Skip to main content

Abstract

In this chapter we aim to provide a detailed overview of Toll-like receptor (TLR) structure. Initially we focus on the different ways in which the related vertebrate and invertebrate TLRs recognize pathogen patterns, with particular reference to the LPS sensor (hTLR4/ CD14/MD2) and Drosophila ToU/SpƤtzle. In the second part of our chapter we discuss the evidence that signal transduction involves receptor driven recruitment of multitypic protein complexes and the activation and autoregulation of the IRAK family of Serine/Threonine protein kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 2003; 85(2):85ā€“95.

    PubMedĀ  CASĀ  Google ScholarĀ 

  2. Correia JD, Ulevitch RJ. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem 2002; 277(3):1845ā€“1854.

    CASĀ  Google ScholarĀ 

  3. He XLL, Bazan JF, McDermott G et al. Structure of the Nogo receptor ectodomain: A recognition module implicated in myelin inhibition. Neuron 2003; 38(2):177ā€“185.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Evdokimov AG, Anderson DE, Routzahn KM et al. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: A leucine-rich repeat protein with the shortest repeating unit. J Mol Biol 2001; 312(4):807ā€“821.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Price SR, Evens PR, Nagai K. Crystal structure of the spliceosomal U2B ā€œ-U2Aā€™ protein complex bound to a fragment of U2 small nuclear RNA. Nature 1998; 394(6694):645ā€“650.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Uff S, Clemetson JM, Harrison T et al. Crystal structure of the platelet glycoprotein Ib alpha N-terminal domain reveals an unmasking mechanism for receptor activation. J Biol Chem 2002; 277(38):35657ā€“35663.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Kobe B, Deisenhofer J. A Structural Basis of the Interactions between Leucine-Rich Repeats and Protein Ligands. Nature 1995; 374(6518):183ā€“186.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. Huizinga EG, Tsuji S, Romijn RAP et al. Structures of glycoprotein Ib alpha and its complex with von Willebrand factor Al domain. Science 2002; 297(5584):1176ā€“1179.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Schubert WD, Urbanke C, Ziehm T et al. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 2002; 111(6):825ā€“836.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Yoder MD, Jurnak F. The Refined 3-Dimensional Structure of Pectate Lyase-C from Erwinia-Chrysanthemi at 2.2-Angstrom Resolution-Implications for an Enzymatic Mechanism. Plant Physiol 1995; 107(2):349ā€“364.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292(2):195ā€“202.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Buchanan SGS, Gay NJ. Structural and functional diversity in the leucine rich repeat family of proteins. Prog Biophys Mol Bio 1996; 65(1ā€“2): 1ā€“44.

    CASĀ  Google ScholarĀ 

  13. Kajava AV. Structural diversity of leucine-rich repeat proteins. J Mol Biol 1998; 277(3):519ā€“527.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Kobe B, Deisenhofer J. The Leucine-Rich Repeat-a Versatile Binding Motif. Trends Biochem Sci 1994; 19(10):415ā€“421.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Mitsuzawa H, Wada I, Sano H et al. Extracellular toll-like receptor 2 region containing Ser(40)-Ile(64) but not Cys(30)-Ser(39) is critical for the recognition of Staphylococcus aureus peptidoglycan. J Biol Chem 2001; 276(44):41350ā€“41356.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. P Natl Acad Sci USA 2000; 97(25):13766ā€“13771.

    CASĀ  Google ScholarĀ 

  17. Schneider DS, Hudson KL, Lin TY et al. Dominant and Recessive Mutations Define Functional Domains of Toll, a Transmembrane Protein Required for Dorsal Ventral Polarity in the Drosophila Embryo. Gene Dev 1991; 5(5):797ā€“807.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Burke D, Wilkes D, Blundell TL et al. Fibroblast growth factor receptors: lessons from the genes. Trends Biochem Sci 1998; 23(2):59ā€“62.

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Morisato D, Anderson KV. The SpƤtzle Gene Encodes a Component of the Extracellular Signaling Pathway Establishing the Dorsal-Ventral Pattern of the Drosophila Embryo. Cell 1994; 76(4):677ā€“688.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. DeLotto Y, Smith C, DeLotto R. Multiple isoforms of the Drosophila SpƤtzle protein are encoded by alternatively spliced maternal mRNAs in the precellular blastoderm embryo. Mol Gen Genet 2001; 264(5):643ā€“652.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Weber A, Tauszig-Delamasure S, Hoffmann J et al. Binding of the Drosophila cytokine SpƤtzle to Toll is direct and establishes signaling. Nat Immunol 2003; 4:794ā€“800.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Mizuguchi K, Parker JS, Blundell TL et al. Getting knotted: a model for the structure and activation of SpƤtzle. Trends Biochem Sci 1998; 23(7):239ā€“242.

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Bauer S, Kirschning CJ, Hacker H et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. P Natl Acad Sci USA 2001; 98(16):9237ā€“9242.

    CASĀ  Google ScholarĀ 

  24. Lien E, Means TK, Heine H et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 2000; 105(4):497ā€“504.

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. Poltorak A, Ricciardi-Castagnoli P, Citterio S et al. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. P Natl Acad Sci USA 2000; 97(5):2163ā€“2167.

    CASĀ  Google ScholarĀ 

  26. Mizel SB, West AP, Hantgan RR. Identification of a sequence in human toll-like receptor 5 required for the binding of Gram-negative flagellin. J Biol Chem 2003; 278(26):23624ā€“23629.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Lugtenberg B, Vanalphen L. Molecular Architecture and Functioning of the Outer-Membrane of Escherichia-Coli and Other Gram-Negative Bacteria. Biochim Biophys Acta 1983; 737(1):51ā€“115.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Whitfield C. Biosynthesis of Lipopolysaccharide O-Antigens. Trends Microbiol 1995; 3(5):178ā€“185.

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Heinrichs DE, Yethon JA, Whitfield C. Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 1998; 30(2):221ā€“232.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Raetz CRH, Ulevitch RJ, Wright SD et al. Gram-Negative Endotoxin-an Extraordinary Lipid with Profound Effects on Eukaryotic Signal Transduction. Faseb J 1991; 5(12):2652ā€“2660.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Westphal O, LĆ¼beritz O, Bister F. Ć¼ber Extraktion von Bakterien mit Phenol/Wasser. Z Naturforsch 1952; 7:148ā€“155.

    Google ScholarĀ 

  32. Galanos C, Luderitz O, Rietschel ET et al. Synthetic and Natural Escherichia-Coli Free Lipid-a Express Identical Endotoxic Activities. Eur J Biochem 1985; 148(1):1ā€“5.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Morath S, Stadelmaier A, Geyer A et al. Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. J Exp Med 2002; 195(12):1635ā€“1640.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Muhlradt PF, Kiess M, Meyer H et al. Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J Exp Med 1997; 185(11):1951ā€“1958.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Aliprantis AO, Weiss DS, Radolf JD et al. Release of toll-like receptor-2-activating bacterial lipo-proteins in Shigella flexneri culture supernatants. Infect Immun 2001; 69(10):6248ā€“6255.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Takeuchi O, Kaufmann A, Grote K et al. Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2-and MyD88-dependent signaling pathway. J Immunol 2000; 164(2):554ā€“557.

    PubMedĀ  CASĀ  Google ScholarĀ 

  37. Takeuchi O, Kawai T, Muhlradt PF et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001; 13(7):933ā€“940.

    PubMedĀ  CASĀ  Google ScholarĀ 

  38. Samatey FA, Imada K, Nagashima S et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 2001; 410(6826):331ā€“337.

    PubMedĀ  CASĀ  Google ScholarĀ 

  39. Eaves-Pyles TD, Wong HR, Odoms K et al. Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J Immunol 2001; 167(12):7009ā€“7016.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Mimori-Kiyosue Y, Yamashita I, Fujiyoshi Y et al. Role of the outermost subdomain of Salmonella flagellin in the filament structure revealed by electron cryomicroscopy. J Mol Biol 1998; 284(2):521ā€“530.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. He XS, Rivkina M, Stocker BAD et al. Hypervariable Region-Iv of Salmonella Gene Flic(D) Encodes a Dominant Surface Epitope and a Stabilizing Factor for Functional Flagella. J Bacteriol 1994; 176(8):2406ā€“2414.

    PubMedĀ  CASĀ  Google ScholarĀ 

  42. Newton SMC, Kotb M, Poirier TP et al. Expression and Immunogenicity of a Streptococcal M-Protein Epitope Inserted in Salmonella Flagellin. Infect Immun 1991; 59(6):2158ā€“2165.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3(2):196ā€“200.

    PubMedĀ  CASĀ  Google ScholarĀ 

  44. Lee J, Chuang TH, Redecke V et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: Activation of Toll-like receptor 7. P Nad Acad Sci USA 2003; 100(11):6646ā€“6651.

    CASĀ  Google ScholarĀ 

  45. Kawasaki K, Akashi S, Shimazu R et al. Mouse toll-like receptor 4 center dot MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by taxol. J Biol Chem 2000; 275(4):2251ā€“2254.

    PubMedĀ  CASĀ  Google ScholarĀ 

  46. Byrd-Leifer CA, Block EF, Takeda K et al. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol 2001; 31(8):2448ā€“2457.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Hacker G, Redecke V, Hacker H. Activation of the immune system by bacterial CpG-DNA. Immunology 2002; 105(3):245ā€“251.

    PubMedĀ  CASĀ  Google ScholarĀ 

  48. Yi AK, Peckham DW, Ashman RF et al. CpG DNA rescues B cells from apoptosis by activating NF kappa B and preventing mitochondrial membrane potential disruption via a chloroquine sensitive pathway. Int Immunol 1999; 11(12):2015ā€“2024.

    PubMedĀ  CASĀ  Google ScholarĀ 

  49. Tokunaga T, Yamamoto T, Yamamoto S. How BCG led to the discovery of immunostimulatory DNA. Jpn J Infect Dis 1999; 52(1):1ā€“11.

    PubMedĀ  CASĀ  Google ScholarĀ 

  50. Yamamoto S, Yamamoto T, Nojima Y et al. Discovery of immunostimulatory CpG-DNA and its application to tuberculosis vaccine development. Jpn J Infect Dis 2002;55(2):37ā€“44.

    PubMedĀ  CASĀ  Google ScholarĀ 

  51. Krieg AM, Hartmann G, Yi AK. Mechanism of action of CpG DNA. Curr Top Microbiol 2000; 247:1ā€“21.

    CASĀ  Google ScholarĀ 

  52. Krieg AM, Stein CA. Phosphorothioate Oligodeoxynucleotides-Antisense or Anti-Protein. Antisense Res Dev 1995; 5(4):241ā€“241.

    PubMedĀ  CASĀ  Google ScholarĀ 

  53. Van Uden JH, Tran CH, Carson DA et al. Type I interferon is required to mount an adaptive response to immunostimulatory DNA. Eur J Immunol 2001; 31(11):3281ā€“3290.

    PubMedĀ  Google ScholarĀ 

  54. Kandimalla ER, Bhagat L, Wang DQ et al. Divergent synthetic nucleotide motif recognition pattern: design and development of potent immunomodulatory oligodeoxyribonucleotide agents with distinct cytokine induction profiles. Nucleic Acids Res 2003; 31(9):2393ā€“2400.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Imler JL, Hoffmann JA. Toll receptors in innate immunity. Trends Cell Biol 2001; 11(7):304ā€“311.

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. Sato M, Sano H, Iwaki D et al. Direct binding of toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 2003;171(1):417ā€“425.

    PubMedĀ  CASĀ  Google ScholarĀ 

  57. Gangloff M, Weber ANR, Gibbard RJ et al. Evolutionary relationships, but functional differences, between the Drosophila and human Toll-like receptor families. Biochem Soc T 2003; 31:659ā€“663.

    CASĀ  Google ScholarĀ 

  58. Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 2002; 23(6):301ā€“304.

    PubMedĀ  CASĀ  Google ScholarĀ 

  59. Inohara N, Nunez G. NODs: Intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 2003; 3(5):371ā€“382.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Jack RS, Fan XL, Bernheiden M et al. Lipopolysaccharide-binding protein is required to combat a murine Gram-negative bacterial infection. Nature 1997; 389(6652):742ā€“745.

    PubMedĀ  CASĀ  Google ScholarĀ 

  61. Beamer LJ, Carroll SF, Eisenberg D. Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science 1997; 276(5320):1861ā€“1864.

    PubMedĀ  CASĀ  Google ScholarĀ 

  62. Kleiger G, Beamer LJ, Grothe R et al. The 1.7 angstrom crystal structure of BPI: A study of how two dissimilar amino acid sequences can adopt the same fold. J Mol Biol 2000; 299(4):1019ā€“1034.

    PubMedĀ  CASĀ  Google ScholarĀ 

  63. Tobias PS, Soldau K, Gegner JA et al. Lipopolysaccharide-Binding Protein-Mediated Complexation of Lipopolysaccharide with Soluble Cd14. J Biol Chem 1995; 270(18):10482ā€“10488.

    PubMedĀ  CASĀ  Google ScholarĀ 

  64. Rock FL, Hardiman G, Timans JC et al. A family of human receptors structurally related to Drosophila Toll. P Natl Acad Sci USA 1998; 95(2):588ā€“593.

    CASĀ  Google ScholarĀ 

  65. Medzhitov R, PrestonHurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388(6640):394ā€“397.

    PubMedĀ  CASĀ  Google ScholarĀ 

  66. Wright SD, Ramos RA, Tobias PS et al. Cd14, a Receptor for Complexes of Lipopolysaccharide (Lps) and Lps Binding-Protein. Science 1990; 249(4975):1431ā€“1433.

    PubMedĀ  CASĀ  Google ScholarĀ 

  67. Hailman E, Lichenstein HS, Wurfel MM et al. Lipopolysaccharide (Lps)-Binding Protein Accelerates the Binding of Lps to Cd14. J Exp Med 1994; 179(1):269ā€“277.

    PubMedĀ  CASĀ  Google ScholarĀ 

  68. Hailman E, Vasselon T, Kelley M et al. Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14. J Immunol 1996; 156(11):4384ā€“4390.

    PubMedĀ  CASĀ  Google ScholarĀ 

  69. Frey EA, Miller DS, Jahr TG et al. Soluble Cd14 Participates in the Response of Cells to Lipopolysaccharide. J Exp Med 1992; 176(6):1665ā€“1671.

    PubMedĀ  CASĀ  Google ScholarĀ 

  70. Pugin J, Schurermaly CC, Leturcq D et al. Lipopolysaccharide Activation of Human Endothelial and Epithelial-Cells Is Mediated by Lipopolysaccharide-Binding Protein and Soluble Cd14. P Natl Acad Sci USA 1993; 90(7):2744ā€“2748.

    CASĀ  Google ScholarĀ 

  71. Haziot A, Rong GW, Goyert SM. Recombinant Soluble Cd14 Mediates the Activation of Endothelial-Cells by Lps. J Immunol 1993; 150(8):A260ā€“A260.

    Google ScholarĀ 

  72. Schutt C, Schilling T, Grunwald U et al. Endotoxin-Neutralizing Capacity of Soluble Cd14. Res Immunol 1992; l43(1):71ā€“78.

    Google ScholarĀ 

  73. Stelter F, Loppnow H, Menzel R et al. Differential impact of substitution of amino acids 9ā€“13 and 91ā€“101 of human CD 14 on soluble Cd14-dependent activation of cells by lipopolysaccharide. J Immunol 1999; 163(11):6035ā€“6044.

    PubMedĀ  CASĀ  Google ScholarĀ 

  74. Mcginley MD, Narhi LO, Kelley MJ et al. Cd14-Physical-Properties and Identification of an Exposed Site That Is Protected by Lipopolysaccharide. J Biol Chem 1995; 270(10):5213ā€“5218.

    PubMedĀ  CASĀ  Google ScholarĀ 

  75. Shimazu R, Akashi S, Ogata H et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999; 189(11):1777ā€“1782.

    PubMedĀ  CASĀ  Google ScholarĀ 

  76. Schromm AB, Lien E, Henneke P et al. Molecular genetic analysis of an endotoxin nonresponder mutant cell Line: A point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J Exp Med 2001; 194(1):79ā€“88.

    PubMedĀ  CASĀ  Google ScholarĀ 

  77. Viriyakosol S, Tobias PS, Kitchens RL et al. MD-2 binds to bacterial lipopolysaccharide. J Biol Chem 2001; 276(41):38044ā€“38051.

    PubMedĀ  CASĀ  Google ScholarĀ 

  78. Re F, Strominger JL. Monomeric recombinant MD-2 binds Toll-like receptor 4 tightly and confers lipopolysaccharide responsiveness. J Biol Chem 2002; 277(26):23427ā€“23432.

    PubMedĀ  CASĀ  Google ScholarĀ 

  79. Mullen GED, Kennedy MN, Visintin A et al. The role of disulfide bonds in the assembly and function of MD-2. P Natl Acad Sci USA 2003; 100(7):3919ā€“3924.

    CASĀ  Google ScholarĀ 

  80. Visintin A, Mazzoni A, Spitzer JA et al. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. P Natl Acad Sci USA 2001; 98(21):12156ā€“12161.

    CASĀ  Google ScholarĀ 

  81. Inohara N, Nunez G. ML-a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem Sci 2002; 27(5):219ā€“221.

    PubMedĀ  CASĀ  Google ScholarĀ 

  82. Akashi S, Nagai Y, Ogata H et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol 2001; 13(12):1595ā€“1599.

    PubMedĀ  CASĀ  Google ScholarĀ 

  83. Wright CS, Li SC, Rastinejad F. Crystal structure of human GM2-activator protein with a novel beta-cup topology. J Mol Biol 2000; 304(3):411ā€“422.

    PubMedĀ  CASĀ  Google ScholarĀ 

  84. Hajjar AM, Ernst RK, Tsai JH et al. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol 2002; 3(4):354ā€“359.

    PubMedĀ  CASĀ  Google ScholarĀ 

  85. Arbour NC, Lorenz E, Schutte BC et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25:187ā€“191.

    PubMedĀ  CASĀ  Google ScholarĀ 

  86. Koskinen R, Lamminmaki U, Tregaskes CA et al. Cloning and modeling of the first nonmammalian CD4. J Immunol 1999; 162(7):4115ā€“4121.

    PubMedĀ  CASĀ  Google ScholarĀ 

  87. Hoshino K, Takeuchi O, Kawai T et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product. J Immunol 1999; 162(7):3749ā€“3752.

    PubMedĀ  CASĀ  Google ScholarĀ 

  88. Bin LH, Xu LG, Shu HB. TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J Biol Chem 2003; 278(27):24526ā€“24532.

    PubMedĀ  CASĀ  Google ScholarĀ 

  89. Horng T, Barton GM, Flavell RA et al. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002; 420(6913):329ā€“333.

    PubMedĀ  CASĀ  Google ScholarĀ 

  90. Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al. Mai (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001; 413(6851):78ā€“83.

    PubMedĀ  CASĀ  Google ScholarĀ 

  91. Medzhitov R, Preston-Hurlburt P, Kopp E et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998; 2(2):253ā€“258.

    PubMedĀ  CASĀ  Google ScholarĀ 

  92. Oā€™Neill LAJ, Fitzgerald KA, Bowie AG. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 2003; 24(6):287ā€“290.

    CASĀ  Google ScholarĀ 

  93. Gay NJ, Keith FJ. Drosophila Toll and Il-1 Receptor. Nature 1991; 351(6325):355ā€“356.

    PubMedĀ  CASĀ  Google ScholarĀ 

  94. Bowie A, Kiss-Toth E, Symons JA et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA 2000; 97(18):10162ā€“10167.

    PubMedĀ  CASĀ  Google ScholarĀ 

  95. Harte MT, Haga IR, Maloney G et al. The poxvirus protein A52R targets toll-like receptor signaling complexes to suppress host defense. J Exp Med 2003; 197(3):343ā€“351.

    PubMedĀ  CASĀ  Google ScholarĀ 

  96. Vigers GPK, Caffes P, Evans RJ et al. X-Ray Structure of Interleukin-1 Receptor Antagonist at 2.0-Angstrom Resolution. J Biol Chem 1994; 269(17):12874ā€“12879.

    PubMedĀ  CASĀ  Google ScholarĀ 

  97. Slack JL, Schooley K, Bonnert TP et al. Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J Biol Chem 2000; 275(7):4670ā€“4678.

    PubMedĀ  CASĀ  Google ScholarĀ 

  98. Poltorak A, He XL, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in TLR4 gene. Science 1998; 282(5396):2085ā€“2088.

    PubMedĀ  CASĀ  Google ScholarĀ 

  99. Heguy A, Baldari CT, Macchia G et al. Amino-Acids Conserved in Interleukin-1 Receptors (Il-1rs) and the Drosophila Toll Protein Are Essential for II-1r Signal Transduction. J Biol Chem 1992; 267(4):2605ā€“2609.

    PubMedĀ  CASĀ  Google ScholarĀ 

  100. Huang WY, Valles S, Qwarnstrom EE. Translocation of the IL-1 receptor to focal adhesions is regulated through the C-terminal end of the cytoplasmic domain. Cell Biol Int 2001; 25(4):309ā€“317.

    PubMedĀ  CASĀ  Google ScholarĀ 

  101. Xu YW, Tao X, Shen BH et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 2000; 408(6808):111ā€“115.

    PubMedĀ  CASĀ  Google ScholarĀ 

  102. Tao X, Xu YW, Zheng Y et al. An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem Bioph Res Co 2002; 299(2):216ā€“221.

    CASĀ  Google ScholarĀ 

  103. Fesik SW. Insights into programmed cell death through structural biology. Cell 2000; 103(2):273ā€“282.

    PubMedĀ  CASĀ  Google ScholarĀ 

  104. Suzuki N, Suzuki S, Yeh WC. IRAK-4 as the central TIR signaling mediator in innate immunity. Trends Immunol 2002; 23(10):503ā€“506.

    PubMedĀ  CASĀ  Google ScholarĀ 

  105. Towb P, Galindo RL, Wasserman SA. Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 1998; 125(13):2443ā€“2450.

    PubMedĀ  CASĀ  Google ScholarĀ 

  106. Schiffmann DA, White JHM, Cooper A et al. Formation and biochemical characterization of tube/pelle death domain complexes: Critical regulators of postreceptor signaling by the Drosophila Toll receptor. Biochemistry-Us 1999; 38(36):11722ā€“11733.

    CASĀ  Google ScholarĀ 

  107. Shen BH, Manley JL. Pelle kinase is activated by autophosphorylation during Toll signaling in Drosophila. Development 2002; 129(8):1925ā€“1933.

    PubMedĀ  CASĀ  Google ScholarĀ 

  108. Aravind L, Dixit VM, Koonin EV. The domains of death: evolution of the apoptosis machinery. Trends Biochem Sci 1999; 24(2):47ā€“53.

    PubMedĀ  CASĀ  Google ScholarĀ 

  109. Xiao T, Towb P, Wasserman SA et al. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 1999; 99(5):545ā€“555.

    PubMedĀ  CASĀ  Google ScholarĀ 

  110. Wesche H, Henzel WJ, Shillinglaw W et al. MyD88: An adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997; 7(6):837ā€“847.

    PubMedĀ  CASĀ  Google ScholarĀ 

  111. Janssens S, Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell 2003; 11(2):293ā€“302.

    PubMedĀ  CASĀ  Google ScholarĀ 

  112. Li SY, Strelow A, Fontana EJ et al. IRAK-4: A novel member of the IRAK family with the properties of an IRAK-kinase. P Natl Acad Sci USA 2002; 99(8):5567ā€“5572.

    CASĀ  Google ScholarĀ 

  113. DePristo M, de Bakker P, Lovell S et al. Ab initio construction of polypeptide fragments: Efficient generation of consistent, representative ensembles. Proteins (Structure, Function and Genetics) 2003; 51:41ā€“55

    CASĀ  Google ScholarĀ 

  114. Tovchigrechko A, Wells CA, Vakser IA. Docking of protein models. Protein Sci 2002; 11(8):1888ā€“1896.

    PubMedĀ  CASĀ  Google ScholarĀ 

  115. Takeuchi O, Sato S, Horiuchi T et al. Cutting edge: Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002; 169(1):10ā€“14

    PubMedĀ  CASĀ  Google ScholarĀ 

  116. Wyllie DH, Kiss-Toth E, Visintin A et al. Evidence for an accessory protein function for toll-like receptor 1 in anti-bacterial responses. J Immunol 2000; 165(12):7125ā€“7132.

    PubMedĀ  CASĀ  Google ScholarĀ 

  117. Bulut Y, Faure E, Thomas L et al. Cooperation of toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: Role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 2001; 167(2):987ā€“994.

    PubMedĀ  CASĀ  Google ScholarĀ 

  118. Aliprantis AO, Yang RB, Mark MR et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 1999; 285(5428):736ā€“739.

    PubMedĀ  CASĀ  Google ScholarĀ 

  119. Brightbill HD, Libraty DH, Krutzik SR et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999; 285(5428):732ā€“736.

    PubMedĀ  CASĀ  Google ScholarĀ 

  120. Lien E, Sellati TJ, Yoshimura A et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 1999; 274(47):33419ā€“33425.

    PubMedĀ  CASĀ  Google ScholarĀ 

  121. Hirschfeld M, Kirschning CJ, Schwandner R et al. Cutting edge: Inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 1999; 163(5):2382ā€“2386.

    PubMedĀ  CASĀ  Google ScholarĀ 

  122. Schwandner R, Dziarski R, Wesche H et al. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 1999; 274(25):17406ā€“17409.

    PubMedĀ  CASĀ  Google ScholarĀ 

  123. Yoshimura A, Lien E, Ingalls RR et al. Cutting edge: Recognition of gram-positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2. J Immunol 1999; 163(1):1ā€“5.

    PubMedĀ  CASĀ  Google ScholarĀ 

  124. Iwaki D, Mitsuzawa H, Murakami S et al. The extracellular toll-like receptor 2 domain directly binds peptidoglycan derived from Staphylococcus aureus. J Biol Chem 2002; 277(27):24315ā€“24320.

    PubMedĀ  CASĀ  Google ScholarĀ 

  125. Lehner MD, Morath S, Michelsen KS et al. Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different toll-like receptors independent of paracrine mediators. J Immunol 2001; 166(8):5161ā€“5167.

    PubMedĀ  CASĀ  Google ScholarĀ 

  126. Means TK, Wang SY, Lien E et al. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999; 163(7):3920ā€“3927.

    PubMedĀ  CASĀ  Google ScholarĀ 

  127. Underhill DM, Ozinsky A, Smith KD et al. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. P Natl Acad Sci USA 1999; 96(25):14459ā€“14463.

    CASĀ  Google ScholarĀ 

  128. Hajjar AM, Oā€™Mahony DS, Ozinsky A et al. Cutting edge: Functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 2001; 166(1):15ā€“19.

    PubMedĀ  CASĀ  Google ScholarĀ 

  129. Campos MA, Almeida IC, Takeuchi O et al. Activation of toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 2001; 167(1):416ā€“423.

    PubMedĀ  CASĀ  Google ScholarĀ 

  130. Opitz B, Schroder NWJ, Spreitzer I et al. Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappa B translocation. J Biol Chem 2001; 276(25):22041ā€“22047.

    PubMedĀ  CASĀ  Google ScholarĀ 

  131. Massari P, Henneke P, Ho Y et al. Cutting edge: Immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent. J Immunol 2002; 168(4):1533ā€“1537.

    PubMedĀ  CASĀ  Google ScholarĀ 

  132. Werts C, Tapping RI, Mathison JC et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2001; 2(4):346ā€“352.

    PubMedĀ  CASĀ  Google ScholarĀ 

  133. Hirschfeld M, Weis JJ, Toshchakov V et al. Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001; 69(3): 1477ā€“1482.

    PubMedĀ  CASĀ  Google ScholarĀ 

  134. Asea A, Rehli M, Kabingu E et al. Novel signal transduction pathway utilized by extracellular HSP70-Role of Toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277(17):15028ā€“15034.

    PubMedĀ  CASĀ  Google ScholarĀ 

  135. Vabulas RM, Wagner H, Schild H. Heat shock proteins as ligands of toll-like receptors. Toll-Like Receptor Family Members and Their Ligands 2002; 270:169ā€“184.

    CASĀ  Google ScholarĀ 

  136. Alexopoulou L, Holt AC, Medzhitov R et al. Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature 2001; 413(6857):732ā€“738.

    PubMedĀ  CASĀ  Google ScholarĀ 

  137. Jiang QQ, Akashi S, Miyake K et al. Cutting edge: Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000; 165(7):3541ā€“3544.

    PubMedĀ  CASĀ  Google ScholarĀ 

  138. Qureshi ST, Lariviere L, Leveque G et al. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (TLR4). J Exp Med 1999; 189(4):615ā€“625.

    PubMedĀ  CASĀ  Google ScholarĀ 

  139. Gomi K, Kawasaki K, Kawai Y et al. Toll-like receptor 4-MD-2 complex mediates the signal transduction induced by flavolipin, an amino acid-containing lipid unique to Flavobacterium meningosepticum. J Immunol 2002; 168(6):2939ā€“2943.

    PubMedĀ  CASĀ  Google ScholarĀ 

  140. Kurt-Jones EA, Popova L, Kwinn L et al. Pattern recognition receptors TLR 4 and CD 14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1(5):398ā€“401.

    PubMedĀ  CASĀ  Google ScholarĀ 

  141. Haynes LM, Moore DD, Kurt-Jones EA et al. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 2001; 75(22):10730ā€“10737.

    PubMedĀ  CASĀ  Google ScholarĀ 

  142. Rassa JC, Meyers JL, Zhang YM et al. Murine retroviruses activate B cells via interaction with toll-like receptor 4. P Natl Acad Sci USA 2002; 99(4):2281ā€“2286.

    CASĀ  Google ScholarĀ 

  143. Bulut Y, Faure E, Thomas L et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through toll-like receptor 4 and MD2 in a MyD88-dependent pathway. endothelial cells through toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 2002; 168(3):1435ā€“1440.

    PubMedĀ  CASĀ  Google ScholarĀ 

  144. Sasu S, LaVerda D, Qureshi N et al. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via Toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res 2001; 89(3):244ā€“250.

    PubMedĀ  CASĀ  Google ScholarĀ 

  145. Ohashi K, Burkart V, Flohe S et al. Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000; 164(2):558ā€“561.

    PubMedĀ  CASĀ  Google ScholarĀ 

  146. Dybdahl B, Wahba A, Lien E et al. Inflammatory response after open heart surgery-Release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 2002; 105(6):685ā€“690.

    PubMedĀ  CASĀ  Google ScholarĀ 

  147. Okamura Y, Watari M, Jerud ES et al. The extra domain A of fibronectin activates toll-like receptor 4. J Biol Chem 2001; 276(13):10229ā€“10233.

    PubMedĀ  CASĀ  Google ScholarĀ 

  148. Termeer C, Benedix F, Sleeman J et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002; 195(1):99ā€“111.

    PubMedĀ  CASĀ  Google ScholarĀ 

  149. Johnson GB, Brunn GJ, Kodaira Y et al. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by toll-like receptor 4. J Immunol 2002; 168(10):5233ā€“5239.

    PubMedĀ  CASĀ  Google ScholarĀ 

  150. Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 2001; 167(5):2887ā€“2894.

    PubMedĀ  CASĀ  Google ScholarĀ 

  151. Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410(6832):1099ā€“1103.

    PubMedĀ  CASĀ  Google ScholarĀ 

  152. Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408(6813):740ā€“745.

    PubMedĀ  CASĀ  Google ScholarĀ 

  153. Leadbetter EA, Rifkin IR, Hohlbaum AM et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002; 416(6881):603ā€“607.

    PubMedĀ  CASĀ  Google ScholarĀ 

  154. Mizuguchi K, Deane CM, Blundell TL et al. JOY: protein sequence-structure representation and analysis. Bioinformatics 1998; 14(7):617ā€“623.

    PubMedĀ  CASĀ  Google ScholarĀ 

  155. Dunne A, Ejdeback M, Ludidi PL et al. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mai and MyD88. J Biol Chem 2003; 278:41443ā€“41451.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Gangloff, M., Ludidi, P.L., Gay, N.J. (2005). Structures and Motifs Involved in Toll Signaling. In: Toll and Toll-Like Receptors: An Immunologic Perspective. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27445-6_3

Download citation

Publish with us

Policies and ethics