins and accessory subunits in the regulation of 1B calcium channels in Xenopus oocytes. J Physiol 2000; 527(Pt 3):419–32.

    Article  PubMed  CAS  Google Scholar 

  50. Feng ZP, Arnot MI, Doering CJ et al. Calcium channel beta subunits differentially regulate the inhibition of N-type channels by individual Gbeta isoforms. J Biol Chem 2001; 276(48):45051–8.

    Article  PubMed  CAS  Google Scholar 

  51. Canti C, Page KM, Stephens GJ et al. Identification of residues in the N terminus of alpha 1B critical for inhibition of the voltage-dependent calcium channel by G beta gamma. J Neurosci 1999; 19(16):6855–6864.

    PubMed  CAS  Google Scholar 

  52. Canti C, Bogdanov Y, Dolphin AC. Interaction between G proteins and accessory subunits in the regulation of 1B calcium channels in Xenopus oocytes. J Physiol 2000; 527(Pt 3):419–32.

    Article  PubMed  CAS  Google Scholar 

  53. Chien AJ, Gao T, Perez-Reyes E et al. Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the beta2a subunit. J Biol Chem 1998; 273(36):23590–7.

    Article  PubMed  CAS  Google Scholar 

  54. Ikeda SR. Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 1996; 380(6751):255–258.

    Article  PubMed  CAS  Google Scholar 

  55. Herlitze S, Garcia DE, Mackie K et al. Modulation of Ca2+ channels by G-protein βγ subunits. Nature 1996; 280(6571):258–262.

    Article  Google Scholar 

  56. Zamponi GW, Bourinet E, Nelson D et al. Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit. Nature 1997; 385(6615):442–446.

    Article  PubMed  CAS  Google Scholar 

  57. Garcia DE, Li B, Garcia-Ferreiro RE et al. G-protein β-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels. J Neurosci 1998; 18(22):9163–9170.

    PubMed  CAS  Google Scholar 

  58. Ruiz-Velasco V, Ikeda SR. Multiple G-protein βγ combinations produce voltage-dependent inhibition of N-type calcium channel in rat superior cervical ganglion neurons. J Neurosci 2000; 20(6):2183–2191.

    PubMed  CAS  Google Scholar 

  59. Cooper CB, Arnot MI, Feng ZP et al. Cross-talk between G-protein and protein kinase C modulation of N-type calcium channels is dependent on the G-protein beta subunit isoform. J Biol Chem 2000; 275(52):40777–81.

    Article  PubMed  CAS  Google Scholar 

  60. Lu Q, Dunlap K. Cloning and functional expression of novel N-type Ca(2+) channel variants. J Biol Chem 1999; 274(49):34566–34575.

    Article  PubMed  CAS  Google Scholar 

  61. Zhou JY, Siderovski DP, Miller RJ. Selective regulation of N-type Ca channels by different combinations of G-protein beta/gamma subunits and RGS proteins. J Neurosci 2000; 20(19):7143–8.

    PubMed  CAS  Google Scholar 

  62. Jeong SW, Ikeda SR. Sequestration of G-protein beta gamma subunits by different G-protein alpha subunits blocks voltage-dependent modulation of Ca2+ channels in rat sympathetic neurons. J Neurosci 1999; 19(12):4755–4761.

    PubMed  CAS  Google Scholar 

  63. Jeong SW, Ikeda SR. Effect of G protein heterotrimer composition on coupling of neurotransmitter receptors to N-type Ca(2+) channel modulation in sympathetic neurons. Proc Natl Acad Sci USA 2000a; 97(2):907–912.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang JF, Ellinor PT, Aldrich RW et al. Multiple structural elements in voltage-dependent Ca2+ channels support their inhibition by G proteins. Neuron 1996; 17(5):991–1003.

    Article  PubMed  CAS  Google Scholar 

  65. De Waard M, Liu H, Walker D et al. Direct binding of G protein βγ complex to voltage-dependent calcium channels. Nature 1997; 385(6615):446–450.

    Article  PubMed  Google Scholar 

  66. Herlitze S, Hockermann GH, Scheuer T et al. Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel α1A subunit. Proc Natl Acad Sci USA 1997; 94(4):1512–1516.

    Article  PubMed  CAS  Google Scholar 

  67. Furukawa T, Nukada T, Mori Y et al. Differential interactions of the C terminus and the cytoplasmic I–II loop of neuronal Ca2+ channels with G-protein alpha and beta gamma subunits. I. Molecular determination. J Biol Chem 1998; 273(28):17585–94.

    Article  PubMed  CAS  Google Scholar 

  68. Furukawa T, Miura R, Mori Y et al. Differential interactions of the C terminus and the cytoplasmic I–II loop of neuronal Ca2+ channels with G-protein alpha and beta gamma subunits. II. Evidence for direct binding. J Biol Chem 1998; 273(28):17595–603.

    Article  PubMed  CAS  Google Scholar 

  69. Kinoshita M, Nukada T, Asano T et al. Binding of G alpha(o) N terminus is responsible for the voltage-resistant inhibition of alpha(1A) (P/Q-type, Ca(v)2.1) Ca(2+) channels. J Biol Chem 2001; 276(31):28731–8

    Article  PubMed  CAS  Google Scholar 

  70. Page KM, Canti C, Stephens GJ et al. (1998) Identification of the amino terminus of neuronal Ca2+ channel alpha 1 subunits alpha 1B and alpha 1E as an essential determinant of G-protein modulation. J Neurosci 1998; 18:4815–4824.

    PubMed  CAS  Google Scholar 

  71. Simen AA, Miller RJ. Structural features determining receptor regulation of neuronal Ca channels. J Neurosci 1998; 18(10):3689–3698.

    PubMed  CAS  Google Scholar 

  72. Simen AA, Miller RJ. Involvement of regions in domain I in the opioid receptor sensitivity of alpha 1B (Ca2+) channels. Mol Pharmacol 2000; 57(5):1064–1074.

    PubMed  CAS  Google Scholar 

  73. Ford CE, Skiba NP, Bae H et al. Molecular basis for interactions of G protein betagamma subunits with effectors. Science 1998; 280(5367):1271–1274.

    Article  PubMed  CAS  Google Scholar 

  74. Doering CJ, Kisilevsky AE, Feng ZP et al. A single Gbeta subunit locus controls crosstalk between PKC and G protein regulation of N-type calcium channels. J Biol Chem 2004; 279:29709–29717.

    Article  PubMed  CAS  Google Scholar 

  75. Stea A, Soong TW, Snutch TP. Voltage-Gated Calcium Channels. In: North RA, ed. Handbook of Receptors and Channels; Ligand-and voltage-gated ion channels. Boca Raton: CRC Press Inc, 1995:113–152.

    Google Scholar 

  76. Hamid J, Nelson D, Spaetgens R et al. Identification of an integration center for crosstalk between PKC and G protein modulation of N-type calcium channels. J Biol Chem 1999; 274(10):6195–6202.

    Article  PubMed  CAS  Google Scholar 

  77. Swartz KJ, Merrit A, Bean BP et al. Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission. Nature 1993; 361(6408):165–168.

    Article  PubMed  CAS  Google Scholar 

  78. Swartz KJ. Modulation of Ca2+ channels by protein kinase C in rat central and peripheral neurons: disruption of G protein-mediated inhibition. Neuron 1993; 11(2):305–320.

    Article  PubMed  CAS  Google Scholar 

  79. Barrett CF, Rittenhouse AR. Modulation of N-type calcium channel activity by G-proteins and protein kinase C. J Gen Physiol 2000; 115(3):277–286.

    Article  PubMed  CAS  Google Scholar 

  80. Berman DM, Wilkie TM, Gillman AG. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell 1996; 86(3):445–452.

    Article  PubMed  CAS  Google Scholar 

  81. Doupnik CA, Davidson N, Lester HA et al. RGS proteins reconstitute the rapid gating kinetics of Gβγ-activated inwardly rectifying K+ channels. Proc Natl Acad Sci USA 1997; 94(19):10461–10466.

    Article  PubMed  CAS  Google Scholar 

  82. Berman DM, Gilman AG. Mammalian RGS proteins: barbarians at the gate. J Biol Chem 1998; 273(3):1269–1272.

    Article  PubMed  CAS  Google Scholar 

  83. Snow BE, Betts L, Mangion J et al. Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11. Proc Natl Acad Sci USA 1999; 96(11):6489–6494.

    Article  PubMed  CAS  Google Scholar 

  84. Jeong SW, Ikeda SR. G protein α subunit Gαz couples to couples neurotransmitter receptors to ion channels in sympathetic neurons. Neuron 1998; 21(5):1201–1212.

    Article  PubMed  CAS  Google Scholar 

  85. Melliti K, Meza U, Fisher R et al. Regulators of G protein signaling attenuate the G protein — mediated inhibition of N-type calcium channels. J Gen Physiol 1999; 113(1):97–109.

    Article  PubMed  CAS  Google Scholar 

  86. Diverse-Pierreluissi MA, Fischer T, Jordan JD et al. Regulators of G protein signaling proteins as determinants of the rate of desensitization of presynaptic calcium channels. J Biol Chem 1999; 274(20):14490–14494.

    Article  Google Scholar 

  87. Jeong SW, Ikeda SR. Endogenous regulator of G-protein signaling proteins modify N-type calcium channel modulation in rat sympathetic neurons. J Neurosci 2000b; 20(12):4489–4496.

    PubMed  CAS  Google Scholar 

  88. Mark MD, Witteman S, Herlitze S. G protein modulation of recombinate P/Q type calcium channels by regulators of G protein signalling proteins. J Physiol 2000; 528 (Pt 1):65–77.

    Article  PubMed  CAS  Google Scholar 

  89. Sheng ZH, Rettig T, Takahashi M et al. Identification of a syntaxin-binding site on N-type calcium channels. Neuron 1994; 13(6):1303–1313.

    Article  PubMed  CAS  Google Scholar 

  90. Sheng ZH, Rettig J, Cook T et al. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 1996; 379(6564):451–454.

    Article  PubMed  CAS  Google Scholar 

  91. Yokoyama CT, Sheng ZH, Catterall WA. Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J Neurosci 1997; 17(18):6929–6938.

    PubMed  CAS  Google Scholar 

  92. Stanley EF, Mirotznik RR. Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature 1997; 385(6614):340–343.

    Article  PubMed  CAS  Google Scholar 

  93. Jarvis SE, Magga J, Beedle AM et al. G protein modulation of N-type calcium channels is facilitated by physical interactions between syntaxin 1A and Gβγ. J Biol Chem 2000; 275(9):6388–6394.

    Article  PubMed  CAS  Google Scholar 

  94. Jarvis SE, Zamponi GW. Distinct molecular determinants govern syntaxin 1A-mediated inactivation and G-protein inhibition of N-type calcium channels. J Neurosci 2001; 21(9):2939–48.

    PubMed  CAS  Google Scholar 

  95. Jarvis SE, Barr W, Feng ZP et al. Molecular determinants of syntaxin 1 modulation of N-type calcium channels. J Biol Chem 2002; 277(46):44399–407.

    Article  PubMed  CAS  Google Scholar 

  96. Lu Q, AtKisson MS, Jarvis SE et al. Syntaxin 1A supports voltage-dependent inhibition of alpha1B Ca2+ channels by Gbetagamma in chick sensory neurons. J Neurosci 2001; 21(9):2949–57.

    PubMed  CAS  Google Scholar 

  97. Sutton KG, McRory JE, Guthrie H et al. P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 1999; 401(6755):800–804.

    Article  PubMed  CAS  Google Scholar 

  98. Michaeleyski I, Chikyashvili D, Tsuk S et al. Modulation of a brain voltage-gated K+ channel by syntaxin 1A requires the physical interaction of Gbetagamma with the channel. J Biol Chem 2002; 277(38):34909–17.

    Article  Google Scholar 

  99. Magga J, Jarvis SE, Arnot MI et al. Cysteine string protein promotes G protein modulation of N-type calcium channels. Neuron 2000; 28(1):195–204.

    Article  PubMed  CAS  Google Scholar 

  100. Miller LC, Swayne LA, Kay JG et al. Molecular determinants of cysteine string protein modulation of N-type calcium channels. J Cell Sci 2003; 116 (Pt 14):2967–74.

    Article  PubMed  CAS  Google Scholar 

  101. Blackmer T, Larsen EC, Takahashi M et al. G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 2001; 292(5515):293–7.

    Article  PubMed  CAS  Google Scholar 

  102. Beedle AM, McRory JE, Poirot O et al. Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 2004; 7(2):118–25.

    Article  PubMed  CAS  Google Scholar 

  103. Hummer A, Delzeith O, Gomez SR et al. Competitive and synergistic interactions of G protein beta(2) and Ca(2+) channel beta(1b) subunits with Ca(v)2.1 channels, revealed by mammalian two-hybrid and fluorescence resonance energy transfer measurements. J Biol Chem 2003; 278(49):49386–400.

    Article  PubMed  CAS  Google Scholar 

  104. Sandoz G, Lopez-Gonzalez I, Grunwald D et al. Cavbeta-subunit displacement is a key step to induce the reluctant state of P/Q calcium channels by direct G protein regulation. Proc Natl Acad Sci USA 2004; 101(16):6267–72.

    Article  PubMed  CAS  Google Scholar 

  105. Wolfe JT, Wang H, Howard J et al. T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 2003; 424(6945):209–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Nirdosh, A., Zamponi, G.W. (2005). Determinants of G Protein Inhibition of Presynaptic Calcium Channels. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_9

Download citation

Publish with us

Policies and ethics