Skip to main content

“Supramolecular” Activation Clusters in Innate Immunity

  • Chapter
Toll and Toll-Like Receptors: An Immunologic Perspective

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 679 Accesses

Abstract

From birth every living organism must contend with an environment replete with infectious pathogens. Mammals and vertebrates have responded to this challenge by developing an intricate system of host defense that we collectively call the immune system. The immune system itself can be divided into two main components: innate and adaptive immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medzhitov R, Janeway CA. An ancient system of host defense. Curr Opin Immunol 1998; 10:12–15.

    Article  PubMed  CAS  Google Scholar 

  2. Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296:298–300.

    Article  PubMed  CAS  Google Scholar 

  3. Grakoui A, Bromley SK, Sumen C et al. The immunological synapse: a molecular machine controlling T-cell activation. Science 1999; 285:221–227.

    Article  PubMed  CAS  Google Scholar 

  4. Monks CRF, Freiberg BA, Kupfer H et al. Three-dimensional segregation of supramolecular activation clusters in T-cells. Nature 1998; 395:82–86.

    Article  PubMed  CAS  Google Scholar 

  5. Shear MJ, Turner FC. Chemical treatment of tumors. V. Isolation of the hemorrhage-producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrates. J Natl Cancer Inst 1943; 4:81–97.

    CAS  Google Scholar 

  6. Rietschel E, Brade H, Hoist O et al. Bacterial endotoxin: chemical constitution, biological recognition, host response and immunological detoxification. Curr Top Microbiol Immunol 39–81.

    Google Scholar 

  7. Raetz C. Biochemistry of endotoxins. Ann Rev Biochem 1990; 59:129–170.

    Article  PubMed  CAS  Google Scholar 

  8. Haeffner-Cavaillon N, Caroff M, Cavaillon JM. Interleukin-1 induction by lipopolysaccharides: structural requirements of the 3-deoxy-D-manno-2-octulosonic acid (KDO). Mol Immunol 26:485–494.

    Google Scholar 

  9. Boivin A. Preparation of specific polysaccharides of bacteria. CR Seances Soc Biol Fil 490–504.

    Google Scholar 

  10. Wright SD, Ramos RA, Tobias PS et al. CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding-protein. Science 1990; 249:1431–1433.

    Article  PubMed  CAS  Google Scholar 

  11. Ulevitch RJ, Tobias PS. Recognition of endotoxin by cells leading to transmembrane Curr Opin Immunol 1994; 6:125–130.

    Article  PubMed  CAS  Google Scholar 

  12. Hailman E, Lichenstein HS, Wurfel MM et al. Lipopolysaccharide (LPS)-Binding protein accelerates the binding of LPS to CD14. J Exp Med 1994; 179:269–277.

    Article  PubMed  CAS  Google Scholar 

  13. Lee JD, Kato K, Tobias PS et al. Transfection of CD 14 into 70Z/3 cells dramatically sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding-protein. J Exp 175:1697–1705.

    Google Scholar 

  14. Haziot A, Ferrero E, Kontgen F et al. Resistance to endotoxin shock and reduced dissemination gram-negative bacteria in CD14-deficient mice. Immunity 1996; 4:407–414.

    Article  PubMed  CAS  Google Scholar 

  15. Gegner JA, Ulevitch RJ, Tobias PS. Lipopolysaccharide (LPS) Signal-transduction and clearance-roles for LPS binding-protein and membrane CD14. J Biol Chem 1995; 270:5319–5325.

    Google Scholar 

  16. Lynn WA, Liu Y, Golenbock DT. Neither CD 14 nor serum is absolutely necessary forof monon uclear phagocytes by bacterial lipopolysaccharide. Infect Immun 1993; 61:4456-

    Google Scholar 

  17. Blondin C, Ledur A, Cholley B et al. Binding of LPS to normal human monocytes inis mediated by both sCD14 and mCDl4 molecules. Tissue Antigens 1996; 48:445–450

    Google Scholar 

  18. Troelstra A, Antal-Szalmas P, de Graaf-Miltenburg LA et al. Saturable CD14-dependent of fluorescein-labelled lipopolysaccharide to human monocytes. Infect Immun 1997; 65

    Google Scholar 

  19. Triantafilou M, Triantafilou K, Fernandez N. Rough and smooth forms of fluorescein-bacterial endotoxin exhibit CD14/LBP dependent and independent binding that is influenced endotoxin concentration. Eur J Biochem 2000; 267:2218–2226.

    Article  PubMed  CAS  Google Scholar 

  20. Gessani S, Testa U, Varano B et al. Enhanced production of LPS-induced cytokines during differentiation of human monocytes to macrophages. J Immunol 1993; 151:3758–3766.

    PubMed  CAS  Google Scholar 

  21. Hampton RY, Golenbock, DT, Penman M et al. Recognition and plasma clearance of by scavenger receptors. Nature 1991; 352:342–344.

    Article  PubMed  CAS  Google Scholar 

  22. Wright SD, Jong MTC. Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J Exp Med 1996; 164:1876–1882.

    Article  Google Scholar 

  23. Wright SD. Adhesion-promoting receptors on phagocytes. Agents Actions 1991; 35

    Google Scholar 

  24. Wright SD, Ramos RA, Hermanowskivosatka A et al. Activation of the adhesive capacity on neutrophils by endotoxin-dependence on lipopolysaccharide binding-protein and CD 14. Med 1991; 173:1280–1286.

    Google Scholar 

  25. Medvedev AE, Flo T, Ingalls RR et al. Involvement of CD 14 and complement receptors CR4 in nuclear factor-kappa B activation and TNF production induced by lipopolysaccharide group B streptococcal cell walls. J Immunol 1998; 160:4536–4542.

    Google Scholar 

  26. Troelstra A, de Graaf-Miltenburg LAM, van Bommel T et al. Lipopolysaccharide-coated erythrocytes activate human neutrophils via CD 14 while subsequent binding is through CD 11b/ Immunol 1999; 162:4220–4225.

    CAS  Google Scholar 

  27. Ingalls R, Monks B, Savedra R et al. CD 11/CD 18 and CD 14 share a common Lipid pathway. J Immunol 1998; 161:5413–5420.

    PubMed  CAS  Google Scholar 

  28. Ingalls RR, Arnaout MA, Golenbock D. Outside-in signaling by lipopolysaccharide through tailless integrin. J Immunol 1997; 159:433–440.

    PubMed  CAS  Google Scholar 

  29. Ingalls RR, Golenbock DT. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med 1995; 181:1472–1479.

    Article  Google Scholar 

  30. Williams MJ, Rodriguez D, Kimbell A et al. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J 1997; 16:6120–6125.

    Article  PubMed  CAS  Google Scholar 

  31. Shakhov AN, Collart MA, Vassalli P et al. kB-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor-a gene in primary macrophages. J Exp Med 1990; 171:35–47.

    Article  PubMed  CAS  Google Scholar 

  32. Han J, Lee JD, Bibbs L et al. A map kinase targeted by endotoxin and hyperosmolarity in mammalian-cells. Science 1994; 265:808–811.

    Article  PubMed  CAS  Google Scholar 

  33. Hambleton J, Weinstein SL, Lem L et al. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA 1996; 93:2774–2778.

    Article  PubMed  CAS  Google Scholar 

  34. Herrera-Velit P and Reiner NE. Bacterial lipopolysaccharide induces the association and coordinate activation of p53/561yn and phosphatidylinositol 3 kinase in human monocytes. J Immunol 1996; 156:1157–1165.

    PubMed  CAS  Google Scholar 

  35. Herrera-Velit P, Knutson KL, Reiner NE. Phosphatidylinositol-3-kinase-dependent activation of protein kinase C in bacterial lipopolysaccharide-treated human monocytes. J Biol Chem 1997; 272:16445–16452.

    Article  PubMed  CAS  Google Scholar 

  36. Lei MG, Qureshi N, Morrison DC. Specific endotoxin lipopolysaccharide binding protein on murine splenocytes. J Immunol 1998; 141:996–1005.

    Google Scholar 

  37. Dziarski R. Peptidoglycan and lipopolysaccharide bind to the same binding site on lymphocytes. J Biol Chem 1991; 266:4719–4725.

    PubMed  CAS  Google Scholar 

  38. Hara-Kuge S, Amano F, Nishijima M et al. Isolation of a lipopolysaccharide (LPS)-resistant mutant, with defective LPS binding, of cultured macrophage-like cells. J Biol Chem. 1990; 265:6606–6610.

    PubMed  CAS  Google Scholar 

  39. Kirkland TN, Virea GD, Kuus-Reichel T et al. Identification of lipopolysaccharide binding proteins in 70Z/3 cells by photoaffinity crosslinking. J Biol Chem 1990; 265:9520–9525.

    PubMed  CAS  Google Scholar 

  40. Hampton RY, Golenbock D, Raetz RHC. Lipid A binding sites in membranes of macrophage tumor cells. J Biol Chem 1988; 263:14802–14807.

    PubMed  CAS  Google Scholar 

  41. Kirikae T, Kirikae F, Schade UF et al. Detection of lipopolysaccharide binding proteins on membranes of murine lymphocyte and macrophage-like cell lines. FEMS Microbiol and Immunol 1991; 76:327–336.

    Article  Google Scholar 

  42. El-Samalouti VT, Schletter J, Brade H et al. Detection of lipopolysaccharide (LPS)-binding membrane proteins by immuno-coprecipitation with LPS and anti-LPS antibodies. Eur J Biochem 1997; 250:418–424.

    Article  PubMed  CAS  Google Scholar 

  43. Triantafilou K, Triantafilou M, Dedrick RL. Interactions of bacterial lipopolysaccharide and peptidoglycan with a 70kDa and an 80kDa protein on the cell surface of CD 14 positive and CD 14 negative cells. Hum Immunol 2001; 62:50–63.

    Article  PubMed  CAS  Google Scholar 

  44. Lemaitre B, Nicolas E, Michaut L et al. The dorsoventral regulatory gene cassette spatzel/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973–975.

    Article  PubMed  CAS  Google Scholar 

  45. Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388:394–397.

    Article  PubMed  CAS  Google Scholar 

  46. Poltorak A, He XL, Smirnova I et al. Defective LPS signaling in C3H/Hej and C57BL/10ScCr mice: Mutations in TLR4 gene. Science 1998; 282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  47. Qureshi ST, Lariviere L, Leveque G et al. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (TLR4). J Exp Med 1999; 189:615–625.

    Article  PubMed  CAS  Google Scholar 

  48. Akashi S, Shimazu R, Ogata H et al. Cutting Edge: Cell Surface expression and Lipopolysaccharide signaling via the Toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 2000; 164:3471–3475.

    PubMed  CAS  Google Scholar 

  49. Hoshino K, Takeuchi O, Kawai T et al. Cutting Edge: Toll-like receptor 4 (TLR4) deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the LPS gene product. J Immunol 1999; 162:3749–3752.

    PubMed  CAS  Google Scholar 

  50. Shimazu R, Akashi S, Ogata H et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999; 189:1777–1782.

    Article  PubMed  CAS  Google Scholar 

  51. Akashi S, Ogata H, Kirikae F et al. Regulatory roles for CD14 and phosphatidylinositol in the signaling via Toll-like receptor 4-MD-2. Biochem Biophys Res Comm 2000; 268:172–177.

    Article  PubMed  CAS  Google Scholar 

  52. da Silva Correia J, Ulevitch RJ. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem 2002; 277:1845–1854.

    Article  PubMed  CAS  Google Scholar 

  53. Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11:443–451.

    Article  PubMed  CAS  Google Scholar 

  54. Takeuchi O, Hoshino K, Akira S. TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 2000; 165:5392–5396.

    PubMed  CAS  Google Scholar 

  55. Hemni H, Takeuchi O, Kawai T. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408:740–745.

    Article  CAS  Google Scholar 

  56. Yang RB, Mark MR, Gray A. Toll-like receptor-2 mediates lipopolysaccharide-included cellular signaling. Nature 1998; 395:284–288.

    Article  PubMed  CAS  Google Scholar 

  57. Kirschning CJ, Wesche H, Ayers TM. Human Toll-like receptor 2 confers responsiveness to bacterial ipopolyssacharide. J Exp Med 1998; 188:2091–2097.

    Article  PubMed  CAS  Google Scholar 

  58. Triantafilou K, Triantafilou M, Dedrick RL. A CD14-independent LPS receptor cluster. Nat Immunol 2001; 4:338–345.

    Article  CAS  Google Scholar 

  59. Hirschfeld M, Ma Y, Weis JH et al. Repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 2000; 165:618–622.

    PubMed  CAS  Google Scholar 

  60. Yoshimura A, Lien E, Ingalls R et al. Cutting Edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999; 163:1–5.

    PubMed  CAS  Google Scholar 

  61. Werts C, Tapping RI, Mathison JC et al. Leptospiral lipopolysaccharide activates cells through a TLR-2-dependent mechanism. Nat Immunol 2001; 2:346–352.

    Article  PubMed  CAS  Google Scholar 

  62. Means TK, Lien E, Yoshimura A et al. The CD14 ligands Lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 1999; 163:6748–6755.

    PubMed  CAS  Google Scholar 

  63. Hajjar AM, O’Mahony DS, Ozinsky A et al. Functional interactions between toll-like receptor (TLR)2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 2001; 166:15–19.

    PubMed  CAS  Google Scholar 

  64. Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 2000; 97:13766–13771.

    Article  PubMed  CAS  Google Scholar 

  65. Flo T, Halaas O, Lien E et al. Ryan L et al. Human Toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by Group B Streptococci or lipopolysaccharide. J Immunol 2000; 164:2064–2069.

    PubMed  CAS  Google Scholar 

  66. Hirschfeld M, Kirschning CJ, Schwandner R et al. Cutting Edge: Inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by Toll-like receptor 2. J Immunol 1999; 163:2382–2386.

    PubMed  CAS  Google Scholar 

  67. Lien E, Sellati T, Yoshimura A et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 1999; 274:33419–33425.

    Article  PubMed  CAS  Google Scholar 

  68. Alexopoulou L, Holt AC, Medzhitov R et al. Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature 2001; 413:732–738.

    Article  PubMed  CAS  Google Scholar 

  69. Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099–1103.

    Article  PubMed  CAS  Google Scholar 

  70. Henneke P, Takeuchi O, Van Strijp JA et al. Novel engagement of CD14 and multiple Toll-like receptors by Group B Streptococci. J Immunol 2001; 167:7069–7076.

    PubMed  CAS  Google Scholar 

  71. Takeuchi O, Sato S, Horiuchi T et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002; 169:10–14. 2002.

    PubMed  CAS  Google Scholar 

  72. El-Samalouti VT, Schletter J, Chyla I et al. Identification of the 80-kDa LPS-binding protein (LMP-80) as decay-accelerating factor (DAF, CD55). FEMS Immunol Med Microbiol 1999; 23:259–269.

    Article  PubMed  CAS  Google Scholar 

  73. Heine H, Ulmer AJ, El-Samalouti VT et al. Decay-accelerating factor (DAF/CD55) is a functional active element of the LPS receptor complex. J Endotoxin Res. 2001; 7:227–231.

    Article  PubMed  CAS  Google Scholar 

  74. Pfeiffer A, Bottcher A, Orso E et al. Lipopolysaccharide and ceramide docking to CD14 provokesligand-specific receptor clustering in rafts. Eur J Immunol 2001; 31:3153–3164.

    Article  PubMed  CAS  Google Scholar 

  75. Bouchon A, Dietrich J, Colonna M. Cutting Edge: Inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 2000; 164:4991–4995.

    PubMed  CAS  Google Scholar 

  76. Bouchon A, Facchetti F, Weigand MA et al. TREM-1 amplifies inflammation and is crucial mediator of septic shock. Nature 2001; 410:1103–1107.

    Article  PubMed  CAS  Google Scholar 

  77. Nathan C, Ding A. TREM-1: a new regulator of innate immunity in sepsis syndrome. Nat Med 2001; 7:530–532.

    Article  PubMed  CAS  Google Scholar 

  78. Bleharski JR, Kiessler V, Buonsanti C et al. A role for triggering receptor expressed on myeloid cells-1 in host defense during the early-induced and adaptive phases of the immune response. J Immunol 2003; 170:3812–3818.

    PubMed  CAS  Google Scholar 

  79. Aoki N, Kimura S, Xing Z. Role of DAP12 in innate and adaptive immune responses. Curr Pharm Des 2003; 9:7–10.

    Article  PubMed  CAS  Google Scholar 

  80. Miyake K, Yamashita Y, Ogata M et al. RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J Immunol 1995; 154:3333–3340.

    PubMed  CAS  Google Scholar 

  81. Ogata H, Su I, Miyake K et al. The Toll-like Receptor Protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med 2000; 192:23–29.

    Article  PubMed  CAS  Google Scholar 

  82. Nagai Y, Shimazu R, Ogata H et al. Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood 2002; 99:1699–1705.

    Article  PubMed  CAS  Google Scholar 

  83. Lemjabbar H and Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 2002; 8:41–46.

    Article  PubMed  CAS  Google Scholar 

  84. Kaur I, Voss SD, Gupta RS et al. Human peripheral gamma delta T cells recognize hsp 60 molecules on Daudi Burkitt’s lymphoma cells. J Immunol 1993; 150:2046–2055.

    PubMed  CAS  Google Scholar 

  85. Multhoff G, Otzler C, Jennen L et al. Heat shock protein 72 on tumour cells. J Immunol 1997; 158:4341–4350.

    PubMed  CAS  Google Scholar 

  86. Tsuboi N, Ishikawa M, Tamura Y et al. Monoclonal antibody specifically reacting against 73-kiolodalton heat shock protein: possible expression on mammalian cell surface. Hybridoma 1994; 48:2798–2804.

    Google Scholar 

  87. Amura Y, Tsuboi N, Sato N et al. 70 kDa heat shock cognate protein is a transformation-associated antigen and a possible target for the host’s anti-tumor immunity. J Immunol 1993;151:5516–5520.

    Google Scholar 

  88. Todryk SM, Melcher AA, Dalgleish AG et al. Heat shock proteins refine the danger theory. Immunol 2000; 99:334–337.

    Article  CAS  Google Scholar 

  89. Takashima S, Sato N, Kishi A et al. Involvement of peptide antigens in the cytotoxicity between 70 kDa heat shock cognate protein-like molecule and CD3+, CD4−, CD8−, TCRab-killer T-cells. J Immunol 1996; 157:3391–3395.

    PubMed  CAS  Google Scholar 

  90. Breloer M, Fleischer B, von Bonin A. In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J Immunol 1999; 162:3141–3147.

    PubMed  CAS  Google Scholar 

  91. Byrd CA, Bornmann W, Erdjument-Bromage H et al. Heat shock 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc. Natl. Acad. Sci. USA 1999; 96:5645–5650.

    Article  PubMed  CAS  Google Scholar 

  92. Vabulas RM, Ahmad-Nejad P, Ghose S et al. Hsp70 as endogenous stimulus of the Toll/Interleukin-1 receptor signal pathway. J Biol Chem 2002; 277:15107–15112.

    Article  PubMed  CAS  Google Scholar 

  93. Vabulas RM, Ahmad-Nejad P, da Costa C et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/Interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276:31332–31339.

    Article  PubMed  CAS  Google Scholar 

  94. Vabulas RM, Braedel S, Hilf N et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 2002; 277:20847–20853.

    Article  PubMed  CAS  Google Scholar 

  95. Asea A, Kraeft SK, Kurt-Jones EA et al. Hsp70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000; 6:435–442.

    Article  PubMed  CAS  Google Scholar 

  96. Gao B and Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor a release by murine macrophages. J Biol Chem 2003; 278:174–179.

    Article  PubMed  CAS  Google Scholar 

  97. Zhu FG and Pisetsky DS. Role of the heat shock protein 90 in immune response stimulation by bacterial DNA and synthetic oligonucleotides. Infect Immun 2001; 69:5546–5552.

    Article  PubMed  CAS  Google Scholar 

  98. Bandholtz L, Guo Y, Palmberg C et al. Hsp90 binds CpG oligonucleotides directly: implications for hsp90 as a missing link in CpG signaling and recognition. Cell Mol Life Sci 2003; 60:1–8.

    Article  Google Scholar 

  99. Triantafilou M, Miyake K, Golenbock D et al. Mediators of the innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 2002; 115:2603–2611.

    PubMed  CAS  Google Scholar 

  100. Broquet AH, Thomas G, Masliah J et al. Expression of the molecular chaperone hsp70 in detergent resistant microdomains correlates with its membrane delivery and release. J Biol Chem 2003; 278:21601–21606.

    Article  PubMed  CAS  Google Scholar 

  101. Moriuchi M, Moriuchi H, Turner W et al. Exposure to bacterial products renders macrophages highly susceptible to T-tropic HIV-1. J Clin Invest 1998; 102:1540–1550.

    Article  PubMed  CAS  Google Scholar 

  102. Juffermans NP, Paxton WA, Dekkers PE et al. Up-regulation of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells during human endotoxemia and after stimulation with mycobacterial antigens: the role of cytokines. Blood 2000; 96:2649–2654.

    PubMed  CAS  Google Scholar 

  103. Triantafilou K, Triantafilou M, Ladha S et al. Fluorescence recovery after photobleaching reveals that lipopolysaccharide rapidly transfers from CD14 to heat shock proteins 70 and 90 on the cell membrane. J Cell Sci 2001; 114:2535–2545.

    PubMed  CAS  Google Scholar 

  104. Perera PY, Mayadas TN, Takeuchi O et al. CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR)4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J Immunol 2001; 66:574–581.

    Google Scholar 

  105. Seydel U, Scheel O, Muller K et al. A K+ channel is involved in LPS signaling. J Endotox Res 2001; 7:243–247.

    Article  CAS  Google Scholar 

  106. Negulyaev YA, Vedernikova EA, Kinev A et al. Exogenous heat shock protein 70 activates potassium channels in U937 cells. Biochem Biophys Acta 1996; 1282:156–162.

    PubMed  Google Scholar 

  107. Pralle A, Keller P, Florin EL et al. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 2000; 148:997–1007.

    Article  PubMed  CAS  Google Scholar 

  108. Vereb G, Matko J, Vamosi G et al. Cholesterol-dependent clustering of IL-2Ra and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc Natl Acad Sci USA 2000; 97:6013–6018.

    Article  PubMed  CAS  Google Scholar 

  109. Anderson HA., Hiltbold EM, Roche PA. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 2000; 1:156–162.

    Article  PubMed  CAS  Google Scholar 

  110. Wang PY, Kitchens R, Munford RS. Bacterial lipopolysaccharide binds to CD14 in low density domains of the monocyte-macrophage plasma membrane. J Inflamm 1996; 47:126–137.

    CAS  Google Scholar 

  111. Rose JR, Christ WJ, Bristol JR et al. Agonistic and antagonistic activities of bacterially derived Rhodobacter sphaeroides lipid A: comparison with activities of synthetic material of the proposed structure and analogs. Infect Immun 1995; 63:833–839.

    PubMed  CAS  Google Scholar 

  112. Loppnow H, Libby P, Freudenberg MA et al. Cytokine induction by lipopolysaccharide (LPS) corresponds to the lethal toxicity and is inhibited by non-toxic Rhodobacter capsulatus LPS. Infect Immun 1990; 58:3743–3750.

    PubMed  CAS  Google Scholar 

  113. Schromm A, Bradenburg K, Loppnow H et al. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem 2000; 267:2008–2013.

    Article  PubMed  CAS  Google Scholar 

  114. Bradenburg K, Lindner B, Schromm A et al. Physiological characteristics of triacyl lipid A partial structure OM-174 in relation to biological activity. Eur J Biochem 2000; 267:3370–3377.

    Article  Google Scholar 

  115. Netea MG, van Deuren M, Kullberg BJ et al. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol 2002; 23:135–139

    Article  PubMed  CAS  Google Scholar 

  116. Hirschfeld M, Weis JJ, Toshchakov V et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001; 69:1477–1482.

    Article  PubMed  CAS  Google Scholar 

  117. Wyllie DH, Kiss-Toth, E, Visintin A et al. Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J Immunol 2000;165:7125–7132.

    PubMed  CAS  Google Scholar 

  118. Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 2002; 22:295–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Martha, T., Kathy, T. (2005). “Supramolecular” Activation Clusters in Innate Immunity. In: Toll and Toll-Like Receptors: An Immunologic Perspective. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27445-6_4

Download citation

Publish with us

Policies and ethics