Skip to main content

Zinc Finger Interactions with Metals and Other Small Molecules

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Zinc fingers encompass a wide variety of compact protein domains that are stabilized by a structural zinc ion which minimally interacts with a cysteine-rich coordination sphere. The selectivity for zinc ion binding is governed by coordinating amino acid side chains and by thermodynamic parameters. Since metal coordination spheres in zinc finger proteins are susceptible to chemical attack (principally at thiolates) and because zinc finger proteins have prominent roles in many cellular processes including the regulation of gene expression and signal transduction, an underlying mechanism for a number of cellular dysfunctions is likely to be the disruption of zinc coordination spheres by a variety of metals and other small molecules. For instance, a number of toxicity mechanisms are likely to be the consequence of zinc replacement by xenobiotic metals resulting in changes in polypeptide conformation and the concomitant loss of protein function. Zinc finger disruption could also occur by oxidation and modification of critical cysteine and histidine amino acids in the zinc coordination sphere resulting in zinc release and alteration of conformation. The chemical reactivity of metal coordination spheres of zinc finger proteins are utilized in normal physiological processes by providing regulatory sites for signal transduction via small molecules like nitric oxide and oxygen and their reactive intermediates. In addition, zinc finger proteins and their metal binding sites are promising targets for specific drug design to help ameliorate major diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanas JS, Hazuda DJ, Bogenhagen DF et al. Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. J Biol Chem 1983; 258:14120–14125.

    PubMed  CAS  Google Scholar 

  2. Ginsberg AM, King BO, Roeder RG. Xenopus 5S gene transcription factor, TFIIIA: Characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 1984; 39:479–489.

    Article  PubMed  CAS  Google Scholar 

  3. Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 1985; 4:1609–1614.

    PubMed  CAS  Google Scholar 

  4. Brown RS, Sander C, Argos P. The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett 1985; 186:271–274.

    Article  PubMed  CAS  Google Scholar 

  5. Diakun GP, Fairall L, Klug A. EXAFS study of the zinc-binding sites in the protein transcription factor IIIA. Nature 1986; 324:698–699.

    Article  PubMed  CAS  Google Scholar 

  6. Hanas JS, Duke AL, Gaskins C. Conformational states of Xenopus transcription factor IIIA. Biochemistry 1989; 28:4083–4088.

    Article  PubMed  CAS  Google Scholar 

  7. Berg JM. Potential metal-binding domains in nucleic acid binding proteins. Science 1986; 232:485–487.

    Article  PubMed  CAS  Google Scholar 

  8. Vallee BL, Coleman JE, Auld DS. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc Natl Acad Sci USA 1991; 88:999–1003.

    Article  PubMed  CAS  Google Scholar 

  9. Hanas JS, Gaskins CJ, Smith JF et al. Structure, function, evolution of transcription factor IIIA. Prog Nucleic Acid Res Mol Biol 1992; 43:205–239

    Article  PubMed  CAS  Google Scholar 

  10. Klug A, Schwabe JW. Protein motifs 5. Zinc fingers. FASEB J 1995; 9:597–604.

    PubMed  CAS  Google Scholar 

  11. Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers. Nucleic Acid Res 2003; 31:532–550.

    Article  PubMed  CAS  Google Scholar 

  12. Klein DJ, Johnson PE, Zollars ES et al. The NMR structure of the nucleocapsid protein from the mouse mammary tumor virus reveals unusual folding of the C-terminal zinc knuckle. Biochemistry 2000; 39:1604–1612.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu W, Zeng Q, Colangelo CM et al. The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nature Struct Biol 1996; 3:122–124.

    Article  PubMed  CAS  Google Scholar 

  14. Frankel AD, Berg JM, Pabo CO. Metal-dependent folding of a single zinc finger from transcription factor IIIA. Proc Natl Acad Sci USA 1987; 84:4841–4845.

    Article  PubMed  CAS  Google Scholar 

  15. Nomura A, Sugiura Y. Contribution of individual zinc ligands to metal binding and peptide folding of zinc finger peptides. Inorg Chem 2002; 41:3693–3698.

    Article  PubMed  CAS  Google Scholar 

  16. Lee MS, Gippert GP, Soman KV et al. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 1989; 245:635–637.

    Article  PubMed  CAS  Google Scholar 

  17. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2.1 A. Science 1991; 252:809–817.

    Article  PubMed  CAS  Google Scholar 

  18. Shi Y, Berger RD, Berg JM. Metal binding properties of single amino acid deletion mutants of zinc finger peptides: Studies using cobalt (II) as a spectroscopic probe. Biophys J 1993; 64:749–753.

    Article  PubMed  CAS  Google Scholar 

  19. Miura T, Satoh T, Takeuchi H. Role of metal-ligand coordination in the folding pathway of zinc finger peptides. Biochim Biophys Acta 1998; 1384:171–179.

    PubMed  CAS  Google Scholar 

  20. Parraga G, Horvath S, Hood L et al. Spectroscopic studies of wild-type and mutant “zinc finger” peptides: Determinants of domain folding and structure. Proc Natl Acad Sci USA 1990; 87:137–141.

    Article  PubMed  CAS  Google Scholar 

  21. Smith JF, Hawkins J, Leonard RE et al. Structural elements in the N-terminal half of transcription factor IIIA required for factor binding to the 5S RNA gene internal control region. Nucl Acids Res 1991; 19:6871–6876.

    Article  PubMed  CAS  Google Scholar 

  22. Veenstra TD, Johnson KL, Tomlinson AJ et al. Zinc-induced conformational changes in the DNA-binding domain of the vitamin D receptor determined by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 1998; 9:8–14.

    Article  PubMed  CAS  Google Scholar 

  23. Williams RJP. The biochemistry of zinc. Polyhedron 1987; 6:61–69.

    Article  CAS  Google Scholar 

  24. McCall KA, Huang C-c, Fierke CA. Function and mechanism of zinc metalloenzymes. J Nutr 2000; 130:1437S–1446S.

    PubMed  CAS  Google Scholar 

  25. Lippard SJ, Berg JM. Principals of Bioinorganic Chemistry. University Science Books. Mill Valley, CA: 1994:21–39.

    Google Scholar 

  26. Huheey JE, Keiter EA, Keiter JL. Inorganic chemistry: Principals of structure and reactivity. 4th ed. New York: HarperCollins College Publishers, 1993:578:346–355.

    Google Scholar 

  27. Dudev T, Lim C. Tetrahedral vs octahedral zinc complexes with ligands of biological interest: A DFT/CDM study. J Am Chem Soc 2000; 122:11146–11153.

    Article  CAS  Google Scholar 

  28. Roe RR, Pang Y-P. Zinc’s exclusive tetrahedral coordination governed by its electronic structure. J Mol Model 1999; 5:134–140.

    Article  CAS  Google Scholar 

  29. Blasie CA, Berg JM. Structurebased thermodynamic analysis of a coupled metal binding-protein folding reaction involving a zinc finger peptide. Biochemistry 2002; 41:15068–15073.

    Article  PubMed  CAS  Google Scholar 

  30. Smith JN, Shirin Z, Carrano CJ. Control of thiolate nucleophilicity and specificity in zinc metalloproteins by hydrogen bonding: Lessons from model compound studies. J Am Chem Soc 2003; 125:868–869.

    Article  PubMed  CAS  Google Scholar 

  31. Simonson T, Calimet N. CysxHisy-Zn2+ interactions: Thiol vs. thiolate coordination. Proteins 2002; 49:37–48.

    Article  PubMed  CAS  Google Scholar 

  32. Dudev T, Lim C. Factors governing the protonation state of cysteines in proteins: An Ab initio/CDM study. J Am Chem Soc 2002; 124:6759–6766.

    Article  PubMed  CAS  Google Scholar 

  33. Hartwig A. Zinc finger proteins as potential targets for toxic metal ions: Differential effects on structure and function. Antiox Redox Signal 2001; 3:625–634.

    Article  CAS  Google Scholar 

  34. Berg JM, Shi Y. The galvanization of biology: A growing appreciation for the roles of zinc. Science 1996; 271:1081–1085.

    Article  PubMed  CAS  Google Scholar 

  35. Krizek BA, Merkle DL, Berg JM. Ligand variation and metal ion binding specificity in zinc finger peptides. Inorg Chem 1993; 32:937–940.

    Article  CAS  Google Scholar 

  36. Berg JM, Merkle DL. On the metal ion specificity of “zinc finger” proteins. J Am Chem Soc 1989; 111:3759–3761.

    Article  CAS  Google Scholar 

  37. Posewitz MC, Wilcox DE. Properties of the Sp1 zinc finger 3 peptide: Coordination chemistry, redox reactions, and metal binding competition with metallothionein. Chem Res Toxico 1995; 8:1020–1028.

    Article  CAS  Google Scholar 

  38. Makowski GS, Sunderman Jr. FW. The interactions of zinc, nickel, and cadmium with Xenopus transcription factor IIIA, assessed by equilibrium dialysis. J Inorg Biochem 1992; 48:107–119.

    Article  PubMed  CAS  Google Scholar 

  39. Jiang L-J, Vasak M, Vallee BL et al. Zinc transfer potentials of the alpha-and beta-clusters of metallothionein are affected by domain interactions in the whole molecule. Proc Natl Acad Sci USA 2000; 97:2503–2508.

    Article  PubMed  CAS  Google Scholar 

  40. Finney LA, O’Halloran TV. Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors. Science 2003; 300:931–936.

    Article  PubMed  CAS  Google Scholar 

  41. Jacob C, Maret W, Valee BL. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci USA 1998; 95:3489–3494.

    Article  PubMed  CAS  Google Scholar 

  42. Berg JM, Godwin HA. Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct 1997; 26:357–371.

    Article  PubMed  CAS  Google Scholar 

  43. Krizek BA, Berg JM. Complexes of zinc finger peptides with Ni2+ and Fe2+. Inorg Chem 1992; 31:2984–2986.

    Article  CAS  Google Scholar 

  44. Krizek BA, Amann BT, Kilfoil VJ et al. A consensus zinc finger peptide: Design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant. J Am Chem Soc 1991;113:4518–4523.

    Article  CAS  Google Scholar 

  45. Mackay JP, Crossley M. Zinc fingers are sticking together. Trends Biochem 1998; 23:1–4.

    Article  CAS  Google Scholar 

  46. Sunderman FW, Barber AM. Finger-loops, oncogenes, and metals. Claude Passmore Brown Memorial Lecture. Ann Clin Lab Sci 1988; 18:267–288.

    PubMed  CAS  Google Scholar 

  47. Hanas JS, Gunn CG. Inhibition of transcription factor IIIA-DNA interactions by xenobiotic metal ions. Nucleic Acids Res 1996; 24:924–930.

    Article  PubMed  CAS  Google Scholar 

  48. Beyersmann D, Hechtenberg S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 1997; 144:247–261.

    Article  PubMed  CAS  Google Scholar 

  49. Hartwig A. Carcinogenicity of metal compounds: Possible role of DNA repair inhibition. Toxicol Lett 1998; 102–103:235–239.

    Article  PubMed  Google Scholar 

  50. Meplan C, Mann K, Hainaut P. Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol Chem 1999; 274:31663–31670.

    Article  PubMed  CAS  Google Scholar 

  51. Hartwig A, Asmuss M, Blessing H et al. Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability. Food Chem Toxicol 2002; 40:1179–1184.

    Article  PubMed  CAS  Google Scholar 

  52. Simons Jr SS, Chakraborti PK, Cavanaugh AH. Arsenite and cadmium(II) as probes of glucocorticoid receptor structure and function. J Biol Chem 1990; 265:1938–1945.

    PubMed  CAS  Google Scholar 

  53. Petering DH, Huang M, Moteki S et al. Cadmium and lead interactions with transcription factor IIIA from Xenopus laevis: A model for zinc finger protein reactions with toxic metal ions and metallothionein. Mar Environ Res 2000; 50:89–92.

    Article  PubMed  CAS  Google Scholar 

  54. Pavletich NP, Chambers KA, Pabo CO. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev 1993; 7:2556–2564.

    PubMed  CAS  Google Scholar 

  55. Cho Y, Gorina S, Jeffrey PD et al. Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science 1994; 265:346–355.

    Article  PubMed  CAS  Google Scholar 

  56. Giedroc DP, Chen X, Pennella MA et al. Conformational heterogeneity in the C-terminal zinc fingers of human MTF-1. J Biol Chem 2001; 276:42322–42332.

    Article  PubMed  CAS  Google Scholar 

  57. Zawia NH, Sharan R, Brydie M et al. Sp1 as a target site for metal-induced pertubations of transcriptional regulation of developmental brain gene expression. Brain Res Dev Brain Res 1998; 107:291–298.

    Article  PubMed  CAS  Google Scholar 

  58. Hanas JS, Rodgers JS, Bantle JA et al. Lead inhibition of DNA-binding mechanism of Cys2His2 zinc finger proteins. Mol Pharmacol 1999; 56:982–988.

    PubMed  CAS  Google Scholar 

  59. Payne JC, ter Horst MA, Godwin HA. Lead fingers: Pb2+ binding to structural zinc-binding domains determined directly by monitoring lead-thiolate charge-transfer bands. J Am Chem Soc 1999; 121:6850–6855.

    Article  CAS  Google Scholar 

  60. Zawia NH, Crumpton T, Reddy GR et al. Disruption of the zinc finger domain: A common target that underlies many of the effects of lead. Neurotoxicol 2000; 2:1069–1080.

    Google Scholar 

  61. Rodgers JS, Hocker JR, Hanas RJ et al. Mercuric ion inhibition of eukaryotic transcription factor binding to DNA. Biochem Pharmacol 2001; 61:1543–1550.

    Article  PubMed  CAS  Google Scholar 

  62. Handel ML, deFazio A, Watts CKW et al. Inhibition of DNA binding and transcriptional activity of a nuclear receptor transcription factor by aurothiomalate and other metal ions. Mol Pharmacol 1991; 40:613–618.

    PubMed  CAS  Google Scholar 

  63. Larabee JL, Hocker JR, Hanas RJ et al. Inhibition of zinc finger protein-DNA interactions by sodium selenite. Biochem Pharmacol 2002; 64:1757–1765.

    Article  PubMed  CAS  Google Scholar 

  64. Chen Y, Maret W. Catalytic selenols couple the redox cycles of metallothionein and glutathione. Eur J Biochem 2001; 268:3346–3353.

    Article  PubMed  CAS  Google Scholar 

  65. Kroncke K-D. Zinc finger proteins as molecular targets for nitric oxide-mediated gene regulation. Antiox Redox Signal 2001; 3:565–575.

    Article  CAS  Google Scholar 

  66. Kroncke KD, Fehsel K, Schmidt T et al. Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem Biophys Res Commun 1994; 200:1105–1110.

    Article  PubMed  CAS  Google Scholar 

  67. Pearce LL, Gandley RE, Han W et al. Role of metallothionein in nitric oxide signalling as revealed by a green fluorescent protein fusion protein. Proc Natl Acad Sci USA 2000; 97:477–482.

    Article  PubMed  CAS  Google Scholar 

  68. Berendji D, Kolb-Bachofen V, Zipfel PF et al. Zinc finger transcription factors as molecular targets for nitric oxide-mediated immunosuppression: Inhibition of IL-2 gene expression in murine lymphocytes. Mol Med 1999; 5:721–730.

    PubMed  CAS  Google Scholar 

  69. Wang S, Wang W, Wesley RA et al. A Sp1 binding site of the tumor necrosis factor promoter functions as a nitric oxide repressor element. J Biol Chem 1999; 274:33190–33193.

    Article  PubMed  CAS  Google Scholar 

  70. Wu X, Bishopric NH, Discher DJ et al. Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol Cell Biol 1996; 16:1035–1046.

    PubMed  CAS  Google Scholar 

  71. Meplan C, Richard M-J, Hainaut P. Redox signalling and transition metals in the control of the p53 pathway. Biochem Pharmacol 2000; 59:25–33.

    Article  PubMed  CAS  Google Scholar 

  72. Parks D, Bolinger R, Mann K. Redox state regulates binding of p53 to sequence-specific DNA, but not to nonspecific or mismatched DNA. Nucl Acids Res 1997; 25:1289–1295.

    Article  PubMed  CAS  Google Scholar 

  73. Casso D, Beach D. A mutation in a thioredoxin reductase homolog suppresses p53-induced growth inhibition in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 1996; 252:518–529.

    PubMed  CAS  Google Scholar 

  74. Buzek J, Latonen L, Kurki S et al. Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277. Nucl Acids Res 2002; 30:2340–2348.

    Article  PubMed  CAS  Google Scholar 

  75. Jakob U, Eser M, Bardwell JCA. Redox switch of Hsp33 has a novel zinc-binding motif. J Biol Chem 2000; 275:38302–38310.

    Article  PubMed  CAS  Google Scholar 

  76. Beerheide W, Bernard H-U, Tan Y-J et al. Potential drugs against cervical cancer: Zinc-ejecting inhibitors of the human papillomavirus type 16 E6 oncoprotein. J Natl Cancer Inst 1999; 91:1211–1220.

    Article  PubMed  CAS  Google Scholar 

  77. Tummino PJ, Scholten JD, Harvey PJ et al. The in vitro ejection of zinc from human immunodeficiency virus (HIV) type I nucleocapsid protein by disulfide benzamides with cellular anti-HIV activity. Proc Natl Acad Sci USA 1996; 93:969–973.

    Article  PubMed  CAS  Google Scholar 

  78. Rice WG, Supko JG, Malspeis L et al. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science 1995; 270:1194–1197.

    Article  PubMed  CAS  Google Scholar 

  79. Nar H, Werle K, Bauer MMT et al. Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor. J Mol Biol 2001; 312:743–751.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay S. Hanas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Hanas, J.S., Larabee, J.L., Hocker, J.R. (2005). Zinc Finger Interactions with Metals and Other Small Molecules. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_8

Download citation

Publish with us

Policies and ethics