Skip to main content

The Role of XPA in DNA Repair

  • Chapter
  • 2136 Accesses

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

XPA, a 273 amino acid protein, is involved in the early stage of the nucleotide excision repair process, by which a variety of DNA lesions are removed from the genome. NMR was used to analyze the structure of the central domain of XPA, which encompasses residues 98 to 219, and contains a zinc coordinating motif. Following chemical shift assignments of the backbone and side-chain 1H, 15N, and 13C nuclei, the tertiary structure was determined by multi-dimensional and multi-resonance NMR methods. The structure shows that the central domain consists of two subdomains, a zinc-containing subdomain and a C-terminal subdomain, which are connected by a short linker sequence. The fold adopted by the zinc-containing subdomain is similar to those of zinc fingers in transcription factors, which bind to DNA in a sequence specific manner. In contrast to these zinc fingers, the zinc-containing subdomain of XPA is dominantly negatively charged, and thus unlikely to directly bind to DNA. The interaction of the central domain of XPA with a damaged DNA was investigated by a chemical shift perturbation experiment, which suggests that the DNA interact with the positively charged cleft in the C-terminal subdomain, and not with the zinc-containing subdomain. The backbone dynamics were analyzed with 15N longitudinal (T 1), transverse (T 2), and NOE (nuclear Overhauser effect) relaxation data. The results show that the proposed DNA-binding surface exhibits a highly dynamical feature, which may be necessary for interacting structurally with various DNA damages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboussekhra A, Wood RD. Repair of UV-damaged DNA by mammalian cells and Saccharomyces cerevisiae. Curr Opin Genet Dev 1994; 4:212–220.

    Article  PubMed  CAS  Google Scholar 

  2. Cline SD, Hanawalt PC. Who’s on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 2003; 4:361–372.

    Article  PubMed  CAS  Google Scholar 

  3. Thompson LH. Nucleotide excision repair in DNA damage and repair. In: Nickoloff JA, Hoekstra MF, eds. DNA Repair in Higher Eukaryotes. New Jersey: Human Press, 1998:II:335–393.

    Google Scholar 

  4. Cleaver JE, Kraemer KH. Xeroderma pigmentosum. In: Scriver CR, ed. The Metabolic Basis of Inherited Disease, 7th ed. New York: McGraw-Hill, 1995:4393–4419.

    Google Scholar 

  5. Hoeijmakers JH, Bootsma D. Molecular genetics of eukaryotic DNA excision repair. Cancer Cells Mon Rev 1990; 2:311–320.

    CAS  Google Scholar 

  6. Tanaka K, Miura N, Satokata I et al. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature 1990; 348:3–76.

    Article  Google Scholar 

  7. Robins P, Jones CJ, Biggerstaff M et al. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J 1991; 10:3913–3921.

    PubMed  CAS  Google Scholar 

  8. Jones CJ, Wood RD. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 1993; 32:12096–12104.

    Article  PubMed  CAS  Google Scholar 

  9. Asahina H, Kuraoka I, Shirakawa M et al. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat Res 1994; 315:229–237.

    PubMed  CAS  Google Scholar 

  10. Kuraoka I, Morita EH, Saijo M et al. Identification of a damaged-DNA binding domain of the XPA protein. Mutat Res 1996; 362:87–95.

    PubMed  Google Scholar 

  11. He Z, Henricksen LA, Wold MS et al. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 1995; 374:566–569.

    Article  PubMed  CAS  Google Scholar 

  12. Li L, Lu X, Peterson CA et al. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol 1995; 15:5396–5402.

    PubMed  CAS  Google Scholar 

  13. Saijo M, Kuraoka I, Masutani C et al. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res 1996; 24:4719–4724.

    Article  PubMed  CAS  Google Scholar 

  14. Park CH, Mu D, Reardon JT et al. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem 1995; 270:4896–4902.

    Article  PubMed  CAS  Google Scholar 

  15. Nocentini S, Coin F, Saijo M et al. DNA damage recognition by XPA protein promotes efficient recruitment of transcription factor II H. J Biol Chem 1997; 272:22991–22994.

    Article  PubMed  CAS  Google Scholar 

  16. Li L, Elledge SJ, Peterson CA et al. Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci USA 1994; 91:5012–5016.

    Article  PubMed  CAS  Google Scholar 

  17. Li L, Peterson CA, Lu X et al. Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol 1995; 15:1993–1998.

    PubMed  CAS  Google Scholar 

  18. Nagai A, Saijo M, Kuraoka I et al. Enhancement of damage-specific DNA binding of XPA by interaction with the ERCC1 DNA repair protein. Biochem Biophys Res Commun 1995; 211:960–966.

    Article  PubMed  CAS  Google Scholar 

  19. Mu D, Hsu DS, Sancar A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 1996; 271:8285–8294.

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka K, Kamiuchi S, Ren Y et al. UV-induced skin carcinogenesis in xeroderma pigmentosum group A (XPA) gene-knockout mice with nucleotide excision repair-deficiency. Mutat Res 2001; 477:31–40.

    PubMed  CAS  Google Scholar 

  21. Ikegami T, Kuraoka I, Saijo M et al. Solution structure of the DNA-and RPA-binding domain of the human repair factor XPA. Nature Struct Biol 1998; 5:701–706.

    Article  PubMed  CAS  Google Scholar 

  22. Buchko GW, Daughdrill GW, Lorimier R et al. Interactions of human nucleotide excision repair protein XPA with DNA and RPA70ΔC327: Chemical shift mapping and 15N NMR relaxation studies. Biochemistry 1999; 38:15116–15128.

    Article  PubMed  CAS  Google Scholar 

  23. Miyamoto I, Miura N, Niwa H et al. Mutational analysis of the structure and function of the xeroderma pigmentosum group A complementing protein. Identification of essential domains for nuclear localization and DNA excision repair. J Biol Chem 1992; 267:12182–12187.

    PubMed  CAS  Google Scholar 

  24. Lipton AS, Buchko GW, Sears JA et al. 67Zn solid-state NMR spectroscopy of the minimal DNA binding domain of human nucleotide excision repair protein XPA. J Am Chem Soc 2001; 123:992–993.

    Article  PubMed  CAS  Google Scholar 

  25. Hess NJ, Buchko GW, Conradson SD et al. Human nucleotide excision repair protein XPA: Extended X-ray absorption fine-structure evidence for a metal-binding domain. Protein Sci 1998; 7:1970–1975.

    Article  PubMed  CAS  Google Scholar 

  26. Morita EH, Ohkubo T, Kuraoka I et al. Implications of the zinc-finger motif found in the DNA-binding domain of the human XPA protein. Genes Cells 1996; 1:437–442.

    Article  PubMed  CAS  Google Scholar 

  27. Summers MF. Zinc fingers. In: Grant DM, Harris RK, eds. Encyclopedia of Nuclear Magnetic Resonance. West Sussex, England: John Wiley and Sons Ltd., 1996:8:5063–5071.

    Google Scholar 

  28. Omichinski JG, Clore GM, Schaad O et al. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science 1993; 261:438–446.

    Article  PubMed  CAS  Google Scholar 

  29. Satokata I, Iwai K, Matsuda T et al. Genomic characterization of the human DNA excision repair-controlling gene XPAC. Gene 1993; 136:345–348.

    Article  PubMed  CAS  Google Scholar 

  30. Go M. Protein structures and split genes. Adv Biophys 1985; 19:91–131.

    Article  PubMed  CAS  Google Scholar 

  31. Nakashima T, Sekiguchi T, Sunamoto H et al. Structure of the human CCG1 gene: Relationship between the exons/introns and functional domain/modules of the protein. Gene 1994; 141:193–200.

    Article  PubMed  CAS  Google Scholar 

  32. Moggs JG, Yarema KJ, Essigmann JM et al. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J Biol Chem 1996; 271:7177–7186.

    Article  PubMed  CAS  Google Scholar 

  33. Ikegami T, Kuraoka I, Saijo M et al. Resonance assignments, solution structure, and backbone dynamics of the DNA-and RPA-binding domain of human repair factor XPA. J Biochemistry 1999; 125:495–506.

    CAS  Google Scholar 

  34. Buchko GW, Tung CS, McAteer K et al. DNA-XPA interactions: A 31P NMR and molecular modeling study of dCCAATAACC association with the minimal DNA-binding domain (M98-F219) of the nucleotide excision repair protein XPA. Nucleic Acids Res 2001; 29:2635–2643.

    Article  PubMed  CAS  Google Scholar 

  35. Guzder SN, Habraken Y, Sung P et al. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem 1995; 270:12973–12976.

    Article  PubMed  CAS  Google Scholar 

  36. Aboussekhra A, Biggerstaff M, Shivji MK et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 1995; 80:859–868.

    Article  PubMed  CAS  Google Scholar 

  37. Bochkarev A, Pfuetzner RA, Edwards AM et al. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 1997; 385:176–181.

    Article  PubMed  CAS  Google Scholar 

  38. Pfuetzner RA, Bochkarev A, Frappier L et al. Replication protein A: Characterization and crystallization of the DNA binding domain. J Biol Chem 1997; 272:430–434.

    Article  PubMed  CAS  Google Scholar 

  39. Mer G, Bochkarev A, Gupta R et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 2000; 103:449–456.

    Article  PubMed  CAS  Google Scholar 

  40. Wakasugi M, Sancar A. Order of assembly of human DNA repair excision nuclease. J Biol Chem 1999; 274:18759–18768.

    Article  PubMed  CAS  Google Scholar 

  41. Hey T, Lipps G, Sugasawa K et al. The XPC-HR23B complex displays high affinity and specificity for damaged DNA in a true-equilibrium fluorescence assay. Biochemistry 2002; 41:6583–6587.

    Article  PubMed  CAS  Google Scholar 

  42. Sugasawa K, Ng JM, Masutani C et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 1998; 2:223–232.

    Article  PubMed  CAS  Google Scholar 

  43. You JS, Wang M, Lee SH. Biochemical analysis of the damage recognition process in nucleotide excision repair. J Biol Chem 2003; 278:7476–7485.

    Article  PubMed  CAS  Google Scholar 

  44. Tang JY, Hwang BJ, Ford JM et al. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell 2000; 5:737–744.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Ikegami, T., Shirakawa, M. (2005). The Role of XPA in DNA Repair. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_32

Download citation

Publish with us

Policies and ethics