Skip to main content

Physiological Basis for Growth in Extreme Environments

  • Chapter
Structural and Functional Relationships in Prokaryotes
  • 2439 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kristjansson, J.K. (ed.). 1992. Thermophilic Bacteria. CRC Press, Boca Raton, FL.

    Google Scholar 

  2. Sundaram, T.K. 1986. Physiology and growth of thermophilic bacteria. In Thermophiles (T.D. Brock, ed.). John Wiley, New York, pp. 76–106.

    Google Scholar 

  3. Adams, M.W.W. 1993. Enzymes and proteins from organisms that grow near and above 100°C. Annual Review of Microbiology 47:627–658.

    PubMed  CAS  Google Scholar 

  4. Duffield, M.L. and D. Cossar. 1995. Enzymes of Thermus and their properties. In Thermus Species (R. Sharp and R. Williams, eds.). Plenum Press, New York, pp. 93–141.

    Google Scholar 

  5. Vieille, C. and G.J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews 65:1–43.

    Article  PubMed  CAS  Google Scholar 

  6. Adams, M.W.W. and R.M. Kelly (eds.). 1992. Biocatalysts at Extreme Temperatures. American Chemical Society, Washington, D.C.

    Google Scholar 

  7. Ingraham, J. 1987. Effect of temperature, water activity, and pressure on growth. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (F.C. Neidhardt, J.L. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, eds.). American Society for Microbiology Press, Washington, D.C., pp. 1543–1554.

    Google Scholar 

  8. Harold, F.M. and P.C. Maloney. 1996. Energy transduction by ion currents. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (F.C. Neidhardt, J.L. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, eds.). American Society for Microbiology Press, Washington, D.C., pp. 283–306.

    Google Scholar 

  9. Krulwich, T.A. and D.M. Ivey. 1990. Bioenergetics in extreme environments. In The Bacteria, Vol. XII: Bacterial Energetics (T.A. Krulwich, ed.). Academic Press, New York, pp. 417–448.

    Google Scholar 

  10. Russell, J.B. and F. Diez-Gonzalez. 1998. The effects of fermentation acids on bacterial growth. Advances in Microbial Physiology 39:206–235.

    Google Scholar 

  11. Booth, I.R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiology Reviews 49:359–378.

    CAS  Google Scholar 

  12. Kashket, E.R. 1987. Bioenergetics of lactic acid bacteria: Cytoplasmic pH and osmotolerance FEMS Microbiology Reviews 46:233–244.

    CAS  Google Scholar 

  13. Foster, J.W. 2000. Microbial responses to acid stress. In Bacterial Stress Response (G. Storz and R. Hengge-Aronis, eds.). American Society for Microbiology Press, Washington, D.C., pp. 99–115.

    Google Scholar 

  14. Russell, J.B. and F. Diez-Gonzalez. 1998. The effects of fermentation acids on bacterial growth. Advances in Microbial Physiology 30:206–235.

    Google Scholar 

  15. Horikoshi, K. and T. Akiba. 1982. Alkalophilic Microorganisms. Springer-Verlag, Berlin.

    Google Scholar 

  16. Lanyi, J.K. 1990. Light-driven primary ionic pumps. In The Bacteria, Vol. XII: Bacterial Energetics (T.A. Krulwich, ed.). Academic Press, New York, pp. 55–86.

    Google Scholar 

  17. Ventosa, A., J.J. Nieto, and A. Oren. 1998. Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews 62:504–544.

    PubMed  CAS  Google Scholar 

  18. Nicholls, D.G. and T.J. Ferguson. 1992. Bioenergetics 2. Academic Press, New York.

    Google Scholar 

  19. Russell, N.J. 1992. Physiology and molecular biology of psychrophilic micro-organisms. In Molecular Biology and Biotechnology of Extremophiles (R.A. Herbert and R.J. Sharp, eds.). Chapman and Hall, New York, pp. 203–224.

    Google Scholar 

  20. Makarova, K.S., L. Aravind, Y.I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, and M.J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiology and Molecular Biology Reviews 65:44–79.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, M.D., C.I. Masters, and B.E.B. Mosley. 1992. Molecular biology of radiation-resistant bacteria. In Molecular Biology and Biotechnology of Extremophiles (R.A. Herbert and R.J. Sharp, eds.). Chapman and Hall, New York, pp. 258–280.

    Google Scholar 

  22. Bremer, E. and R. Krämer. 2000. Coping with osmotic challenges: Osmoregulation through accumulation and release of compatible solutes in bacteria. In Bacterial Stress Response (G. Storz and R. Hengge-Aronis, eds.). American Society for Microbiology Press, Washington, D.C., pp. 79–97.

    Google Scholar 

  23. Czonka, L.N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews 53:121–147.

    Google Scholar 

  24. Galinski, E.A. and H.G. Trüper. 1994. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiology Reviews 15:95–108.

    Article  CAS  Google Scholar 

  25. Prieur, D. 1992. Physiology and biotechnology potential of deep-sea bacteria. In Molecular Biology and Biotechnology of Extremophiles (R.A. Herbert and R.J. Sharp, eds.). Chapman and Hall, New York, pp. 163–202.

    Google Scholar 

  26. Brown, A.D. 1976. Microbial water stress. Bacteriology Reviews 40:803–846.

    CAS  Google Scholar 

  27. Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiology Reviews 58:755–805.

    CAS  Google Scholar 

  28. Neidhardt, F.C. and R.A. Van Bogelen. 1987. Heat shock response. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology Press, Washington, D.C., pp. 1334–1345.

    Google Scholar 

  29. Jones, P. and M. Inouye. 1994. The cold shock response. A hot topic. Molecular Microbiology 11:811–818.

    PubMed  CAS  Google Scholar 

  30. Yura, T., M. Kanemori, and M.T. Morita. 2000. Heat shock response: Regulation and function. In Bacterial Stress Response (G. Storz and R. Hengge-Aronis, eds.). American Society for Microbiology Press, Washington, D.C., pp. 3–18.

    Google Scholar 

  31. Yura, T., N. Nagai, and H. Mori. 1993. Regulation of the heat-shock response in bacteria. Annual Review of Microbiology 47:321–350.

    Article  PubMed  CAS  Google Scholar 

  32. Hebraud, M. and J. Guzzo. 2000. The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiology Letters 190:29–34.

    PubMed  CAS  Google Scholar 

  33. Klein W., M.H.W. Weber, and M.A. Marahiel. 1999. Cold shock response of Bacillus subtilis: Isoleucine-dependent switch in the fatty acid branching pattern for membrane adaption to low temperatures. Journal of Bacteriology 181:5341–5349.

    PubMed  CAS  Google Scholar 

  34. Phadtare, S., K. Yamanaka, and M. Inouye. 2000. The cold shock response. In Bacterial Stress Response (G. Storz and R. Hengge-Aronis, eds.). American Society for Microbiology Press, Washington, D.C., pp. 33–46.

    Google Scholar 

  35. Wassenberg, D., C. Welker, and R. Jaenicke. 1999. Thermodynamics of the unfolding of the cold-shock protein from Thermotoga maritima. Journal of Molecular Biology 289: 187–193.

    Article  PubMed  CAS  Google Scholar 

  36. Kolter, R., D.A. Siegele, and A. Tormo. 1993. The stationary phase of the bacterial life cycle. Annual Review of Microbiology 47:855–874.

    Article  PubMed  CAS  Google Scholar 

  37. Östling, J., L. Holmquist, K. Flärdh, B. Svenblad, Ä. Jouper-Jaan, and S. Kjellenber. 1993. Starvation and recovery of Vibrio. In Starvation in Bacteria (S. Kjellenberg, ed.). Plenum Press, New York, pp. 103–127.

    Google Scholar 

  38. Spector, M.P. 1998. The starvation-stress response (SSR) of Salmonella. Advances in Microbial Physiology 40:235–279.

    Article  Google Scholar 

  39. Lumppio, H.L., N.V. Shenvi, A.O. Summers, G. Voordoow, and D.M. Kurtz, Jr. 2001. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris. A novel oxidative stress protection system. Journal of Bacteriology 183:101–108.

    Article  PubMed  CAS  Google Scholar 

  40. Poole, L.B., A. Godzik, A. Nayeem, and J.D. Schmitt. 2000. AhpF can be dissected into two functional units: Tandem repeats of two thioredoxin-like folds in the N-terminus mediate electron transfer from the thioredoxin reductase-like C-terminus to AhpC. Biochemistry 39:6602–6615.

    Article  PubMed  CAS  Google Scholar 

  41. Storz, G. and M. Zheng. 2000. Oxidative stress. In Bacterial Stress Response (G. Storz and R. Hengge-Aronis, eds.). American Society for Microbiology Press, Washington, D.C., pp. 47–59.

    Google Scholar 

  42. Patschkowski, T., D.M. Bates, and P.J. Kiley. 2000. Mechanism for sensing and responding to oxygen deprivation. In Bacterial Stress Response (G. Storz and R. Hengge-Aronis, eds.). American Society for Microbiology Press, Washington, D.C., pp. 61–78.

    Google Scholar 

  43. Stewart, V. and R.S. Rabin. 1995. Dual sensors and dual response regulators interact to control nitrate-and nitrite-responsive gene expression in Escherichia coli. In Two-Component Signal Transduction (J.A. Hoch and T.J. Silhavy, eds.). American Society for Microbiology Press, Washington, D.C., pp. 233–252.

    Google Scholar 

  44. Kieboom, J. and J.A.M. deBont. 2000. Mechanisms of organic solvent tolerance in bacteria. In Bacterial Stress Response (G. Storz and R. Hengge-Aronis, eds.). American Society for Microbiology Press, Washington, D.C., pp. 393–402.

    Google Scholar 

Additional Reading

  • Stephenson, M. 1949. Bacterial Metabolism. Longmans, Green and Co., New York.

    Google Scholar 

Thermophiles and Hyperthermophiles

  • Brock, T.D. (ed.). 1986. Thermophiles. John Wiley, New York.

    Google Scholar 

  • Friedman, S.M. (ed.). 1978. Biochemistry of Thermophily. Academic Press, New York.

    Google Scholar 

  • Grant, W.D. and K. Horikoshi, 1992. Alkaliphiles: Ecology and biotechnology applications. In Molecular Biology and Biotechnology of Extremophiles (R.A. Herbert and R.J. Sharp, eds.). Chapman and Hall, New York, pp. 143–162.

    Google Scholar 

  • LopezGarcia, P. and P. Forterre. 1999. Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus. Molecular Microbiology 33:766–777.

    CAS  Google Scholar 

  • Sharp, R. and R. Williams (eds.). 1995. Thermus Species. Plenum Press, New York.

    Google Scholar 

  • Sterner, R. and W. Liebl 2001. Thermophilic adaption of proteins. Critical Reviews in Biochemistry and Molecular Biology 36:39–106.

    Article  PubMed  CAS  Google Scholar 

Osmotic Tolerance

  • Dong, Z., M.J. Canny, M.E. McCully, M.R. Roboredo, C.F. Cabadilla, E. Ortega, and R. Rodés. 1994. A nitrogen-fixing endophyte of sugarcane stems. Plant Physiology 105:1139–1147.

    PubMed  CAS  Google Scholar 

  • Galinski, E.A. 1995. Osmoadaption in bacteria. Advances in Microbial Physiology 37:273–328.

    Article  CAS  Google Scholar 

Halophiles

  • Vreeland, R.H. and L.I. Hochstein (eds.). 1993. The Biology of Halophilic Bacteria. CRC Press, Boca Raton, FL.

    Google Scholar 

pH Stress

  • Hall, H.K., K.L. Karem, and J.W. Foster. 1995. Molecular responses of microbes to environmental pH stress. Advances in Microbial Physiology 37:229–272.

    Article  PubMed  CAS  Google Scholar 

Heat Shock

  • Craig, E.A., B.D. Gambill, and R.J. Nelson. 1993. Heat shock proteins: Molecular chaperones of protein biogenesis. Microbial Reviews 57:402–414.

    CAS  Google Scholar 

Psychrophiles and Cold Shock

  • Beran, R.K., and R.W. Simons. 2001. Cold-temperature induction of Escherichia coli polynucleotide phosphorylase occurs by reversal of its autoregulation. Molecular Microbiology 39:112–125.

    Article  PubMed  CAS  Google Scholar 

  • Carty, S.M., K.R. Sreekumar, and C.R.H. Raetz. 1999. Effect of cold shock on lipid A biosynthesis in Escherichia coli: Induction at 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. Journal of Biological Chemistry 274:9677–9685.

    Article  PubMed  CAS  Google Scholar 

  • Chamot, D. and G.W. Owttrim. 2000. Regulation of cold shock-induced RNA helicase gene expression in the cyanobacterium Anabaena sp. Strain PCC 7120. Journal of Bacteriology 182:1251–1256.

    Article  PubMed  CAS  Google Scholar 

  • Cloutier, J., D. Prevost, P. Nadeau, and H. Antoun. 1992. Heat and cold shock protein synthesis in arctic and temperate strains of rhizobia. Applied and Environmental Microbiology 58:2846–2853.

    PubMed  CAS  Google Scholar 

  • Fujii, S., K. Nakasone, and K. Horikoshi. 1999. Cloning of two cold shock genes, cspA and cspG, from the deep-sea psychrophilic bacterium Shewanella violacea strain DSS12. FEMS Microbiology Letters 178:123–128.

    Article  PubMed  CAS  Google Scholar 

  • Huston, A.L., B.B. KriegerBrockett, and J.W. Deming. 2000. Remarkably low temperature optima for enzyme activity from arctic bacteria and sea ice. Environmental Microbiology 2:383–388.

    Article  PubMed  CAS  Google Scholar 

  • Lim, J., T. Thomas, and R. Cavicchioli. 2000. Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. Journal of Molecular Biology 297:553–567.

    Article  PubMed  CAS  Google Scholar 

  • Shires, K. and L. Steyn. 2001. The cold-shock stress response in Mycobacterium smegmatis induces the expression of a histone-like protein. Molecular Microbiology 39:994–1009.

    Article  PubMed  CAS  Google Scholar 

  • Panoff, J.-M., D. Corroler, B. Thammavongs, and P. Boutibonnes. 1997. Differentiation between cold shock proteins and cold acclimation proteins in a mesophilic Gram-positive bacterium, Enterococcus faecalis JH2-2. Journal of Bacteriology 179:4451–4454.

    PubMed  CAS  Google Scholar 

  • Welker, C., G. Bohm, H. Schurig, and R. Jaenicke. 1999. Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima. Protein Science 8:394–403.

    PubMed  CAS  Google Scholar 

  • Zangrossi, S., F. Briani, D. Ghisotti, M.E. Regonesi, P. Tortora, and G. Deho. 2000. Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Molecular Microbiology 36:1470–1480.

    Article  PubMed  CAS  Google Scholar 

Barophiles

  • Kato, C. and D.H. Bartlett. 1997. The molecular biology of barophilic bacteria. Extremophiles 1:111–116.

    PubMed  CAS  Google Scholar 

  • Kato, C., L. Li, Y. Nogi, Y. Nakamura, J. Tamaoka, and K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Tranch, Challenger Deep, at a depth of 11,000 meters. Applied and Environmental Microbiology 64:1510–1513.

    PubMed  CAS  Google Scholar 

  • Welch, T.J. and D.H. Bartlett. 1997. Cloning, sequencing and overexpression of the gene encoding malate dehydrogenase from the deep-sea bacterium Photobacterium species strain SS9. Biochemica et Biophysica Acta 1350:41–46.

    CAS  Google Scholar 

Oxygen Stress Response

  • Imlay, J.A. 2002. How oxygen damages microbes: Oxygen tolerance and obligate anaerobiosis. Advances in Microbial Physiology 46:112–155.

    Article  Google Scholar 

  • Kurtz, D.M., Jr. 2003. Oxygen and anaerobes. In Biochemistry and Physiology of Anaerobic Bacteria (L.G. Ljungdahl, M.W. Adams, L.L. Barton, J.G. Ferry, and M.J. Johnson, eds.). Springer-Verlag, New York, pp. 128–142.

    Google Scholar 

  • Lefebre, M.D. and M.A. Valvano. 2001. In vitro resistance of Burkholderia cepacia complex isolates to reactive oxygen species in relation to catalase and superoxide dismutase production. Microbiology 147:97–109.

    PubMed  CAS  Google Scholar 

  • Michan, C., M. Manchado, G. Dorado, and C. Pueyo. 1999. In vivo transcription of the Escherichia coli oxyR regulon as a function of growth phase and in response to oxidative stress. Journal of Bacteriology 181:2759–2764.

    PubMed  CAS  Google Scholar 

  • Pomposiello, P.J. and B. Demple. 2002. Global adjustment of microbial physiology during free radical stress. Advances in Microbial Physiology 46:320–341.

    Article  Google Scholar 

  • Svensater, G., B. Sjogreen, and I.R. Hamilton. 2000. Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146:107–117.

    PubMed  CAS  Google Scholar 

  • Wood., D.R. and D.T. Jones. 1986. Physiological responses of Bacteroides and Clostridium strains to environmental stress factors Advances in Microbial Physiology 28:1–64.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Physiological Basis for Growth in Extreme Environments. In: Structural and Functional Relationships in Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-27125-2_8

Download citation

Publish with us

Policies and ethics