Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 177))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aucour, A.-M., and C. Hillaire-Marcel. 1993. A 30,000 year record of 13C and 18O changes in organic matter from an equatorial bog. In: Climate changes in continental isotopic records (Geophysical Monograph 78), ed. P.K. Swart, K.C. Lohmann, J. McKenzie, S. Savin, 343–51. Washington, D.C.: American Geophysical Union.

    Google Scholar 

  • —. 1994. Late quaternary biomass changes from 13C measurements in a highland peatbog from equatorial Africa (Burundi). Journal of Quaternary Research 41:225–33.

    Article  Google Scholar 

  • Betancourt, J.L., T.R. Van Devender. et al., eds. 1990. Packrat middens: The last 40,000 years of biotic change. In Chihuahuan desert: Vegetation and climate. Tucson: University of Arizona Press.

    Google Scholar 

  • Bond, W.J. 2000. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology 6:865–69.

    Article  Google Scholar 

  • Bond, W.J., G.F. Midgley, and F.I. Woodward. 2003. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology 9:973–82.

    Article  Google Scholar 

  • Boom, A., R. Marchant, H. Hooghiemstra, and J.S.S. Damste. 2002. CO2-and temperature-controlled altidudinal shifts of C4-and C3-dominated grasslands, allow reconstruction of palaeoatmospheric pCO2. Palaeogeography, Palaeoclimatology, and Palaeoecology 177:151–68.

    Google Scholar 

  • Caswell, H., F. Reed, S.N. Stephenson, and P.A. Werner. 1973. Photosynthetic pathways and selective herbivory: A hypothesis. American Naturalist 107:465–79.

    Article  Google Scholar 

  • Cerling, T.E., J.R. Ehleringer, and J.M. Harris. 1998. Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philosophical Transactions of the Royal Society of London Series B 353:159–71.

    Article  PubMed  Google Scholar 

  • Cerling, T.E., and J.M. Harris. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347–63.

    Article  Google Scholar 

  • Cerling, T.E., J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann, and J.R. Ehleringer. 1997. Global vegetation change through the Miocene-Pliocene boundary. Nature 389:153–58.

    Article  Google Scholar 

  • Cole D.R., and H.C. Monger. 1994. Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation. Nature 368:533–36.

    Article  Google Scholar 

  • Collatz, G.J., J.A. Berry, and J.S. Clark. 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:441–54.

    Article  Google Scholar 

  • Connin, S.L., J. Betancourt, and J. Quade. 1998. Late Pleistocene C4 plant dominance and summer rainfall in the southwestern United States from isotopic study of herbivore teeth. Quaternary Research 50:179–93.

    Article  Google Scholar 

  • Cowling, S.A., and M.T. Sykes. 1999. Physiological significance of low atmospheric CO2 for plant-climate interactions. Quaternary Research 55:140–49.

    Article  Google Scholar 

  • Ehleringer, J. 1978. Implications of quantum yield differences on the distributions of C3 and C4 grasses. Oecologia 31:255–67.

    Article  Google Scholar 

  • Ehleringer, J., and O. Björkman. 1977. Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2 and O2 concentration. Plant Physiology 59:86–90.

    Google Scholar 

  • Ehleringer, J.R., and T.E. Cerling. 2001. Photosynthetic pathways and climate. In Global biogeochemical cycles in the climate system, ed. E.-D. Schulze, M. Heimann, S.P. Harrison, E.A. Holland, J. Lloyd, I.C. Prentice, and D. Schimel, 267–77. San Diego: Academic Press.

    Google Scholar 

  • Ehleringer, J.R., T.E. Cerling, and B.R. Helliker. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–99.

    Article  Google Scholar 

  • Ehleringer, J.R., and R.K. Monson. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24:411–39.

    Article  Google Scholar 

  • Ehleringer, J.R. and R.W. Pearcy. 1983. Variation in quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiology 73:555–59.

    Google Scholar 

  • Ehleringer, J.R., R.F. Sage, L.B. Flanagan, and R.W. Pearcy. 1991. Climate change and the evolution of C4 photosynthesis. Trends Ecology and Evolution 6:95–99.

    Article  Google Scholar 

  • Ekart, D.D., T.E. Cerling, I. Montanez, and N. Tabor. 1999. A 400 million year carbon isotope record of pedogenic carbonate: Implications for atmospheric carbon dioxide. American Journal of Science 299:805–17.

    Google Scholar 

  • Eshetu, Z. 2002. Historical C3/C4 vegetation pattern of forested mountain slopes: its implicaztion for ecological rehabilitation of degraded highlands of Ethiopia by afforestation. Journal of Tropical Ecology 18:743–58.

    Article  Google Scholar 

  • Eshetu, Z., and P. Högberg. 2000. Reconstruction of forest site history in Ethiopian highlands based on C-13 natural abundance of soils. Ambio 29:83–89.

    Google Scholar 

  • Freeman, K.H., and L.A. Colarusso. 2001. Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochimica et Cosmochimica Acta 65:1439–54.

    Article  Google Scholar 

  • Giresse, P., J. Maley, and P. Brenac. 1994. Late Quaternary palaeoenvironments in Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeography, Palaeoclimatology, and Palaeoecology 107:65–78.

    Google Scholar 

  • Harrison, S.P., and C.I. Prentice. 2003. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on paleovegetation data, biome modeling and paleoclimate simulations. Global Change Biology 9:983–1004.

    Article  Google Scholar 

  • Huang, Y., K.H. Freeman, T.I. Eglington, and F.A. Street-Perrott. 1999. ’13C analyses of individual lignin phenols in Quaternary lake sediments: A novel proxy for deciphering past terrestrial vegetation changes. Geology 27:471–74.

    Article  Google Scholar 

  • Huang, Y., F.A. Street-Perrott, S.E. Metcalfe, M. Brenner, M. Moreland, and K.H. Freeman. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293:1647–51.

    Article  PubMed  Google Scholar 

  • Mulroy, T.W., and P.W. Rundel. 1977. Annual plants: adaptations to desert environments. BioScience 27:109–14.

    Google Scholar 

  • Neill, C., B. Fry, J.M. Melillo, P.A. Steudler, J.F.L. Moraes, and C.C. Cerri. 1996. Forestand pasture-derived carbon contributions to carbon stocks and microbial respiration of tropical pasture soils. Oecologia 107:113–19.

    Article  Google Scholar 

  • Pagani, M., K.H. Freeman, and M.A. Arthur. 1999. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285:876–78.

    Article  PubMed  Google Scholar 

  • Pearcy, R.W., and J. Ehleringer. 1984. Ecophysiology of C3 and C4 plants. Plant Cell and Environment 7:1–13.

    Google Scholar 

  • Petit, J.R., J. Jouzel, D. Raynaud, et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–36.

    Article  Google Scholar 

  • Pyankov, V.I., C.C. Black, Jr., E.G. Artyusheva, E.V. Voznesenskaya, M.S.B. Ku, and G.E. Edwards. 1999. Features of photosynthesis in Haloxylon species of Chenopodiaceae that are dominant plants in central Asian deserts. Plant Cell Physiology 40:125–34.

    Google Scholar 

  • Pyankov, V.I., et al. 2000. Occurrence of C3 and C4 photosynthesis in cotyledons and leaves of Salsola species (Chenopodiaceae). Photosynthesis Research 63:69–84.

    Article  Google Scholar 

  • Quade J., T.E. Cerling, and R.J. Bowman. 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in Northern Pakistan. Nature 342:163–66.

    Article  Google Scholar 

  • Ruddiman, W.F. 1990. Changes in climate and biota on geologic time scales. Trends in Ecology and Evolution 5:285–88.

    Article  Google Scholar 

  • Sage, R.F. 2001. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biology 3:202–13.

    Article  Google Scholar 

  • Sage, R.F., and R.K. Monson. 1999. C4plant biology. San Diego: Academic Press.

    Google Scholar 

  • Shreve, F., and I.R. Wiggins. 1964. Vegetation and flora of the Sonoran Desert. Palo Alto: Stanford University Press.

    Google Scholar 

  • Still, C., J.A. Berry, G.J. Collatz, and R.S. Defries. 2003. Global distribution of C3 and C4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles 17 (January): Article 1006.

    Google Scholar 

  • Stine, S. 1994. Extreme and persistent drought in California and Patagonia during mediaeval time. Nature 369:546–49.

    Article  Google Scholar 

  • Street-Perrott, F.A., Y. Huang, R.A. Perrott, and G. Eglington. 1998. Carbon isotopes in lake sediments and peats of the last glacial age: Implications for the global carbon cycle. In Stable isotopes, ed. H. Griffiths, 381–96. Oxford: BIOS Scientific.

    Google Scholar 

  • Street-Perrott, F.A., Y. Huang, R.A. Perrott, G. Eglington, P. Barker, L.B. Khelifa, D.D. Harkness, and D.O. Olago. 1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278:1422–26.

    Article  PubMed  Google Scholar 

  • Talbot, M.R., and R. Johannessen. 1992. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters 110:23–37.

    Article  Google Scholar 

  • Talbot, M.R., D.A. Livingstone, P.G. Palmer, J. Maley, J.M. Melack, J.M. Delibrias, and S. Gulliksen. 1984. Preliminary results from sediment cores from Lake Bosumtwi, Ghana. Palaeoecology Africa 16:173–92.

    Google Scholar 

  • Teeri, J.A., and L.G. Stowe. 1976. Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23: 1–12.

    Google Scholar 

  • von Caemmerer, S. 2000. Biochemical models of leaf photosynthesis. Collingwood: Commonwealth Scientific Industrial Research Organization Publishing.

    Google Scholar 

  • Yapp, C.J., and S. Epstein. 1982. Climatic significance of the hydrogen isotope ratios in tree cellulose. Nature 297:636–39.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ehleringer, J.R. (2005). The Influence of Atmospheric CO2, Temperature, and Water on the Abundance of C3/C4 Taxa. In: Baldwin, I., et al. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Ecological Studies, vol 177. Springer, New York, NY. https://doi.org/10.1007/0-387-27048-5_10

Download citation

Publish with us

Policies and ethics