Advertisement

Brainstem NHE-3 Expression and Control of Breathing

  • Martin Wiemann
  • Heidrun Kiwull-Schöne
  • Stilla Frede
  • Dieter Bingmann
  • Peter Kiwull
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)

Abstract

Intracellular acidification by selective inhibition of the Na+/H+ exchanger type 3 (NHE-3) has been shown to enhance the bioelectric activity of CO2/H+ sensitive neurons cultured in vitro from the ventrolateral medulla oblongata of newborn rats (Wiemann et al., 1998, 1999; Wiemann and Bingmann, 2001). Recently, we demonstrated NHE-3 immunoreactive neurons in brainstem areas with prevalence for central chemosensitivity in adult rabbits (Kiwull-Schöne et al., 2001). During anaesthesia, NHE-3 inhibition by the brain-permeant substance S8218 (Aventis Pharma) significantly lowered the arterial threshold PCO2 for central apnea upon mechanical hyperventilation, both under normal blood gas conditions and after prolonged respiratory acidosis (Kiwull-Schöne et al., 2001, 2003). This could be of clinical importance, since there is evidence that increased Na+/H+ antiporter (NHE) activity may predispose patients to sleep apnea (Tepel et al., 2000).

Keywords

Intracellular Acidification Bioelectric Activity Exchanger Type Respiratory Controller Central Chemosensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crosby, A., and P. A. Robbins, 2003, Variability in end-tidal PCO2 and blood gas values in humans. Exp. Physiol. 88:603–610.CrossRefPubMedGoogle Scholar
  2. Filosa, J. A., Dean, J. B., and R. W. Putnam, 2002, Role of intracellular and extracellular pH in chemosensitive response of rat locus coeruleus neurones. J. Physiol. 541:493–509.CrossRefPubMedGoogle Scholar
  3. Honda, Y., 1968, Ventilatory response to CO2 during hypoxia and hyperoxia in awake and anaesthetized rabbits. Respir. Physiol. 5:279–287.CrossRefPubMedGoogle Scholar
  4. Kiwull-Schone, H., Wiemann, M., Frede, S., Bingmann, D., Wirth, K. J., Heinelt, U., Lang, H. J., and P. Kiwull, 2001, A novel inhibitor of the Na+/H+ exchanger type 3 activates the central respiratory CO2 response and lowers the apneic threshold. Am. J. Resp. Crit. Care Med. 164:1303–1311.PubMedGoogle Scholar
  5. Kiwull-Schöne, H., Wiemann, M., Frede, S., Bingmann, D., and P. Kiwull, 2003, Tentative role of the Na+/H+ exchanger type 3 in central chemosensitivity of respiration. Adv. Exp. Med. Biol. 536:415–421.PubMedGoogle Scholar
  6. Nattie, E., Li, A., Meyerand, E., and J. F. Dunn, 2002, Ventral medulla pHi measured in vivo by 31P NMR is not regulated during hypercapnia in anesthetized rat. Respir. Physiol. & Neurobiol. 130:139–149.CrossRefGoogle Scholar
  7. Platzer, C., Ode-Kahn, S., Reinke, P., Döcke, W.-D., Ewert, R., and H.-D. Volk, 1994, Quantitative PCR analysis of cytokine transcription patterns in peripheral mononuclear cells after anti-CD3 rejection therapy using two novel multispecific competitor fragments. Transplantation 58:264–268.PubMedGoogle Scholar
  8. Ritucci, N. A., Chambers-Kersh, L., Dean, J. B., and R. W. Putnam, 1998, Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive areas of the medulla. Am. J. Physiol. 275:R1152–R1163.PubMedGoogle Scholar
  9. Schultheis, P. J., Clarke, L. L., Meneton, P., Miller, M. L., Soleimani, M., Gawenis, L. R., Riddle, T. M., Duffy, J. J., Doetschman, T., Wang, T., Giebisch, G., Aronson, P. S., Lorenz, J. N., and G. E. Schull, 1998, Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat. Genet. 19:282–285.CrossRefPubMedGoogle Scholar
  10. Tepel, M., Sanner, B.M., van der Giet, M., and W. Zidek, 2000, Increased sodium-proton antiporter activity in patients with obstructive sleep apnoea. J. Sleep Res. 9:285–291.CrossRefPubMedGoogle Scholar
  11. Wiemann, M. and D. Bingmann, 2001, Ventrolateral neurons of medullary organotypic cultures: intracellular pH regulation and bioelectric activity. Respir. Physiol. 129:57–70.CrossRefPubMedGoogle Scholar
  12. Wiemann, M., Baker, R. E., Bonnet, U., and D. Bingmann, 1998, CO2-sensitive medullary neurons: activation by intracellular acidification. NeuroReport 9:167–170.CrossRefPubMedGoogle Scholar
  13. Wiemann, M., Schwark, J.-R., Bonnet, U., Jansen, H.W., Grinstein, S., Baker, R. E., Lang, H.-J., Wirth, K., and D. Bingmann, 1999, Selective inhibition of the Na+/H+ exchanger type 3 activates CO2/H+-sensitive medullary neurones. Pflügers Arch. 438:255–262.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Martin Wiemann
    • 1
  • Heidrun Kiwull-Schöne
    • 2
  • Stilla Frede
    • 1
  • Dieter Bingmann
    • 1
  • Peter Kiwull
    • 2
  1. 1.Department of PhysiologyUniversity of EssenEssenGermany
  2. 2.Department of PhysiologyRuhr-UniversityBochumGermany

Personalised recommendations