Anticancer Gene Therapy by in Vivo DNA Electrotransfer of MBD2 Antisense

  • Pascal Bigey
  • Daniel Scherman
Part of the Medical Intelligence Unit book series (MIUN)


Harnessing the full therapeutic potential of DNA methylation machinery proteins would require efficient techniques of introducing either anti sense, iRNA or expression vectors into tumors in vivo. Efficient techniques for introducing DNA in vivo are also required for target validation. This chapter discusses the electrotransfer of introducing DNA in vivo and its use in validation of MBD2 as anticancer target as well as its potential as an anticancer gene therapy.


Gene Therapy Gene Transfer Electric Pulse Cancer Gene Therapy Nonviral Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Tendeloo VF, Van Broeckhoven C, Berneman ZN. Gene therapy: Principles and applications to hematopoietic cells. Leukemia 2001; 15(4):523–544.PubMedCrossRefGoogle Scholar
  2. 2.
    Nishikawa M, Huang L. Nonviral vectors in the new millennium: Delivery barriers in gene transfer. Hum Gene Ther 2001; 12(8):861–870.PubMedCrossRefGoogle Scholar
  3. 3.
    Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374:546–549.PubMedCrossRefGoogle Scholar
  4. 4.
    Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20:709–760.PubMedCrossRefGoogle Scholar
  5. 5.
    Rols M, Delteil C, Golzio M et al. In vivo electrically mediated protein and gene transfer in murine melanoma. Nature Biotech 1998; 16(2):168–171.CrossRefGoogle Scholar
  6. 6.
    Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nature Biotech 1998; 16(9):867–870.CrossRefGoogle Scholar
  7. 7.
    Mir L, Bureau MF, Rangara R et al. Long-term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. Compte-Rendu de l’Académie des sciences, Sciences de la vie/Life Sciences 1998; 321:893–899.CrossRefGoogle Scholar
  8. 8.
    Mathiesen I. Electropermeabilization of skeletal muscle enhance gene transfer in vivo. Gene Ther 1999; 6(4):508–514.PubMedCrossRefGoogle Scholar
  9. 9.
    Vicat JM, Boisseau S, Jourde P et al. Muscle transfection by electroporation with high voltage and short-pulse currents provide high-level and long lasting gene expression. Hum Gene Ther 2000; 11(6):909–916.PubMedCrossRefGoogle Scholar
  10. 10.
    Teissie J, Eynard N, Gabriel B et al. Electropermeabilization of cell membranes. Adv Drug Deliv Rev 1999; 35(1):3–19.PubMedCrossRefGoogle Scholar
  11. 11.
    Wong TK, Neumann E. Electric field mediated gene transfer. Biochem Biophys Res Com 1982; 107(2):584–587.PubMedGoogle Scholar
  12. 12.
    Neumann E, Schaefer-Ridder M, Wang Y et al. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1(7):841–845.PubMedGoogle Scholar
  13. 13.
    Potter H. Electroporation in biology: Methods, application and instrumentation. Anal Biochem 1988; 174(2):361–373.PubMedCrossRefGoogle Scholar
  14. 14.
    Rols MP, Teissié J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 1990; 58(5):1089–1098.PubMedCrossRefGoogle Scholar
  15. 15.
    Mir LM, Banoun H, Paoleti C. Introduction of definite amount of nonpermeant molecules into living cells after electropermeabilization: Direct access to the cytosol. Exp Cell Res 1988; 175(1):15–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Mir LM. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 2000; 53(1):1–10.CrossRefGoogle Scholar
  17. 17.
    Neumann E, Kakorin S, Toensing K. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 1999; 48(1):3–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Mir LM, Orlowki S. Mechanism of electrochemotherapy. Adv Drug Deliv Rev 1999; 35(1):107–118.PubMedCrossRefGoogle Scholar
  19. 19.
    Chabner BA, Allegra CJ, Curt GA et al. Antineoplastic agents. In: Hardman JC, Limbird LE, Goodman and Gilman’s, eds. The pharmacological basis of therapeutics. 9th edition. McGraw-Hill Co., 1996:1266–1268.Google Scholar
  20. 20.
    Belehradek Jr J, Orlowski S, Ramirez LH et al. Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochim Biophys Acta 1994; 1190(1):155–163.PubMedCrossRefGoogle Scholar
  21. 21.
    Rols MP, Bachaud JM, Giraud P et al. Electrochemotherapy of cutaneous metastases in malignant melanoma. Melanoma Res 2000; 10(5):468–474.PubMedCrossRefGoogle Scholar
  22. 22.
    Rodriguez-Cuevas S, Barroso-Bravo S, Almanza-Estrada J et al. Electrochemotherapy in primary and metastatic skin tumors: Phase II trial using intralesional Bleomycin. Arch Med Res 2001; 32(4):273–276.PubMedCrossRefGoogle Scholar
  23. 23.
    Sersa G, Stabuc B, Cemazar M et al. Electrochemotherapy with cisplatin: The systemic antitumour effectiveness of cisplatin can be potentiated locally by the application of electric pulses in the treatment of malignant melanoma skin metastases. Melanoma Res 2000; 10(4):381–385.PubMedCrossRefGoogle Scholar
  24. 24.
    Rols MP, Tamzali Y, Teissié J. Electrochemotherapy of horses. A preliminary clinical report. Bioelectrochemistry 2002; 55(1–2):101–105.PubMedCrossRefGoogle Scholar
  25. 25.
    Gehl J, SØrensen TH, Nielsen K et al. In vivo electroporation of skeletal muscle: Threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1999; 1428(2–3):233–240.PubMedGoogle Scholar
  26. 26.
    Scherman D, Bureau MF. In vivo DNA electrotransfer into skeletal muscle and other tissues: Mechanism and applications. STP Pharma Sciences 2001; 11:69–74.Google Scholar
  27. 27.
    Bonnafous P, Vernhes MC, Teissié J et al. The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilisation of mammalian cells is based on a non destructive alteration of the plasma membrane. Biochim Biophys Acta 1999; 1461(1):123–134.PubMedCrossRefGoogle Scholar
  28. 28.
    Hartikka J, Sukhu L, Buchner C et al. Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: Plasmid dependence of muscle damage and effect of poloxamer 188. Mol Ther 2001; 4(5):407–415.PubMedCrossRefGoogle Scholar
  29. 29.
    Gehl J, Skovsgaard T, Mir LM. Vascular reactions to in vivo electroporation: Characterization and consequences for drug and gene delivery. Biochim Biophys Acta 2002; 1569(1–3):51–58.PubMedGoogle Scholar
  30. 30.
    Mir LM, Bureau MF, Gehl J et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 1999; 96(8):4262–4267.PubMedCrossRefGoogle Scholar
  31. 31.
    Satkauskas S, Bureau MF, Puc M et al. Mechanism of in vivo DNA electrotransfer: Respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 2002; 5(2):133–140.PubMedCrossRefGoogle Scholar
  32. 32.
    Golzio M, Teissié J, Rols MP. Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 2002; 99(3):1292–1297.PubMedCrossRefGoogle Scholar
  33. 33.
    Paturneau-Jouas M, Parzy E, Vidal G et al. Electroporation-mediated delivery of a magnetic resonance imaging contrast agent into muscle to visualize electrotransfer. Acta Myologica 2001; XX:174–178.Google Scholar
  34. 34.
    Rols MP, Delteil C, Golzio M et al. Control by ATP and ADP of voltage-induced mammalian-cell-membrane permeabilization, gene transfer and resulting expression. Eur J Biochem 1998; 254(2):382–388.PubMedCrossRefGoogle Scholar
  35. 35.
    Satkauskas S, Bureau MF, Mahfoudi A et al. Slow accumulation of plasmid in muscle cells: Supporting evidence for a mechanism of DNA uptake by receptor mediated endocytosis. Mol Ther 2001; 4(4):317–323.PubMedCrossRefGoogle Scholar
  36. 36.
    Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nature Biotech 1998; 16(9):867–870.CrossRefGoogle Scholar
  37. 37.
    Honigman A, Zeira E, Ohana P et al. Imaging transgene expression in live animals. Mol Ther 2001; 4(3):239–249.PubMedCrossRefGoogle Scholar
  38. 38.
    Kreiss P, Bettan M, Crouzet J et al. Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer. J Gene Med 1999; 1(4):245–50.PubMedCrossRefGoogle Scholar
  39. 39.
    Bettan M, Emmanuel F, Darteil R et al. High-level protein secretion into blood circulation after electric pulse-mediated gene transfer into skeletal muscle. Mol Ther 2000; 2(3):204–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Payen E, Bettan M, Rouyer-Fessard P et al. Improvement of mouse β-thalassemia by electrotransfer of erythropoietin cDNA. Exp Hematol 2001; 29(3):295–300.PubMedCrossRefGoogle Scholar
  41. 41.
    Samakoglu S, Fattori E, Lamartina S et al. βminor-globin messenger RNA accumulation in reticulocytes governs improved erhytropoiesis in β thalassemic mice after erythropoïetin complementary DNA electrotransfer in muscles. Blood 2 2001; 97(8):2213–2220.CrossRefGoogle Scholar
  42. 42.
    Maruyama H, Ataka K, Gejyo F et al. Long-term production of érythropoïétine after electroporation-mediated transfer of plasmid DNA into the muscles of normal and uremic rats. Gene Ther 2001; 8(6):461–468.PubMedCrossRefGoogle Scholar
  43. 43.
    Adachi O, Nakano A, Sato O et al. Gene transfer of Fc-fusion cytokine by in vivo electroporation: Application to gene therapy for viral myocarditis. Gene Ther 2002; 9(9):577–583.PubMedCrossRefGoogle Scholar
  44. 44.
    Watanabe K, Nakazawa M, Fuse K et al. Protection against autoimmune myocarditis by gene transfer of interleukin-10 by electroporation. Circulation 2001; 104(10):1098–1100.PubMedGoogle Scholar
  45. 45.
    Mallat Z, Besnard S, Duriez M et al. Protective role of interleukin-10 in atherosclerosis. Circ Res 1999; 85(8):e17–24.PubMedGoogle Scholar
  46. 46.
    Xue F, Takahara T, Yata Y et al. Attenuated acute liver injury in mice by naked hapatocyte growth factor gene transfer into skeletal muscle with electroporation. Gut 2002; 50(4):558–562.PubMedCrossRefGoogle Scholar
  47. 47.
    Prud’homme GJ, Chang Y, Li X. Immunoinhibitory DNA vaccine protects against autoimmune diabetes through cDNA encoding a selective CTLA-4 (CD152) ligand. Hum Gene Ther 2002; 13(3):395–406.PubMedCrossRefGoogle Scholar
  48. 48.
    Vilquin JT, Kennel PF, Paturneau-Jouas M et al. Electrotransfer of naked DNA in the skeletal muscles of animal models of muscular dystrophy. Gene Ther 2001; 8(14):1097–1107.PubMedCrossRefGoogle Scholar
  49. 49.
    Lucas ML, Heller R. Immunomodulation by electrically enhanced delivery of plasmid DNA encoding IL-12 to murine skeletal muscle. Mol Ther 2001; 3(1):47–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Cichon T, Jamrozy L, Glogowska J et al. Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: Inhibition of primary tumor growth and metastatic spread. Cancer Gene Ther 2002; 9(9):771–777.PubMedCrossRefGoogle Scholar
  51. 51.
    Yamamoto M, Kobayashi Y, Li M et al. In vivo gene electroporation of glial cell line-derived neurotrophic factor (GDNF) into skeletal muscle of SOD1 mutant mice. Neurochem Res 2001; 26(11):1201–1207.PubMedCrossRefGoogle Scholar
  52. 52.
    Matsumoto T, Komori K, Shoji T et al. Successful and optimized in vivo gene transfer to rabbit carotid artery mediated by electronic pulse. Gene Ther 2001; 8(15):1174–1179.PubMedCrossRefGoogle Scholar
  53. 53.
    Blair-Parks K, Weston BC, Dean DA. High-level gene transfer to the cornea using electroporation. J Gen Med 2002; 4(1):92–100.CrossRefGoogle Scholar
  54. 54.
    Dezawa M, Takano M, Negishi H et al. Gene transfer into retinal ganglion cells by in vivo electroporation: A new approach. Micron 2002; 33(1):1–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Maruyama H, Ataka K, Higuchi N et al. Skin-targeted gene transfer using in vivo electroporation. Gene Ther 2001; 8(23):1808–1812.PubMedCrossRefGoogle Scholar
  56. 56.
    Lin CR, Tai MH, Cheng JT et al. Electroporation for direct spinal gene transfer in rats. Neurosci Lett 2002; 317(1):1–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Inoue T, Krumlauf R. An impulse to the brain using in vivo electroporation. Nat Neurosci 2001; 4suppl:1156–1158.PubMedCrossRefGoogle Scholar
  58. 58.
    Muramatsu T, Shibata O, Ryoki S et al. Foreign gene expression in the mouse testis by localized in vivo gene transfer. Biochem Biophys Res Commun 1997; 233(1):45–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Suzuki T, Shin BC, Fujikura K et al. Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett 1998; 425(3):436–440.PubMedCrossRefGoogle Scholar
  60. 60.
    Tsujie M, Isaka Y, Nakamura H et al. Electroporation-mediated gene transfer that targets glomeruli. J Am Soc Nephrol 2001; 12(5):949–954.PubMedGoogle Scholar
  61. 61.
    Saito T, Nakatsuji N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 2001; 240(1):237–246.PubMedCrossRefGoogle Scholar
  62. 62.
    Tawk M, Tuil D, Torrente Y et al. High-efficiency gene transfer in adult fish: A new tool to study fin regeneration. Genesis 2002; 32(1):27–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Konig S, Burkman J, Fitzgerald J et al. Modular organization of phylogenetically conserved domains controlling developmental regulation of the human skeletal myosin heavy chain gene family. J Biol Chem 2002; 277(31):27593–27605.PubMedCrossRefGoogle Scholar
  64. 64.
    Lamartina S, Roscilli G, Rinaudo CD et al. Stringent control of gene expression in vivo by using novel doxycydine dependant trans-activators. Hum Gene Ther 2002; 13(2):199–210.PubMedCrossRefGoogle Scholar
  65. 65.
    Payen E, Bettan M, Henri A et al. Oxygen tension and a pharmacological switch in the regulation of transgene expression for gene therapy. J Gene Med 2001; 3(5):498–504.PubMedCrossRefGoogle Scholar
  66. 66.
    The J Gene Med website, Nov 2002.Google Scholar
  67. 67.
    McCormick F. Cancer gene therapy: Fringe or cutting edge? Nature Rev Cancer 2001; 1(2):130–141.CrossRefGoogle Scholar
  68. 68.
    Wadhwa PD, Zielske SP, Roth JC et al. Cancer gene therapy: Scientific basis. Annu Rev Med 2002; 53:437–452.PubMedCrossRefGoogle Scholar
  69. 69.
    Bettan M, Ivanov MA, Mir LM et al. Efficient DNA transfer into tumors. Bioelectrochemistry 2000; 52(1):83–90.PubMedCrossRefGoogle Scholar
  70. 70.
    Shibata MA, Morimoto J, Otsuki Y. Suppression of murine mammary carcinoma growth and metastasis by HSVtk/GCV gene therapy using in vivo electroporation. Cancer Gene Ther 2002; 9(1):16–27.PubMedCrossRefGoogle Scholar
  71. 71.
    Goto T, Nishi T, Tamura T et al. Highly efficient electro-gene therapy of solid tumor by using an expression plasmid for the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 2000; 97(1):354–359PubMedCrossRefGoogle Scholar
  72. 72.
    Li S, Xia X, Zhang X et al. Regression of tumors by IFN-α electroporation gene therapy and analyss of the responsible genes by cDNA array. Gene Ther 2002; 9(6):390–397.PubMedCrossRefGoogle Scholar
  73. 73.
    Kishida T, Asada H, Satoh E et al. In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice. Gene Ther 2001; 8(16):1234–1240.PubMedCrossRefGoogle Scholar
  74. 74.
    Tamura T, Nishi T, Goto T et al. Intratumoral delivery of interleukin 12 expression plasmids with in vivo electroporation is effective for colon and renal cancer. Human Gene Ther 2001; 12(10):1265–1276.CrossRefGoogle Scholar
  75. 75.
    Li S, Zhang X, Xia X. Regression of tumor growth and induction of long-term antitumor memory by interleukin 12 electro-gene therapy. J Natl Cancer Inst 2002; 94(10):762–768.PubMedGoogle Scholar
  76. 76.
    Matsubara H, Gunji Y, Maeda T et al. Electroporation-mediated transfer of cytokine genes into human esophageal tumors produces anti-tumor effects in mice. Anticancer Res 2001; 21(4A):2501–2503.PubMedGoogle Scholar
  77. 77.
    Yamashita Y, Shimada M, Tanaka S et al. Electroporation-mediated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L gene therapy for hepatocellular carcinoma. Human Gene Ther 2002; 13(2):275–286.CrossRefGoogle Scholar
  78. 78.
    Celiker MY, Wang M, Atsidaftos E et al. Inhibition of Wilms’ tumor growth by intramuscular administration of tissue inhibitor of metalloproreinases-4 plasmid DNA. Oncogene 2001; 20(32):4337–4343.PubMedCrossRefGoogle Scholar
  79. 79.
    Baba M, Iishi H, Tatsuta M. Transfer of bcl-xs plasmid is effective in preventing and inhibiting rat hepatocellular carcinoma induced by N-notrosomorpholine. Gene Ther 2001; 8(15):1149–1156.PubMedCrossRefGoogle Scholar
  80. 80.
    Kalat M, Küpcü Z, Schüeller S et al. In vivo plasmid electroporation induces tumor antigen-spectic CD8+ T-cell responses and delays tumor growth in a syngenic mouse melanoma model. Cancer Res 2002; 62(19):5489–5494.PubMedGoogle Scholar
  81. 81.
    Cemazar M, Sersa G, Wilson J et al. Effective gene transfer to solid tumors using different nonviral delivery techniques: Electroporation, liposomes, and integrin-targeted vectors. Cancer Gene Ther 2002; 9(4):399–406.PubMedCrossRefGoogle Scholar
  82. 82.
    Jansen B, Zangemeister-Wittke U. Antisense therapy for cancer-the time of truth. Lancet Oncol 2002; 3(11):672–683.PubMedCrossRefGoogle Scholar
  83. 83.
    Ng HH, Zhang Y, Hendrich B et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999; 23(1):58–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Bhattacharya SK, Ramchandani S, Cervoni N et al. A mammalian protein with specific demethylase activity for mCpG DNA. Nature 1999; 397:579–583.PubMedCrossRefGoogle Scholar
  85. 85.
    Detich N, Theberge J, Szyf M. Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem 2002; 277(39):35791–35794.PubMedCrossRefGoogle Scholar
  86. 86.
    Razin A. CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J 1998; 17(17):4905–4908.PubMedCrossRefGoogle Scholar
  87. 87.
    Baylin SB, Esteller M, Rountree MR et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001; 10(7):687–92.PubMedCrossRefGoogle Scholar
  88. 88.
    Slack A, Bovenzi V, Bigey P et al. Antisense MBD2 gene therapy inhibits tumorigenesis. J Gene Med 2002; 4(4):381–389.PubMedCrossRefGoogle Scholar
  89. 89.
    Heller L, Coppola D. Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther 2002; 9(19):1321–1325.PubMedCrossRefGoogle Scholar
  90. 90.
    Ivanov MA, Lamrihi B, Szyf M et al. Enhanced antitumor activity of a combination of MBD2-antisense electrotransfer gene therapy and bleomycin electrochemotherapy. J Gene Med 2003 10:893–899.CrossRefGoogle Scholar

Copyright information

© and Kluwer Academic/Plenum Publishers 2005

Authors and Affiliations

  • Pascal Bigey
    • 1
  • Daniel Scherman
    • 1
  1. 1.Unite de Pharmacologie Chimique et GenetiqueUniversite Ren DescartesParisFrance

Personalised recommendations