Advertisement

The Evolutionary History of the Translation Machinery

  • George E. Fox
  • Ashwinikumar K. Naik
Chapter

Abstract

Current theories on the origin of Ufe envision an RNA World as the culmination of chemical evolution. The extent of this RNA World, and the biochemical complexity of the progenotes that populated it, is subject to much debate. It, nevertheless, is likely a point of agreement among workers in the field that the discovery of machinery for the chiral synthesis of defined sequence peptides would have paved the way for transition to the modern protein world. With the discovery of an RNA replicase, which might initially have been a catalytic RNA or an early peptide product, the stage would be set for the development of populations of progenotes that had both of these features in one enclosure. Such advanced progenotes would be the first entities capable of having the genetic couple between replication, transcription and translation that is the hallmark of life, as we know it. The modern day tmRNA at one stage is recognized as a tRNA by the ribosome while it subsequently serves as a mRNA during translation. This unusual RNA might be representative of the types of entities present in the late RNA World. The addition of DNA as a better storage medium for genetic informa-tion would finalize the transition from the progenotic world to the living systems that exist in the modern world.

Keywords

Ribosomal Protein Genetic Code Lateral Gene Transfer Translation Machinery Peptide Bond Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woese CR, Fox GE. The concept of cellular evolution. J Mol Evol 1977; 10(1):1–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Karzai AW, Roche ED, Sauer RT. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nature Struct Biol 2000; 7(6):449–455.PubMedCrossRefGoogle Scholar
  3. 3.
    Brosius J. tRNAs in the spotlight during protein biosynthesis. Trends Biochem Sci 2001; 26(11):653–656.PubMedCrossRefGoogle Scholar
  4. 4.
    Becerra A, Islas S, Leguina JI et al. Polyphyletic gene losses can bias backtrack characterizations of the cenancestor. J Mol Evol 1997; 45(2):115–118.PubMedCrossRefGoogle Scholar
  5. 5.
    Benner SA, Cohen MA, Gonnet GH et al. Reading the palimpset: Contemporary biochemical data and the RNA world. In: Gasteland RF, Atkins JF, eds. The RNA World. 1st ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1993:27–70.Google Scholar
  6. 6.
    Lazcano A. Cellular evolution during the early Archaean: What happened between the progenote and the cenancestor? Microbiologia SEM 1994; 11:13–18.Google Scholar
  7. 7.
    Doolittle WF. The nature of the universal ancestor and the evolution of the proteome. Curr Opin Struct Biol 2000; 10(3):355–358.PubMedCrossRefGoogle Scholar
  8. 8.
    Glansdorff N. About the last common ancestor, the universal life-tree and lateral gene transfer: A reappraisal. Mol Microbiol 2000; 38(2):177–185.PubMedCrossRefGoogle Scholar
  9. 9.
    Olsen GJ, Woese CR. Archaeal genomics: An overview. Cell 1997; 89(7):991–994.PubMedCrossRefGoogle Scholar
  10. 10.
    Leipe DD, Aravind L, Koonin EV. Did DNA replication evolve twice independently? Nucleic Acids Res 1999; 27(17):3389–3401.PubMedCrossRefGoogle Scholar
  11. 11.
    Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001; 292(5523):1863–1876.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferris JP, Hill Jr AR, Liu R et al. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 1996; 381(6577):59–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Ban N, Nissen P, Hansen J et al. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 2000; 289(5481):905–920.PubMedCrossRefGoogle Scholar
  14. 14.
    Wimberly BT, Brodersen DE, Clemons Jr WM et al. Structure of the 30S ribosomal subunit. Nature 2000; 407(6802):327–339.PubMedCrossRefGoogle Scholar
  15. 15.
    Nissen P, Hansen J, Ban N et al. The structural basis of ribosome activity in peptide bond synthesis. Science 2000; 289(5481):920–930.PubMedCrossRefGoogle Scholar
  16. 16.
    Katunin VI, Muth GW, Strobel SA et al. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol Cell 2002; 10(2):339–346.PubMedCrossRefGoogle Scholar
  17. 17.
    Barta A, Dorner S, Polacek N. Mechanism of ribosomal peptide bond formation. Science 2001; 291(5502):203.PubMedCrossRefGoogle Scholar
  18. 18.
    Bayfield MA, Dahlberg AE, Schulmeister U et al. A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition. Proc Nad Acad Sci USA 2001; 98(18):10096–10101.CrossRefGoogle Scholar
  19. 19.
    Polacek N, Gaynor M, Yassin A et al. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 2001; 411(6836):498–501.PubMedCrossRefGoogle Scholar
  20. 20.
    Thompson J, Kim DF, O’Connor M et al. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc Natl Acad Sci USA 2001; 98(16):9002–9007.PubMedCrossRefGoogle Scholar
  21. 21.
    Nissen P, Hansen J, Muth GW et al. Mechanism of ribosomal peptide bond formation. Science 2001; 291:203a.CrossRefGoogle Scholar
  22. 21a.
    Beringer M, Adies S, Wintermeyer W et al. The G2447A mutation does not effect ionization of a ribosomal group taking part in peptide bond formation. RNA 2003; 9:919–922.PubMedCrossRefGoogle Scholar
  23. 22.
    Woese CR. Translation: In retrospect and prospect. RNA 2001; 7:1055–1067.PubMedCrossRefGoogle Scholar
  24. 23.
    Woese CR. Molecular mechanics of translation: A reciprocating ratchet mechanism. Nature 1970; 226(5248):817–820.PubMedCrossRefGoogle Scholar
  25. 24.
    Woese CR. Just so stories and Rube Goldberg machines: Speculations on the origin of the protein synthetic machinery. In: Chambliss G, Craven GR, Davies J et al, eds. Ribosomes: Structure, Function and Genetics. Baltimore: University Park Press, 1980:357–373.Google Scholar
  26. 25.
    Maizels N, Weiner AM. Peptide-specific ribosomes, genomic tags, and the origin of the genetic code. Cold Spring Harbor Symp Quant Biol 1987; 52:743–749.PubMedGoogle Scholar
  27. 26.
    Lee N, Bessho Y, Wei K et al. Ribozyme-catalyzed tRNA aminoacylation. Nature Struct Biol 2000; 7(1):28–33.PubMedCrossRefGoogle Scholar
  28. 27.
    Schimmel P, Kelley SO. Exiting an RNA world. Nature Struct Biol 2000; 7(1):5–7.PubMedCrossRefGoogle Scholar
  29. 28.
    Saito H, Kourouklis D, Suga H. An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J 2001; 20(7):1797–1806.PubMedCrossRefGoogle Scholar
  30. 29.
    Tamura K, Schimmel P. Oligonucleotide-directed peptide synthesis in a ribosome-and ribozyme-free system. Proc Natl Acad Sci USA 2001; 98(4):1393–1397.PubMedCrossRefGoogle Scholar
  31. 30.
    Shimizu M. Detection of the peptidyl transferase activity of a dipeptide, alanylhistidine, in the absence of ribosomes. J Biochem 1996; 119(5):832–834.PubMedGoogle Scholar
  32. 31.
    Larkin DC, Martinis SA, Roberts DJ et al. Do small dipeptides mediate a peptidyl transferase reaction with aminoacylated RNA?” Orig Life Evol Biosph 2001; 31(6):511–526.PubMedCrossRefGoogle Scholar
  33. 32.
    Gavrilova LP, Kostiashkina OE, Koteliansky VE et al. Factor-free (“nonenzymatic”) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J Mol Biol 1976; 101(4):537–552.PubMedCrossRefGoogle Scholar
  34. 33.
    Spirin AS. Ribosomal translocation: Facts and models. Prog Nucleic Acid Res Mol Biol 1985; 32:75–114.PubMedCrossRefGoogle Scholar
  35. 34.
    Kjeldgaard M, Nyborg J. Refined structure of elongation factor EF-Tu from Escherichia coli. J Mol Biol 1992; 223(3):721–742.PubMedCrossRefGoogle Scholar
  36. 35.
    Czworkowski J, Wang J, Steitz TA et al. The crystal structure of elongation factor G complexed with GDP at 2.7A resolution. EMBO J 1994; 13(16):3661–3668.PubMedGoogle Scholar
  37. 36.
    Nissen P, Kjeldgaard M, Thirup S et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu and a GTP analog. Science 1995; 270(5241):1464–1472.PubMedCrossRefGoogle Scholar
  38. 37.
    Moore PB. Molecular mimicry in protein synthesis. Science 1996; 270(5241):1453–1454.CrossRefGoogle Scholar
  39. 38.
    Nissen P, Kjeldgaard M, Nyborg J. Macromolecular mimicry. EMBO J 2000; 19(4):489–495.PubMedCrossRefGoogle Scholar
  40. 39.
    Agrawal RK, Penczek P, Grassucci RA et al. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc Natl Acad Sci USA 1998; 95(11):6134–6138.PubMedCrossRefGoogle Scholar
  41. 40.
    Abel K, Jurnak F. A complex profile of protein elongation: Translating chemical energy into molecular movement. Structure 1996; 4(3):229–238.PubMedCrossRefGoogle Scholar
  42. 41.
    Frank J, Agrawal RK. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 2000; 406(6793):318–322.PubMedCrossRefGoogle Scholar
  43. 42.
    Agrawal RK, Spahn CM, Penczek P et al. Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 2000; 150(3):447–460.PubMedCrossRefGoogle Scholar
  44. 43.
    Wriggers W, Agrawal RK, Drew DL et al. Domain motions of EF-G bound to the 70S ribosome: Insights from a hand-shaking between multi-resolution structures. Biophys J 2000; 79(3):1670–1678.PubMedCrossRefGoogle Scholar
  45. 44.
    VanLoock MS, Agrawal RK, Gabashvili IS et al. Movement of the decoding region of the 16 S ribosomal RNA accompanies tRNA translocation. J Mol Biol 2000; 304(4):507–515.PubMedCrossRefGoogle Scholar
  46. 45.
    Golden BL, Ramakrishnan V, White SW. The structure of ribosomal protein L6: structural evidence of gene duplication from a primitive RNA binding protein. EMBO J 1993 12(13):4901–4908.PubMedGoogle Scholar
  47. 46.
    Caetano-Anolles G. Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res 2002; 30(11):2575–2587.PubMedCrossRefGoogle Scholar
  48. 47.
    Caetano-Anolles G. Evolved secondary structure and the rooting of the universal tree of life. J Mol Evol 2002; 54(3):333–345.PubMedGoogle Scholar
  49. 48.
    Mears JA, Cannone JJ, Stagg SM et al. Modeling a minimal ribosome based on comparative sequence analysis. J Mol Biol 321(2):215–234.Google Scholar
  50. 49.
    Kim SH, Quigley GJ, Suddath FL et al. Three-dimensional structure of yeast phenylalanine transfer RNA: Folding of the polynucleotide chain. Science 1973; 179(70):285–288.PubMedCrossRefGoogle Scholar
  51. 50.
    Robertus JD, Ladner JE, Finch JT et al. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 1974; 250(467):546–551.PubMedCrossRefGoogle Scholar
  52. 51.
    Shi H, Moore PB. The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: A classic structure revisited. RNA 2000; 6(8):1091–1105.PubMedCrossRefGoogle Scholar
  53. 52.
    Schimmel P, Ribas de Pouplana L. Transfer RNA: From minihelix to genetic code. Cell 1995;81(7):983–986.PubMedCrossRefGoogle Scholar
  54. 53.
    Schimmel P, Henderson B. Possible role of aminoacyl-RNA complexes in noncoded peptide synthesis and origin of coded synthesis. Proc Natl Acad Sci USA 1994; 91(24):11283–11286.PubMedCrossRefGoogle Scholar
  55. 54.
    Dick TB, Schamel WA. Molecular evolution of transfer RNA from two precursor hairpins: Implications for the origin of protein synthesis. J Mol Evol 1995; 41(1):1–9.PubMedCrossRefGoogle Scholar
  56. 55.
    Di Giulio M. On the origin of protein synthesis: A speculative model based on hairpin RNA structures. J Theor Biol 1994; 171(3):303–308.PubMedCrossRefGoogle Scholar
  57. 56.
    Di Giulio M. On the origin of the transfer RNA molecule. J Theor Biol 1992; 159(2):199–214.PubMedCrossRefGoogle Scholar
  58. 57.
    Nagaswamy U, Fox GE. RNA ligation and the origin of tRNA. Orig Life Evol Biosph 2002 in press.Google Scholar
  59. 58.
    Francklyn C, Schimmel P. Aminoacylation of RNA minihelices with alanine. Nature 1989;337(6206):478–481.PubMedCrossRefGoogle Scholar
  60. 59.
    Shi JP, Schimmel P. Aminoacylation of alanine minihelices. “Discriminator” base modulates transition state of single turnover reaction. J Biol Chem 1991; 266(5):2705–8.PubMedGoogle Scholar
  61. 60.
    Martinis SA, Schimmel P. Small RNA oligonucleotide substrates for specific aminoacylations. In: Söll D, RajBhandary U, eds. tRNA:Structure, Biosynthesis, and Function. Washington, DC: ASM Press, 1995:349–370.Google Scholar
  62. 61.
    Lohse PA, Szostak JW. Ribozyme-catalysed amino-acid transfer reactions. Nature 1996;381(6581):442–444.PubMedCrossRefGoogle Scholar
  63. 62.
    Illangasekare M, Sanchez G, Nickles T et al. Aminoacyl-RNA synthesis catalyzed by an RNA. Science 1995; 267(5198):643–647.PubMedCrossRefGoogle Scholar
  64. 63.
    Illangasekare M, Yarus M. A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis. RNA 1999; 5(11):1482–1489.PubMedCrossRefGoogle Scholar
  65. 64.
    Zhang B, Cech TR. Peptide bond formation by in vitro selected ribozymes. Nature 1997;390(6655):96–100.PubMedCrossRefGoogle Scholar
  66. 65.
    Kumar RK, Yarus M. RNA-catalyzed amino acid activation. Biochemistry 2001; 40(24):6998–7004.PubMedCrossRefGoogle Scholar
  67. 66.
    Francklyn C, Musier-Forsyth K, Martinis SA. Aminoacyl-tRNA synthetases in biology and disease: New evidence for structural and functional diversity in an ancient family of enzymes. RNA 1997;3(9):954–960.PubMedGoogle Scholar
  68. 67.
    Ribas de Pouplana L, Schimmel P. Aminoacyl-tRNA synthetases: potential markers of genetic code development. Trends Biochem Sci 2001; 26(10):591–596.PubMedCrossRefGoogle Scholar
  69. 68.
    Brochier C, Bapteste E, Moreira D et al. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 2002; 18(1):1–5.PubMedCrossRefGoogle Scholar
  70. 69.
    Brochier C, Philippe H, Moreira D. The evolutionary history of ribosomal protein RpS14: Horizontal gene transfer at the heart of the ribosome. Trends Genet 2000; 16(12):529–533.PubMedCrossRefGoogle Scholar
  71. 70.
    Harms J, Schluenzen F, Zarivach R et al. High-resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 2001; 107(5):679–688.PubMedCrossRefGoogle Scholar
  72. 71.
    Jue RA, Woodbury NW, Doolittle RF. Sequence homologies among E. coli ribosomal proteins: evidence for evolutionaily related groupings and internal duplications. J Mol Evol 1980;15(2):129–148.PubMedCrossRefGoogle Scholar
  73. 72.
    Brodersen DE, Clemons Jr WM, Carter AP et al. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: Structure of the proteins and their interactions with 16 S RNA. J Mol Biol 2002; 316(3):725–768.PubMedCrossRefGoogle Scholar
  74. 73.
    Ramakrishnan V, White SW. Ribosomal protein structures: Insights into thearchitecture, machinery and evolution of the ribosome. Trends Biochem Sci 1998; 23(6):208–212.PubMedCrossRefGoogle Scholar
  75. 74.
    Lo Conte L, Brenner SE, Hubbard TJ et al. SCOP database in 2002: Refinements accommodate structural genomics. Nucleic Acids Res 2002; 30(1):264–267.PubMedCrossRefGoogle Scholar
  76. 75.
    Nakagawa A, Nakashima T, Taniguchi M et al. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome. EMBO J 1999; 18(16):1459–1467.PubMedCrossRefGoogle Scholar
  77. 76.
    Regnier P, Grunberg-Manago M, Portier C. Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase: Homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1. J Biol Chem 1987; 262(1):63–68.PubMedGoogle Scholar
  78. 77.
    Bycroft M, Hubbard TJ, Proctor M et al. The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold. Cell 1997; 88(2):235–242.PubMedCrossRefGoogle Scholar
  79. 78.
    Sette M, van Tilborg P, Spurio R et al. The structure of the translational initiation factor IF1 from E. coli contains an oligomer-binding motif. EMBO J 1997; 16(6):1436–1443.PubMedCrossRefGoogle Scholar
  80. 79.
    Battiste JL, Pestova TV, Hellen CU et al. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol Cell 2000; 5(1):109–119.PubMedCrossRefGoogle Scholar
  81. 80.
    Gribskov M. Translational initiation factors IF-1 and eIF-2 alpha share an RNA-binding motif with prokaryotic ribosomal protein S1 and polynucleotide phosphorylase. Gene 1992;119(1):107–111PubMedCrossRefGoogle Scholar
  82. 81.
    Company M, Arenas J, Abelson J. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 1991; 349(6309):487–493.PubMedCrossRefGoogle Scholar
  83. 82.
    Kaberdin VR, Miczak A, Jakobsen JS et al. The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Nad Acad Sci USA 1998; 95(20):11637–11642.CrossRefGoogle Scholar
  84. 83.
    Sugita C, Sugiura M, Sugita M. A novel nucleic acid-binding protein in the cyanobacterium Synechococcus sp. PCC6301: A soluble 33-kDa polypeptide with high sequence similarity to ribo somal protein S1. Mol Gen Genet 2000; 263(4):655–663.PubMedCrossRefGoogle Scholar
  85. 84.
    Mizushima S, Nomura M. Assembly mapping of 30S ribosomal proteins from E. coli. Nature 1970; 226(252):1214.PubMedCrossRefGoogle Scholar
  86. 85.
    Rohland R, Nierhaus KH. Assembly map of the large subunit (50S) of Escherichia coli ribosomes. Proc Natl Acad Sci USA 1982; 79(3):729–733.CrossRefGoogle Scholar
  87. 86.
    Herold M, Nierhaus KH. Incorporation of six additional proteins to complete the assembly map of the 50 S subunit from Escherichia coli ribosomes. J Biol Chem 1987; 262(18):8826–8833.PubMedGoogle Scholar
  88. 87.
    Nierhaus KH. The assembly of prokaryotic ribosomes. Biochimie 1991; 73(6):739–755.PubMedCrossRefGoogle Scholar
  89. 88.
    Nowotny V, Nierhaus KH. Initiator proteins for the assembly of the 50S subunit from Escherichia coli ribosomes. Proc Natl Acad Sci USA 1982; 79(23):7238–7242.PubMedCrossRefGoogle Scholar
  90. 89.
    Lieberman KR, Noller HF. Ribosomal protein L15 as a probe of 50 S ribosomal subunit structure. J Mol Biol 1998; 284(5):1367–1378.PubMedCrossRefGoogle Scholar
  91. 90.
    Franceschi FJ, Nierhaus KH. Ribosomal proteins L15 and L16 are mere late assembly proteins of the large ribosomal subunit: Analysis of an Escherichia coli mutant lacking L15. J Biol Chem 1990; 265(27):16676–16682.PubMedGoogle Scholar
  92. 91.
    Fahnestock SR. Evidence of the involvement of a 50S ribosomal protein in several active sites. Biochemistry 1975; 14(24):5321–5327.PubMedCrossRefGoogle Scholar
  93. 92.
    Dohme F, Fahnestock SR. Identification of proteins involved in the peptidyl transferase activity of ribosomes by chemical modification. J Mol Biol 1979; 129(1):63–81.PubMedCrossRefGoogle Scholar
  94. 93.
    Cooperman BS, Wooten T, Romero DP et al. Histidine 229 in protein L2 is apparently essential for 50S peptidyl transferase activity. Biochem Cell Biol 1995; 73(11–12):1087–1094.PubMedGoogle Scholar
  95. 94.
    Wittmann-Liebold B, Uhlein M, Urlaub H et al. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites. Biochem Cell Biol 1995; 73(11–12):1187–1197.PubMedCrossRefGoogle Scholar
  96. 95.
    Uhlein M, Weglohner W, Urlaub H et al. Functional implications of ribosomal protein L2 in protein biosynthesis as shown by in vivo replacement studies. Biochem J 1998; 331 (Pt2):423–430.PubMedGoogle Scholar
  97. 96.
    Dohme F, Nierhaus KH. Role of 5S RNA in assembly and function of the 50S subunit from Escherichia coli. Proc Natl Acad Sci USA 1976; 73(7):2221–2225.PubMedCrossRefGoogle Scholar
  98. 97.
    Siefert JL, Martin KA, Abdi F et al. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA. J Mol Evol 1997; 45(5):467–472.PubMedCrossRefGoogle Scholar
  99. 98.
    Yusupov MM, Yusupova GZ, Baucom A et al. Crystal structure of the ribosome at 5.5 A resolution. Science 2001; 292(5518):883–896.PubMedCrossRefGoogle Scholar
  100. 99.
    Harris JK, Kelley ST, Spiegelman GB et al. The genetic core of the universal ancestor. Genome Res 2003; 13:407–412.PubMedCrossRefGoogle Scholar

Copyright information

© Eurekah.com and Kluwer Academic / Plenum Publishers 2004

Authors and Affiliations

  • George E. Fox
    • 1
  • Ashwinikumar K. Naik
    • 1
  1. 1.Department of Biology and BiochemistryUniversity of HoustonHoustonUSA

Personalised recommendations