Skip to main content

Temporal Coding in the Auditory Midbrain

  • Chapter
The Inferior Colliculus

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC (1997) Projections from octopus cells of the posteroventral cochlear nucleus to the ventral nucleus of the lateral lemniscus in cat and human. Auditory Neuroscience 3:335–350.

    Google Scholar 

  • Barsz K, Benson PK, and Walton JP (1998) Gap encoding by inferior collicular neurons is altered by minimal changes in signal envelope. Hearing Research 115:13–26.

    Article  PubMed  CAS  Google Scholar 

  • Bibikov NG and Gorodetskaya MM (1980) Single unit responses in the auditory center of the frog mesencephalon to amplitude modulated tones. Neirofiziologiia. 12:185–191.

    Google Scholar 

  • Bibikov NG and Nizamov SV (1996) Temporal coding of low-frequency amplitude modulation in the torus semicircularis of the grass frog. Hearing Research 101:23–44.

    Article  PubMed  CAS  Google Scholar 

  • Biebel UW and Langner G (2002) Evidence for interactions across frequency channels in the inferior colliculus of awake chinchilla. Hearing Research 169:151–168.

    Article  PubMed  Google Scholar 

  • Biebel UW, Tomlinson RWW, Bibikov N, and Langner G (1998) Responses to low modulation depth tones in single units of inferior colliculus in the alert chinchilla. In: Elsner N and Wehner R (eds). Proceedings of the 26th Göttingen Neurobiology Conference, Volume II. Thieme, Stuttgart, pp. 344.

    Google Scholar 

  • Borst M, Palm G, and Langner G (2004) A biologically motivated neural network for phase extraction from complex sounds. Biological Cybernetics 90: 98–104.

    Article  PubMed  Google Scholar 

  • Brand A, Urban A, and Grothe B (2000) Duration tuning in the mouse auditory midbrain. Journal of Neurophysiology 84:1790–1799.

    PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. Bradford Books, Cambridge.

    Google Scholar 

  • Brugge JF, Blatchley B, and Kudoh M (1993) Encoding of amplitude-modulated tones by neurons of the inferior colliculus of the kitten. Brain Research 615:199–217.

    Article  PubMed  CAS  Google Scholar 

  • Büttner C, Braun S, Jähn-Siebert TK, and Langner G (1997) Periodotopic organization in the inferior colliculus of chinchillas revealed by c-fos labelling due to electrical and acoustical stimulation. In: Elsner E and Wässle H (eds). Proceedings of the 25th Göttingen Neurobiology Conference, Volume II. Thieme, Stuttgart, pp. 369.

    Google Scholar 

  • Casseday JH, Ehrlich D, and Covey E (1994) Neural tuning for sound duration—role of inhibitory mechanisms in the inferior colliculus. Science 264:847–850.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Covey E, and Grothe B (1997) Neural selectivity and tuning for sinusoidal frequency modulations in the inferior colliculus of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology 77:1595–1605.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Ehrlich D, and Covey E (2000) Neural measurement of sound duration: control by excitatory-inhibitory interactions in the inferior colliculus. Journal of Neurophysiology 84:1475–1487.

    PubMed  CAS  Google Scholar 

  • Chen GD (1998) Effects of stimulus duration on responses of neurons in the chinchilla inferior colliculus. Hearing Research 122:142–150.

    Article  PubMed  CAS  Google Scholar 

  • Cherry EC and Sayers BMcA (1956) Human ‘cross-correlator’—A technique for measuring certain parameters of speech perception. Journal of the Acoustical Society of. America 28:889–895.

    Article  Google Scholar 

  • Chung DY and Colavita FB (1976) Periodicity pitch perception and its upper frequency limit in cats. Perception and Psychophysics 20:433–437.

    Google Scholar 

  • Clopton BM and Winfield JA (1974) Unit responses in the inferior colliculus of rat to temporal auditory patterns of tone sweeps and noise bursts. Experimental Neurology 42:532–540.

    Article  PubMed  CAS  Google Scholar 

  • Condon CJ, White KR, and Feng AS (1996) Neurons with different temporal firing patterns in the inferior colliculus of the little brown bat differentially process sinusoidal amplitude-modulated signals. Journal of Comparative Physiology A 178:147–157.

    Article  CAS  Google Scholar 

  • Covey E and Casseday JH (1999) Timing in the auditory system of the bat. Annual Review of Physiology 61:457–476.

    Article  PubMed  CAS  Google Scholar 

  • Covey E, Kauer JA, and Casseday JH (1996) Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. Journal of Neuroscience 16:3009–3018.

    PubMed  CAS  Google Scholar 

  • Cynx J and Shapiro M (1986) Perception of missing fundamental by a species of songbird (Sturnus vulgaris). Journal of Comparative Psychology 100:356–360.

    Article  PubMed  CAS  Google Scholar 

  • Darwin CJ and Carlyon RP (1995) Auditory grouping. In: Moore BCJ (ed). The Handbook of Perception and Cognition, Volume 6: Hearing. Academic Press, San Diego, pp. 387–424.

    Google Scholar 

  • de Cheveigné A (1993) Separation of concurrent harmonic sounds: fundamental frequency estimation and a time-domain cancellation model of auditory processing. Journal of the Acoustical Society of America 93:3271–3290.

    Article  Google Scholar 

  • Delgutte B, Hammond BM, and Cariani PA (1998) Neural coding of the temporal envelope of speech: relation to modulation transfer functions. In: Palmer AR, Rees A, Summerfield AQ, and Meddis R (eds). Psychophysical and Physiological Advances in Hearing. Whurr, London, pp. 595–603.

    Google Scholar 

  • Ehret G and Moffat AJM (1985) Inferior colliculus of the house mouse. 2. Single unit responses to tones, noise and tone-noise combinations as a function of sound intensity. Journal of Comparative Physiology A 156:619–635.

    Article  Google Scholar 

  • Ehrlich D, Casseday JH, and Covey E (1997) Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology 77:2360–2372.

    PubMed  CAS  Google Scholar 

  • Epping WJM and Eggermont JJ (1986) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sounds. Hearing Research 24:55–72.

    Article  PubMed  CAS  Google Scholar 

  • Erulkar SD, Butler RA, and Gerstein GL (1968) Excitation and inhibition in the cochlear nucleus. II. Frequency modulated tones. Journal of Neurophysiology 31:537–548.

    PubMed  CAS  Google Scholar 

  • Faingold CL, Gehlbach G, and Caspary DM (1989) On the role of GABA as an inhibitory neurotransmitter in inferior colliculus neurons—iontophoretic studies. Brain Research 500:302–312.

    Article  PubMed  CAS  Google Scholar 

  • Faure PA, Fremouw T, Casseday JH, and Covey E (2003) Temporal masking reveals properties of sound-evoked inhibition in duration-tuned neurons of the inferior colliculus. Journal of Neuroscience 23:3052–3065.

    PubMed  CAS  Google Scholar 

  • Felsheim C and Ostwald J (1996) Responses to exponential frequency modulations in the rat inferior colliculus. Hearing Research 98:137–151.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Simmons JA, and Kick SA (1978) Echo detection and target-ranging neurons in the auditory system of the bat Eptesicus fuscus. Science 202:645–648.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM (1994) Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus. Journal of Neurophysiology 72:1061–1079.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM and Hall JC (1996) Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. Journal of Neurophysiology 76:1059–1073.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM and Hall JC (1999) Sound duration selectivity in the pallid bat inferior colliculus. Hearing Research 137:137–154.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Hamann I, Klump GM, Kittel M, and Strutz J (2003) Boosting GABA improves impaired auditory temporal resolution in the gerbil. NeuroReport 14:1877–1880.

    Article  PubMed  Google Scholar 

  • Goldberg JM and Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. Journal of Neurophysiology 32:613–636.

    PubMed  CAS  Google Scholar 

  • Gordon M and O’Neill WE (1998) Temporal processing across frequency channels by FM selective auditory neurons can account for FM rate selectivity. Hearing Research 122:97–108.

    Article  PubMed  CAS  Google Scholar 

  • Gordon M and O’Neill WE (2000) An extralemniscal component of the mustached bat inferior colliculus selective for direction and rate of linear frequency modulations. Journal of Comparative Neurology 426:165–181.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg S (1988) Acoustic transduction in the auditory periphery. Journal of Phonetics 16:3–17.

    Google Scholar 

  • Hage SR and Ehret G (2003) Mapping responses to frequency sweeps and tones in the inferior colliculus of house mice. European Journal of Neuroscience 18:2301–2312.

    Article  PubMed  Google Scholar 

  • Hall JW, Haggard MP, and Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis. Journal of the Acoustical Society of America 76:50–56.

    Article  PubMed  CAS  Google Scholar 

  • Hattori T and Suga N (1997) The inferior colliculus of the mustached bat has the frequency-vs-latency coordinates. Journal of Comparative Physiology A 180:271–284.

    Article  CAS  Google Scholar 

  • Heffner HE and Whitfield IC (1976) Perception of the missing fundamental by cats. Journal of the Acoustical Society of America 59:915–919.

    Article  PubMed  CAS  Google Scholar 

  • Heil P, Schulze H, and Langner G (1995) Ontogenetic development of periodicity coding in the inferior colliculus of the Mongolian gerbil. Auditory Neuroscience 1:363–383.

    Google Scholar 

  • Hewitt MJ and Meddis R (1994) A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. Journal of the Acoustical Society of America 95:2145–2159.

    Article  PubMed  CAS  Google Scholar 

  • Hillery CM (1984) Detection of amplitude-modulation tones by frogs: implications for temporal processing mechanisms. Hearing Research 14:129–143.

    Article  PubMed  CAS  Google Scholar 

  • Hose B, Langner G, and Scheich H (1987) Topographic representation of periodicities in the forebrain of the mynah bird: one map for pitch and rhythm? Brain Research 422:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Huffman RF, Argeles PC, and Covey E (1998) Processing of sinusoidally frequency modulated signals in the nuclei of the lateral lemniscus of the big brown bat, Eptesicus fuscus. Hearing Research 126:161–180.

    Article  PubMed  CAS  Google Scholar 

  • Hurley LM and Pollak GD (1999) Serotonin differentially modulates responses to tones and frequency-modulated sweeps in the inferior colliculus. Journal of Neuroscience 19:8071–8082.

    PubMed  CAS  Google Scholar 

  • Joris PX, Schreiner CE, and Rees A (2004) Neural processing of amplitude-modulated sounds. Physiological Reviews 84:541–577.

    Article  PubMed  CAS  Google Scholar 

  • Kim DO, Sirianni JG, and Chang SO (1990) Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: analysis with autocorrelation/power-spectrum. Hearing Research 45:95–113.

    Article  PubMed  CAS  Google Scholar 

  • Koch U and Grothe B (1998) GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior colliculus of the big brown bat. Journal of Neurophysiology 80:71–82.

    PubMed  CAS  Google Scholar 

  • Krishna BS and Semple MN (2000) Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. Journal of Neurophysiology 84:255–273.

    PubMed  CAS  Google Scholar 

  • Kuwada S, Batra R, Yin TCT, Oliver DL, Haberly LB, and Stanford TR (1997) Intracellular recordings in response to monaural and binaural stimulation of neurons in the inferior colliculus of the cat. Journal of Neuroscience 17:7565–7581.

    PubMed  CAS  Google Scholar 

  • Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Experimental Brain Research 44:450–454.

    Article  CAS  Google Scholar 

  • Langner G (1983) Evidence for neuronal periodicity detection in the auditory system of the guinea fowl: implications for pitch analysis in the time domain. Experimental Brain Research 52:333–355.

    Article  CAS  Google Scholar 

  • Langner G (1988) Physiological properties of units in the cochlear nucleus are adequate for a model of periodicity analysis in the auditory midbrain. In: Syka J and Masterton RB (eds). Auditory Pathway: Structure and Function. Plenum Press, New York, pp. 207–212.

    Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hearing Research 60:115–142.

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1997) Neural processing and representation of periodicity pitch. Acta Oto-Laryngologica Supplement 532:68–76.

    CAS  Google Scholar 

  • Langner G (2004) Topographic representation of periodicity information: the 2nd neural axis of the auditory system. In: Syka J and Merzenich MM (eds). Plasticity of the Central Auditory System and Processing of Complex Acoustic Signals. Springer-Verlag, New York, pp. 19–33.

    Google Scholar 

  • Langner G and Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. Journal of Neurophysiology 60:1799–1822.

    PubMed  CAS  Google Scholar 

  • Langner G and Schreiner CE (1996) Contributions of the auditory brainstem to periodicity pitch coding. Advances in Speech, Hearing and Language Processing 3:447–461.

    Google Scholar 

  • Langner G, Schreiner CE, and Merzenich MM (1987) Covariation of latency and temporal resolution in the inferior colliculus of the cat. Hearing Research 31:197–202.

    Article  PubMed  CAS  Google Scholar 

  • Langner G, Schreiner CE, and Albert M (1992) Tonotopy and periodotopy in the auditory midbrain of cat and guinea fowl. In: Cazals Y, Horner K, and Demany L (eds). Auditory Physiology and Perception. Pergamon Press, New York, pp. 241–248.

    Google Scholar 

  • Langner G, Sams M, Heil P, and Schulze H (1997) Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. Journal of Comparative Physiology, A 181:665–676.

    Article  CAS  Google Scholar 

  • Langner G, Albert M, and Briede T (2002) Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (Chinchilla laniger). Hearing Research 168:110–130.

    Article  PubMed  Google Scholar 

  • Large EW and Crawford JD (2002) Auditory temporal computation: interval selectivity based on post-inhibitory rebound. Journal of Computational Neuroscience 13:125–142.

    Article  PubMed  Google Scholar 

  • Le Beau FEN, Rees A, and Malmierca MS (1996) Contribution of GABA-and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. Journal of Neurophysiology 75:902–919.

    PubMed  Google Scholar 

  • Lesser HD, Frisina RD, and O’Neill WE (1986) Responses to amplitude-modulated sounds in the inferior colliculus of the mustached bat. Society for Neuroscience Abstracts 12:345.

    Google Scholar 

  • Lesser HD, O’Neill WE, Frisina RD, and Emerson RG (1990) ON-OFF units in the moustached bat inferior colliculus are selective for transients resembling acoustic glint from fluttering insect targets. Experimental Brain Research 82:137–148.

    Article  CAS  Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experientia 7:128–134.

    Article  PubMed  CAS  Google Scholar 

  • Misawa H and Suga N (2001) Multiple combination-sensitive neurons in the auditory cortex of the mustached bat. Hearing Research 151:15–29.

    Article  PubMed  CAS  Google Scholar 

  • Mittmann DH and Wenstrup JJ (1995) Combination-sensitive neurons in the inferior colliculus. Hearing Research 90:185–191.

    Article  PubMed  CAS  Google Scholar 

  • Møller AR (1974) Coding of amplitude and frequency modulated sounds in the cochlear nucleus. Acustica 31:292–299.

    Google Scholar 

  • Møller AR and Rees A (1986) Dynamic properties of the responses of single neurons in the inferior colliculus of the rat. Hearing Research 24:203–215.

    Article  PubMed  Google Scholar 

  • Moore BCJ (2003) An Introduction to the Psychology of Hearing. Academic Press, San Diego.

    Google Scholar 

  • Müller-Preuss P, Flachskamm C, and Bieser A (1994) Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys. Hearing Research 80: 197–208.

    Article  PubMed  Google Scholar 

  • Nelson PG and Erulkar SD (1963) Synaptic mechanisms of excitation and inhibition in the central auditory pathway. Journal of Neurophysiology 26:908–923.

    PubMed  CAS  Google Scholar 

  • Nelson PG, Erulkar SD, and Bryan JS (1966) Response of units in the inferior colliculus to time-varying acoustic stimuli. Journal of Neurophysiology 29:834–860.

    PubMed  CAS  Google Scholar 

  • Neuert V, Pressnitzer D, Patterson RD, and Winter IM (2001) The responses of single units in the inferior colliculus of the guinea pig to damped and ramped sinusoids. Hearing Research 159:36–52.

    Article  PubMed  CAS  Google Scholar 

  • Palombi PS, Backoff PM, and Caspary DM (2001) Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli. Hearing Research 153:174–180.

    Article  Google Scholar 

  • Pedemonte M, Torterolo P, and Velluti RA (1997) In vivo intracellular characteristics of inferior colliculus neurons in guinea pigs. Brain Research 759:24–31.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro AD, Jen PH-S, and Wu M (1991) Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. Journal of Comparative Physiology A 169:69–85.

    Article  CAS  Google Scholar 

  • Plomp R (1983) The role of modulation in hearing. In: Klinke R and Hartmann R (eds). Hearing—Physiological Bases and Psychophysics. Springer-Verlag, Berlin, pp. 270–276.

    Google Scholar 

  • Poon PWF and Chiu TW (1997) Single cell responses to AM tones of different envelopes at the auditory midbrain. In: Syka J (ed). Acoustical Signal Processing in the Central Auditory System. Plenum Press, New York, pp. 253–261.

    Google Scholar 

  • Poon PWF, Chen XY, and Cheung YM (1992) Differences in FM response correlate with morphology of neurons in the rat inferior colliculus. Experimental Brain Research 91:94–104.

    Article  CAS  Google Scholar 

  • Portfors CV and Wenstrup JJ (2001) Topographical distribution of delay-tuned responses in the mustached bat inferior colliculus. Hearing Research 151:95–105.

    Article  PubMed  CAS  Google Scholar 

  • Pressnitzer D, Winter IM, and Patterson RD (2000) The responses of single units in the ventral cochlear nucleus of the guinea pig to damped and ramped sinusoids. Hearing Research 149:155–166.

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1962) Theory of physiological properties of dendrites. Annals of the New York Academy of Sciences 96:1071–1092.

    PubMed  CAS  Google Scholar 

  • Rees A and Møller AR (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hearing Research 10:301–330.

    Article  PubMed  CAS  Google Scholar 

  • Rees A and Møller AR (1987) Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds. Hearing Research 27:129–143.

    Article  PubMed  CAS  Google Scholar 

  • Rees A and Palmer AR (1988) Rate-intensity functions and their modification by broadband noise for neurons in the guinea-pig inferior colliculus. Journal of the Acoustical Society of America 83:1488–1498.

    Article  PubMed  CAS  Google Scholar 

  • Rees A and Palmer AR (1989) Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea-pig inferior colliculus, and their modification by broadband noise. Journal of the Acoustical Society of America 85:1978–1994.

    Article  PubMed  CAS  Google Scholar 

  • Rees A and Sarbaz A (1997) The influence of intrinsic oscillations on the encoding of amplitude modulation by neurons in the inferior colliculus. In: Syka J (ed). Acoustical Signal Processing in the Central Auditory System, Plenum Press, New York, pp. 239–252.

    Google Scholar 

  • Rees A, Sarbaz A, Malmierca MS, and Le Beau FEN (1997) Regularity of firing of neurons in the inferior colliculus. Journal of Neurophysiology 77:2945–2965.

    PubMed  CAS  Google Scholar 

  • Reimer K (1987) Coding of sinusoidally amplitude modulated acoustic stimuli in the inferior colliculus of the rufous horseshoe bat, Rhinolophus rouxi. Journal of Comparative Physiology A 161:305–313.

    Article  CAS  Google Scholar 

  • Riquelme R, Saldaña E, Osen KK, Ottersen OP, and Merchán MA (2001) Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: an in situ hybridization and semiquantitative immunocytochemical study. Journal of Comparative Neurology 432:409–424.

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ and Jones EG (1973) The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. Journal Comparative Neurology 147:11–60.

    Article  CAS  Google Scholar 

  • Rose GJ and Capranica RR (1984) Processing of amplitude-modulated sounds by the auditory midbrain of two species of toads: matched temporal filters. Journal of Comparative Physiology A 154:211–219.

    Article  Google Scholar 

  • Rose GJ and Capranica RR (1985) Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. Journal of Neurophysiology 53:446–465.

    PubMed  CAS  Google Scholar 

  • Rose JE, Greenwood DD, Goldberg JM, and Hind JE (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. Journal of Neurophysiology 26:294–320.

    Google Scholar 

  • Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 336:367–373.

    CAS  Google Scholar 

  • Ryan A and Miller J (1978) Single unit responses in the inferior colliculus of the awake and performing rhesus monkey. Experimental Brain Research 32:389–407.

    Article  CAS  Google Scholar 

  • Saitoh I and Suga N (1995) Long delay lines for ranging are created by inhibition in the inferior colliculus of the mustached bat. Journal of Neurophysiology 74:1–11.

    PubMed  CAS  Google Scholar 

  • Schouten JF (1940) The perception of pitch. Philips Technical Review 5:286–294.

    Google Scholar 

  • Schouten JF (1970) The residue revisited. In: Plomp R and Smoorenburg GF (eds). Frequency Analysis and Periodicity Detection in Hearing. Sijthoff, Leiden, pp. 41–54.

    Google Scholar 

  • Schouten JF, Ritsma RJ, and Cardozo BL (1962) Pitch of the residue. Journal of the Acoustical Society of America 34:1418–1424.

    Article  Google Scholar 

  • Schreiner CE and Langner G (1988) Periodicity coding in the inferior colliculus of the cat. I. Topographical organization. Journal of Neurophysiology 60:1823–1840.

    PubMed  CAS  Google Scholar 

  • Schreiner CE and Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE and Snyder RL (1987) Modulation transfer characteristics of neurons in the dorsal cochlear nucleus of the cat. Society for Neuroscience Abstracts 13:1258.

    Google Scholar 

  • Schroeder MR (1981) Modulation transfer functions: definition and measurement. Acustica 49:179–182.

    Google Scholar 

  • Schuller G (1979) Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of the “CF-FM” bat, Rhinolophus ferrumequinum. Experimental Brain Research 34:117–132.

    CAS  Google Scholar 

  • Schuller G (1984) Natural ultrasonic echos from wing beating insects are encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A 155:121–128.

    Article  Google Scholar 

  • Semal C and Demany L (1990) The upper limit of musical pitch. Music Perception 8:165–175.

    Google Scholar 

  • Shannon RV, Zeng FG, Kamath V, Wygonski J, and Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304.

    PubMed  CAS  Google Scholar 

  • Shofner WP (2000) Comparison of frequency discrimination thresholds for complex and single tones in chinchillas. Hearing Research 149:106–114.

    Article  PubMed  CAS  Google Scholar 

  • Shofner WP and Yost WA (1997) Discrimination of rippled-spectrum noise from flat-spectrum noise by chinchillas: evidence for a spectral dominance region. Hearing Research 110:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Smith ZM, Delgutte B, and Oxenham AJ (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Stiebler I and Ehret G (1985) Inferior colliculus of the house mouse. I. A quantitative study of tonotopic organization, frequency representation, and tone-threshold representation. Journal of Comparative Neurology 238:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1965) Analysis of frequency-modulated sounds by auditory neurons of echolocating bats. Journal of Physiology (London) 179:26–53.

    CAS  Google Scholar 

  • Suga N (1969) Classification of inferior collicular neurons of bats in terms of responses to pure tones, FM sounds and noise bursts. Journal of Physiology (London) 200:555–574.

    CAS  Google Scholar 

  • Suga N and O’Neill WE (1979) Neural axis representing target range in the auditory cortex of the mustache bat. Science 206:351–353.

    PubMed  CAS  Google Scholar 

  • Syka J, Popelár˘ J, Kvas˘ňák E, and Astl J (2000) Response properties of neurons in the central nucleus and external and dorsal cortices of the inferior colliculus in guinea pig. Experimental Brain Research 133:254–266.

    Article  CAS  Google Scholar 

  • Terhardt E (1970) Frequency analysis and periodicity detection in the sensation of roughness and periodicity pitch. In: Plomp R and Smoorenburg GF (eds). Frequency Analysis and Periodicity Detection in Hearing. Sijthoff, Leiden, pp. 278–290.

    Google Scholar 

  • Thornton S and Rees A (2001) Across-frequency interactions in the inferior colliculus. Association for Research in Otolaryngology Abstracts 24:54.

    Google Scholar 

  • Tomlinson RWW and Schwarz DWF (1988) Perception of the missing fundamental in nonhuman primates. Journal of the Acoustical Society of America 84:560–565.

    Article  PubMed  CAS  Google Scholar 

  • Treurniet WC and Boucher DR (2001) A masking level difference due to harmonicity. Journal of the Acoustical Society of America 109:306–320.

    Article  PubMed  CAS  Google Scholar 

  • Van Stokkum IHM (1987) Sensitivity of neurons in the dorsal medullary nucleus of the grassfrog to spectral and temporal characteristics of sound. Hearing Research 29:223–235.

    Article  PubMed  Google Scholar 

  • Van Stokkum IHM (1989) A model for the auditory midbrain of the grassfrog for monaural stimuli. Hearing Research 43:231–250.

    Google Scholar 

  • Vater M, Habbicht H, Kössl M, and Grothe B (1992) The functional role of GABA and glycine in monaural and binaural processing in the inferior colliculus of horseshoe bats. Journal of Comparative Physiology A 171:541–553.

    Article  CAS  Google Scholar 

  • Vater M, Covey E, and Casseday JH (1997) The columnar region of the ventral nucleus of the lateral lemniscus in the big brown bat (Eptesicus fuscus): synaptic arrangements and structural correlates of feedforward inhibitory function. Cell and Tissue Research 289:223–233.

    Article  PubMed  CAS  Google Scholar 

  • Viemeister NF and Plack CJ (1993) Time analysis. In: Yost WA, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, Volume 3: Human Psychophysics. Springer-Verlag, New York, pp. 116–154.

    Google Scholar 

  • Walkowiak W (1984) Neuronal correlates of the recognition of pulsed sound signals in the grass frog. Journal of Comparative Physiology A 155:57–66.

    Article  Google Scholar 

  • Walton JP, Frisina RD, Ison JR, and O’Neill WE (1997) Neural correlates of behavioral gap detection in the inferior colliculus of the young CBA mouse. Journal of Comparative Physiology A 181:161–176.

    Article  CAS  Google Scholar 

  • Walton JP, Frisina RD, and O’Neill WE (1998) Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse. Journal of Neuroscience 18:2764–2776.

    PubMed  CAS  Google Scholar 

  • Wenstrup JJ and Grose CD (1995) Inputs to combination-sensitive neurons in the medial geniculate body of the mustached bat: the missing fundamental. Journal of Neuroscience 15:4693–4711.

    PubMed  CAS  Google Scholar 

  • Wenstrup JJ and Leroy SA (2001) Spectral integration in the inferior colliculus: role of glycinergic inhibition in response facilitation. Journal of Neuroscience 21 RC124:1–6.

    Google Scholar 

  • Wever EG (1949) Theory of Hearing. John Wiley & Sons, New York.

    Google Scholar 

  • Willott JF and Urban GP (1978) Response properties of neurons in nuclei of the mouse inferior colliculus. Journal of Comparative Physiology A 127:175–184.

    Article  Google Scholar 

  • Wilson WW and Walton JP (2002) Background noise improves gap detection in tonically inhibited inferior colliculus neurons. Journal of Neurophysiology 87:240–249.

    PubMed  Google Scholar 

  • Wright AA, Rivera JJ, Hulse SH, Shyan M, and Neiworth JJ (2000) Music perception and octave generalization in rhesus monkeys. Journal of Experimental Psychology 129:291–307.

    PubMed  CAS  Google Scholar 

  • Yan J and Suga N (1996) The midbrain creates and the thalamus sharpens echo-delay tuning for the cortical representation of target-distance information in the mustached bat. Hearing Research 93:102–110.

    Article  PubMed  CAS  Google Scholar 

  • Yang LC and Pollak GD (1997) Differential response properties to amplitude modulated signals in the dorsal nucleus of the lateral lemniscus of the mustache bat and the roles of GABAergic inhibition. Journal of Neurophysiology 77:324–340.

    PubMed  CAS  Google Scholar 

  • Yost WA and Sheft S (1989) Across-critical-band processing of amplitude-modulated tones. Journal of the Acoustical Society of America 85:848–857.

    Article  PubMed  CAS  Google Scholar 

  • Yost WA and Sheft S (1993) Auditory perception. In: Yost WA, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, Volume 3: Human Psychophysics. Springer-Verlag, New York, pp. 193–236.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Rees, A., Langner, G. (2005). Temporal Coding in the Auditory Midbrain. In: Winer, J.A., Schreiner, C.E. (eds) The Inferior Colliculus. Springer, New York, NY. https://doi.org/10.1007/0-387-27083-3_12

Download citation

Publish with us

Policies and ethics