Skip to main content

Expanding the Genetic Code in Vitro and in Vivo

  • Chapter
The Genetic Code and the Origin of Life

Abstract

Insight into biological function at almost every level, from catalysis to signal transduction to structure, requires a detailed understanding of proteins, biopolymers of remarkable di versity assembled from only twenty amino acid building blocks. Site-directed mutagenesis - the process by which an amino acid in a protein is swapped for one of the other 19 natural proteinogenic amino acids - has emerged as one of the most useful and powerful tools at the biochemists disposal. Not only does site-directed mutagenesis allow the identification of residues critical for catalysis, binding, folding, or structure, but it also made possible the first protein engineering experiments. The bioorganic chemist, however, cannot be fully satisfied with this method because the changes allowed are very limited compared to the physical or-ganic chemists ability to subdy alter steric or electronic properties, or the synthetic chemist’s ability to install useful functionalities or unique chemical handles for elaboration. Methods to alter proteins in more general ways have been developed over the last decade, inspiring the notion of “unnatural” life forms-living cells capable of using amino acids not accessible to life as we have observed it. Todays powerful in vitro methods of unnatural protein mutagenesis have become increasingly useful and accessible and have enhanced our understanding of pro-tein fiinction. In addition, the advent of living cells producing proteins with unnatural amino acids will allow a level of biophysical and cell-biological characterization that would have been difficult to imagine a decade ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zoller MJ, Smith M. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol 1983; 100:468–500.

    PubMed  CAS  Google Scholar 

  2. In vitro mutagenesis protocols; Trower MK, ed. Humana Press: Totowa, NJ, 1996; Vol. 57, 408.

    Google Scholar 

  3. Knowles JR. Tinkering with enzymes: What are we learning? Science 1987; 236:1252–8.

    PubMed  CAS  Google Scholar 

  4. Hermanson GT. Bioconjugate Techniques; Academic Press: 1996, 785.

    Google Scholar 

  5. Kaiser ET, Lawrence DS, Rokita SE. The chemical modification of enzymatic specificity. Ann Rev Biochem 1985; 54:565–95.

    PubMed  CAS  Google Scholar 

  6. Gloss LM, Kirsch JF. Decreasing the basicity of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with gamma-thialysine. Biochemistry 1995; 34:3990–8.

    PubMed  CAS  Google Scholar 

  7. Toney MD, Kirsch JF. Direct Brønsted analysis of the restoration of activity to a mutant enzyme by exogenous amines. Science 1989; 243:1485–8.

    PubMed  CAS  Google Scholar 

  8. Toney MD, Kirsch JF. Bronsted Analysis of Aspartate Aminotransferase Via Exogenous Catalysis of Reactions of an Inactive Mutant. Protein Science 1992; 1:107–119.

    Article  PubMed  CAS  Google Scholar 

  9. Offord RE, Gaertner HF, Wells TN et al. Proudfoot. Synthesis and evaluation of fluorescent chemokines labeled at the amino terminal. Methods Enzymol 1997; 287:348–69.

    PubMed  CAS  Google Scholar 

  10. Merrifield B. Solid phase synthesis. Science 1986; 232:341–7.

    PubMed  CAS  Google Scholar 

  11. Schneider J, Kent SB. Enzymatic activity of a synthetic 99 residue protein corresponding to the putative HIV-1 protease. Cell 1988; 54:363–8.

    PubMed  CAS  Google Scholar 

  12. Dawson PE, Kent SBH. Synthesis of native proteins by chemical ligation. Ann Rev Biochem 2000; 69:923–960.

    PubMed  CAS  Google Scholar 

  13. Kent SB. Chemical synthesis of peptides and proteins. Ann Rev Biochem 1988; 57:957–89.

    PubMed  CAS  Google Scholar 

  14. Humphrey JM, Chamberlin AR. Chemical synthesis of natural product peptides: Coupling methods for the incorporation of noncoded amino acids into peptides. Chemical Reviews 1997; 97:2243–2266.

    PubMed  CAS  Google Scholar 

  15. Abrahmsen L, Tom J, Burnier J et al. Engineering Subtilisin and Its Substrates For Efficient Ligation of Peptide Bonds in Aqueous Solution. Biochemistry 1991; 30:4151–4159.

    PubMed  CAS  Google Scholar 

  16. Chang TK, Jackson DY, Burnier JP et al. Subtiligase—a Tool For Semisynthesis of Proteins. Proc Natl Acad Sci USA 1994; 91:12544–12548.

    PubMed  CAS  Google Scholar 

  17. Jackson DY, Burnier J, Quan C et al. A Designed Peptide Ligase For Total Synthesis of Ribonuclease a With Unnatural Catalytic Residues. Science 1994; 266:243–247.

    PubMed  CAS  Google Scholar 

  18. Braisted AC, Judice JK, Wells JA. Synthesis of proteins by subtiligase. Methods Enzymol 1997; 289:298–313.

    PubMed  CAS  Google Scholar 

  19. Atwell S and Wells JA. Selection for improved subtiligases by phage display. Proc Natl Acad Sci USA 1999; 96:9497–502.

    PubMed  CAS  Google Scholar 

  20. Schnolzer M and Kent SBH. Constructing Proteins By Dovetailing Unprotected Synthetic Peptides—Backbone-Engineered Hiv Protease. Science 1992; 256:221–225.

    PubMed  CAS  Google Scholar 

  21. Dawson PE, Muir TW, Clarklewis I et al. Synthesis of Proteins By Native Chemical Ligation. Science 1994; 266:776–779.

    PubMed  CAS  Google Scholar 

  22. Canne LE, Bark SJ, Kent SBH. Extending the Applicability of Native Chemical Ligation. Amer Chem Soc 1996; 118:5891–5896.

    CAS  Google Scholar 

  23. Canne LE, Botti P, Simon RJ et al. Chemical protein synthesis by solid phase ligation of unprotected peptide segments. Amer Chem 1999; 121:8720–8727.

    CAS  Google Scholar 

  24. Xu MQ, Perler FB. The Mechanism of Protein Splicing and Its Modulation By Mutation. EMBO J 1996; 15:5146–5153.

    PubMed  CAS  Google Scholar 

  25. Chong SR, Mersha FB, Comb DG et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 1997; 192:271–281.

    PubMed  CAS  Google Scholar 

  26. Severinov K, Muir TW. Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. Bio Chem 1998; 273:16205–16209.

    CAS  Google Scholar 

  27. Muir TW, Sondhi D, Cole PA. Expressed protein ligation: A general method for protein engineering. Proc Nad Acad Sci USA 1998; 95:6705–6710.

    CAS  Google Scholar 

  28. Blaschke UK, Cotton GJ, Muir TW. Synthesis of multi-domain proteins using expressed protein ligation: Strategies for segmental isotopic labeling of internal regions. Tetrahedron 2000; 56:9461–9470.

    CAS  Google Scholar 

  29. Bain JD, Glabe CG, Dix TA et al. Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide. Amer Chem Soc 1989; 111:8013–8014.

    CAS  Google Scholar 

  30. Noren CJ, Anthony-Cahill SJ, Griffith MC et al. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 1989; 244:182–8.

    PubMed  CAS  Google Scholar 

  31. Crick FHC, Barret L, Brenner S et al. General nature of the genetic code for proteins. Nature (London) 1961; 192:1227–1232.

    PubMed  CAS  Google Scholar 

  32. Bossi L, Roth JR. The influence of codon context on genetic code translation. Nature (London) 1980; 286:123–127.

    PubMed  CAS  Google Scholar 

  33. Ayer D. Yarus M. The context effect does not require a fourth base pair. Science 1986; 231:393–5.

    PubMed  CAS  Google Scholar 

  34. Bruce AG, Atkins JF, Wills N et al. Replacement of anticodon loop nucleotides to produce functional tRNAs: amber suppressors derived from yeast tRNAPhe. Proc Natl Acad Sci USA 1982; 79:7127–31.

    PubMed  CAS  Google Scholar 

  35. Kwok Y, Wong JT. Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Canadian J Biochem 1980; 58:213–8.

    CAS  Google Scholar 

  36. Steward LE, Collins CS, Gilmore MA et al. In vitro site-specific incorporation of fluorescent probes into beta-galactosidase. Amer Chem Soc 1997:119:6–11.

    CAS  Google Scholar 

  37. Cload ST, Liu DR, Froland WA et al. Development of improved tRNAs for in vitro biosynthesis of proteins containing unnatural amino acids. Chem Biol 1996; 3:1033–1038.

    PubMed  CAS  Google Scholar 

  38. Thorson JS, Cornish VW, Barrett JE et al. In Protein Synthesis: Methods and Protocols; R. Martin, Ed.; Humana Press: Totowa, NJ, 1998; 77:43–73.

    Google Scholar 

  39. Short GF, Golovine SY, Hecht SM. Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids. Biochemistry 1999; 38:8808–8819.

    PubMed  CAS  Google Scholar 

  40. Kim DM, Kigawa F, Choi CY et al. A Highly Efficient Cell-Free Protein Synthesis System From Escherichia Coli. Eur J Biochem 1996; 239:881–886.

    PubMed  CAS  Google Scholar 

  41. Crick FHC. On Protein Synthesis. Symposium of the Society for Experimental Biology 1958; 12:138–163.

    CAS  Google Scholar 

  42. Chapeville F, Lipmann F, von Ehrenstein G et al. On the Role of Soluble Ribonucleic Acid Encoding for Amino Acid. Proc Natl Acad Sci USA 1962; 48:1086–1092.

    PubMed  CAS  Google Scholar 

  43. Pezzuto JM, Hecht SM. Amino acid substitutions in protein biosynthesis. Poly(A)-directed polyphenylalanine synthesis. Bio Chem 1980; 255:865–9.

    CAS  Google Scholar 

  44. Heckler TG, Chang LH, Zama Y et al. T4 RNA ligase mediated preparation of novel “chemically misacylated” tRNAPheS. Biochem 1984; 23:1468–73.

    CAS  Google Scholar 

  45. Payne CH, Nichols BP, Hecht SM. Escherichia coli tryptophan synthase: synthesis of catalytically competent alpha subunit in a cell-free system containing preacylated tRNAs. Biochemistry 1987; 26:3197–205.

    PubMed  CAS  Google Scholar 

  46. Baldini G, Martoglio B, Schachenmann A et al. Mischarging Escherichia coli tRNAPhe with L-4′-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenylalanine, a photoactivatable analogue of phenylalanine. Biochemistry 1988; 27:7951–9.

    PubMed  CAS  Google Scholar 

  47. Robertson SA, Noren CJ, Anthonycahill SJ et al. The Use of 5′-Phospho-2 Deoxyribocytidylylriboadenosine As a Facile Route to Chemical Aminoacylation of Transfer Rna. Nucleic Acids Res 1989; 17:9649–9660.

    PubMed  CAS  Google Scholar 

  48. Robertson SA, Ellman JA, Schultz PG. A General and Efficient Route For Chemical Aminoacylation of Transfer Rnas. Amer Chem Soc 1991; 113:2722–2729.

    CAS  Google Scholar 

  49. Cornish VW, Mendel D, Schultz PG. Probing Protein Structure and Function With an Expanded Genetic Code. Angewandte Chemie-International Edition in English 1995; 34:621–633.

    CAS  Google Scholar 

  50. Hohsaka T, Sato K, Sisido M et al. Site-Specific Incorporation of Photofunctional Nonnatural Amino Acids Into a Polypeptide Through in Vitro Protein Biosynthesis. Febs Letters 1994; 344:171–174.

    PubMed  CAS  Google Scholar 

  51. Kanda T, Takai K, Yokoyama S et al. Knocking out a specific tRNA species within unfractionated Escherichia coli tRNA by using antisense (complementary) oligodeoxyribonucleotides. Febs Letters 1998; 440:273–276.

    PubMed  CAS  Google Scholar 

  52. Kanda T, Takai K, Yokoyama S et al. Specific inactivation of Escherichia coli tRNA(Phe) by antisense DNA-treatment under Mg2+-deficient conditions. Bioorg Med Chem 2000; 8:675–679.

    PubMed  CAS  Google Scholar 

  53. Kanda T, Takai K, Yokoyama S et al. An easy cell-free protein synthesis system dependent on the addition of crude Escherichia coli tRNA. J Biochem 2000; 127:37–41.

    PubMed  CAS  Google Scholar 

  54. Kanda T, Takai K, Hohsaka T et al. Sense codon-dependent introduction of unnatural amino acids into multiple sites of a protein. Biochem Biophys Res Commun 2000; 270:1136–1139.

    PubMed  CAS  Google Scholar 

  55. Atkins JF, Weiss RB, Thompson S et al. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shirts and hops. Annu Rev Genet 1991; 25:201–28.

    PubMed  CAS  Google Scholar 

  56. Ma CH, Kudlicki W, Odom OW et al. In vitro Protein Engineering Using Synthetic Transfer RNA(Ala) With Different Anticodons. Biochem 1993; 32:7939–7945.

    CAS  Google Scholar 

  57. Kramer G, Kudlicki W, Hardesty B. In Protein Synthesis: Methods and Protocols; R. Martin, Ed.; Humana Press: Totowa, NJ, 1998:105–116.

    Google Scholar 

  58. Hohsaka T, Ashizuka Y, Murakami H et al. Incorporation of nonnatural amino acids into streptavidin through in vitro frame-shift suppression. Amer Chem Soc 1996; 118:9778–9779.

    CAS  Google Scholar 

  59. Hohsaka T, Ashizuka Y, Sasaki H et al. Incorporation of two different nonnatural amino acids independently into a single protein through extension of the genetic code. Amer Chem Soc 1999; 121:12194–12195.

    CAS  Google Scholar 

  60. Moore B, Persson BC, Nelson CC et al. Quadruplet codons: Implications for code expansion and the specification of translation step size. J Mol Biol 2000; 298:195–209.

    PubMed  CAS  Google Scholar 

  61. Moore B, Nelson CC, Persson BC et al. Decoding of tandem quadruplets by adjacent tRNAs with eight-base anticodon loops. Nucleic Acids Res 2000; 28:3615–3624.

    PubMed  CAS  Google Scholar 

  62. Magliery TJ, Anderson JC, Schultz PG. Expanding the genetic code: selection of efficient suppressors of four-base codons and indentification of “shirty” four-base codons with a library approach in Escherichia coli. J Mol Biol 2001; 307: 755–769.

    PubMed  CAS  Google Scholar 

  63. Anderson JC, Magliery TJ, Schultz PG. Exploring the limits of codon and anticodon size. Chem Biol 2001, submitted.

    Google Scholar 

  64. Switzer C, Moroney SE, Benner SA. Enzymatic incorporation of a new base pair into DNA and RNA. Amer Chem Soc 1989; 111:8322–8323.

    CAS  Google Scholar 

  65. Bain JD, Switzer C, Chamberlin AR et al. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 1992; 356:537–539.

    PubMed  CAS  Google Scholar 

  66. Piccirilli JA, Krauch T, Moroney SE et al. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 1990; 343:33–37.

    PubMed  CAS  Google Scholar 

  67. Moran S, Ren RXF, Rumney S et al. Difluorotoluene, a nonpolar isostere for thymine, codes specifically and efficiently for adenine in DNA replication. Amer Chem Soc 1997; 119:2056–2057.

    CAS  Google Scholar 

  68. Matray TJ, Koo ET. Selective and stable DNA base pairing without hydrogen bonds. Amer Chem Soc 1998; 120:6191–6192.

    CAS  Google Scholar 

  69. Morales JC, Kool ET. Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat Struct Biol 1998; 5: 950–954.

    PubMed  CAS  Google Scholar 

  70. McMinn DL, Ogawa AK, Wu YQ et al. Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-fairing hydrophobic base. Amer Chem Soc 1999; 121:11585–11586.

    CAS  Google Scholar 

  71. Ogawa AK, Wu YQ, McMinn DL et al. Efforts toward the expansion of the genetic alphabet: Information storage and replication with unnatural hydrophobic base pairs. Amer Chem Soc 2000; 122:3274–3287.

    CAS  Google Scholar 

  72. Wu YQ, Ogawa AK, Berger M et al. Efforts toward expansion of the genetic alphabet: Optimization of interbase hydrophobic interactions. Amer Chem Soc 2000; 122:7621–7632.

    CAS  Google Scholar 

  73. Meggers E, Holland PL, Tolman WB et al. A novel copper-mediated DNA base pair. Amer Chem Soc 2000; 122:10714–10715.

    CAS  Google Scholar 

  74. Kool ET. Synthetically modified DNAs as substrates for polymerases. Curr Opin Chem Biol 2000; 4:602–608.

    PubMed  CAS  Google Scholar 

  75. Nowak MW, Kearney PC, Sampson JR et al. Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science 1995; 268:439–442.

    PubMed  CAS  Google Scholar 

  76. Saks ME, Sampson JR, Nowak MW et al. An engineered tetrahymena Trna(Gln) for in vivo Incorporation of unnatural amino acids into proteins by nonsense suppression. Bio Chem 1996; 271:23169–23175.

    CAS  Google Scholar 

  77. Cotton GJ, Muir TW. Peptide ligation and its application to protein engineering. Chem Biol 1999; 6:R247–R256.

    PubMed  CAS  Google Scholar 

  78. Dougherty DA. Unnatural amino acids as probes of protein structure and function. Curr Opin Chem Biol 2000; 4:645–652.

    PubMed  CAS  Google Scholar 

  79. Ellman JA, Mendel D, Schultz PG. Site-Specific Incorporation of Novel Backbone Structures Into Proteins. Science 1992; 255:197–200.

    PubMed  CAS  Google Scholar 

  80. Mendel D, Ellman J, Schultz PG. Protein Biosynthesis With Conformationally Restricted Amino Acids. Amer Chem Soc 1993; 115:4359–4360.

    CAS  Google Scholar 

  81. Mendel D, Ellman JA, Chang ZY et al. Probing protein stability with unnatural amino acids. Science 1992; 256:1798–1802.

    PubMed  CAS  Google Scholar 

  82. Thorson JS, Chapman E, Schultz PG. Analysis of hydrogen bonding strengths in proteins using unnatural amino acids. Amer Chem Soc 1995; 117:9361–9362.

    CAS  Google Scholar 

  83. Thorson JS, Chapman E, Murphy EC et al. Linear free energy analysis of hydrogen bonding in proteins. Amer Chem Soc 1995; 117:1157–1158.

    CAS  Google Scholar 

  84. Ting AY, Shin I, Lucero C et al. Energetic analysis of an engineered cation-pi interaction in staphylococcal nuclease. Amer Chem Soc 1998; 120:7135–7136.

    CAS  Google Scholar 

  85. Zhong WG, Gallivan JP, Zhang YN et al. Dougherty. From ab initio quantum mechanics to molecular neurobiology: A cation-pi binding site in the nicotinic receptor. Proc Natl Acad Sci USA 1998; 95:12088–12093.

    PubMed  CAS  Google Scholar 

  86. Ellman JA, Volkman BF, Mendel D et al. Site-Specific Isotopic Labeling of Proteins For Nmr Studies. Amer Chem Soc 1992; 114:7959–7961.

    CAS  Google Scholar 

  87. Cornish VW, Benson DR, Altenbach CA et al. Site-Specific Incorporation of Biophysical Probes Into Proteins. Proc Natl Acad Sci USA 1994; 91:2910–2914.

    PubMed  CAS  Google Scholar 

  88. Cornish VW, Hahn KM, Schultz PG. Site-Specific Protein Modification Using a Ketone Handle. Amer Chem Soc 1996; 118:8150–8151.

    CAS  Google Scholar 

  89. Gallivan pg, Lester HA, Dougherty DA. Site-specific incorporation of biotinylated amino acids to identify surface-exposed residues in integral membrane proteins. Chem Biol 1997; 4:739–749.

    PubMed  CAS  Google Scholar 

  90. Murakami H, Hohsaka T, Ashizuka T et al. Site-directed incorporation of p-nitrophenylalanine into streptavidin and site-to-site photoinduced electron transfer from a pyrenyl group to a nitrophenyl group on the protein framework. Amer Chem Soc 1998; 120:7520–7529.

    CAS  Google Scholar 

  91. Cotton GJ, Ayers B, Xu R et al. Insertion of a synthetic peptide into a recombinant protein framework: A protein biosensor. Amer Chem Soc 1999; 121:1100–1101.

    CAS  Google Scholar 

  92. Cotton GJ, Muir TW. Generation of a dual-labeled fluorescence biosensor for Crk-II phosphorylation using solid-phase expressed protein ligation. Chem Biol 2000; 7:253–261.

    PubMed  CAS  Google Scholar 

  93. Deniz AA, Laurence TA, Beligere GS et al. Single-molecule protein folding: Diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci USA 2000; 97:5179–5184.

    PubMed  CAS  Google Scholar 

  94. Mendel D, Ellman JA Schultz PG. Construction of a light-activated protein by unnatural amino acid mutagenesis. Amer Chem Soc 1991; 113:2758–2760.

    CAS  Google Scholar 

  95. Miller JC, Silverman SK, England PM et al. Flash decaging of tyrosine sidechains in an ion channel. Neuron 1998; 20:619–624.

    PubMed  CAS  Google Scholar 

  96. England PM, Lester HA, Davidson N et al. Site-specific, photochemical proteolysis applied to ion channels in vivo. Proc Natl Acad Sci USA 1997; 94:11025–11030.

    PubMed  CAS  Google Scholar 

  97. Short GF, Lodder M, Laikhter AL et al. Caged HIV-1 protease: Dimerization is independent of the ionization state of the active site aspartates. Amer Chem Soc 1999; 121:478–479.

    CAS  Google Scholar 

  98. Pollitt SK, Schultz PG. A photochemical switch for controlling protein-protein interactions. Angewandte Chemie-International Edition 1998, 37, 2104–2107.

    CAS  Google Scholar 

  99. Budisa N, Minks C, Alefelder S et al. Toward the experimental codon reassignment in vivo: Protein building with an expanded amino acid repertoire. Faseb Journal 1999; 13:41–51.

    PubMed  CAS  Google Scholar 

  100. Browne DR, Kenyon GL, Hegeman GD. Incorporation of monoflurotryptophans into protein during the growth of Escherichia coli. Biochem Biophys Res Commun 1970; 39:13–9.

    PubMed  CAS  Google Scholar 

  101. Kim HW, Perez JA, Ferguson SJ et al. The Specific Incorporation of Labelled Aromatic Amino Acids Into Proteins Through Growth of Bacteria in the Presence of Glyphosate—Application to Fluorotryptophan Labelling to the H+-Atpase of Escherichia-Coli and Nmr Studies. Febs Letters 1990; 272:34–36.

    PubMed  CAS  Google Scholar 

  102. Parsons JF, Xiao GY, Gilliland GL et al. Enzymes harboring unnatural amino acids: Mechanistic and structural analysis of the enhanced catalytic activity of a glutathione transferee containing 5-fluorotryptophan. Biochem 1998; 37:6286–6294.

    CAS  Google Scholar 

  103. Luck LA, Falke JJ. Open Conformation of a Substrate-Binding Cleft—F-19 Nmr Studies of Cleft Angle in the D-Galactose Chemosensory Receptor. Biochem 1991; 30:6484–6490.

    CAS  Google Scholar 

  104. Luck LA, Falke JJ. F-19 Nmr Studies of the D-Galactose Chemosensory Receptor. 1. Sugar Binding Yields a Global Structural Change. Biochem 1991; 30:4248–4256.

    CAS  Google Scholar 

  105. Luck LA, Falke JJ. F-19 Nmr Studies of the D-Galactose Chemosensory Receptor. 2. Ca(Ii) Binding Yields a Local Structural Change. Biochem 1991; 30:4257–4261.

    CAS  Google Scholar 

  106. Luck LA, Vance JE, Oconnell TM et al. F-19 Nmr Relaxation Studies On 5-Fluorotryptophan-and Tetradeutero-5-Fluorotryptophan-Labeled E-Coli Glucose/Galactose Receptor. J Biomolecular Nmr 1996;7:261–272.

    Article  CAS  Google Scholar 

  107. Minks C, Huber R, Moroder L et al. Atomic mutations at the single tryptophan residue of human recombinant annexin V: Effects on structure, stability, and activity. Biochem 1999; 38:10649–10659.

    CAS  Google Scholar 

  108. Geisow M. New attempts to solve protein structures lead to madness. Trends Biotechnol 1991; 9:4–5.

    PubMed  CAS  Google Scholar 

  109. Hendrickson WA, Horton JR, Lemaster DM. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (Mad)—a vehicle for direct determination of 3-dimensional structure. EMBOJ 1990; 9:1665–1672.

    CAS  Google Scholar 

  110. Yang W, Hendrickson WA, Crouch RJ et al. Structure of ribonuclease-H phased at 2-a resolution by Mad analysis of the selenomethionyl protein. Science 1990; 249:1398–1405.

    PubMed  CAS  Google Scholar 

  111. Budisa N, Steipe B, Demange P et al. High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia Coli. Eur J Biochem 1995; 230:788–796.

    PubMed  CAS  Google Scholar 

  112. Jakubowski H. Accelerated publication—Translational incorporation of S-nitrosohomocysteine into protein. Bio Chem 2000; 275:21813–21816.

    CAS  Google Scholar 

  113. Budisa H, Huber R, Golbik R et al. Moroder. Atomic mutations in annexin V—Thermodynamic studies of isomorphous protein variants. Eur J Biochem 1998; 253:1–9.

    PubMed  CAS  Google Scholar 

  114. Budisa N, Minks C, Medrano FJ et al. Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: Structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci USA 1998; 95:455–459.

    PubMed  CAS  Google Scholar 

  115. McGrath KP, Fournier MJ, Mason TL et al. Genetically directed syntheses of new polymeric materials—expression of artificial genes encoding proteins with repeating (Alagly)3proglugly elements. Amer Chem Soc 1992; 114:727–733.

    CAS  Google Scholar 

  116. Kothakota S, Mason TL, Tirrell DA et al. Biosynthesis of a periodic protein containing 3-Thienylalanine—a step toward genetically engineered conducting polymers. Amer Chem Soc 1995; 117:536–537.

    CAS  Google Scholar 

  117. Yoshikawa E, Fournier MJ, Mason TL et al. Genetically engineered fluoropolymers—synthesis of repetitive polypeptides containing P-fluorophenylalalanine residues. Macromolecules 1994; 27:5471–5475.

    CAS  Google Scholar 

  118. vanHest JCM, Tirrell DA. Efficient introduction of alkene functionality into proteins in vivo. Febs Letters 1998; 428:68–70.

    CAS  Google Scholar 

  119. vanHest JCM, Kiick KL, Tirrell DA. Efficient incorporation of unsaturated methionine analogues into proteins in vivo. Amer Chem Soc 2000; 122:1282–1288.

    CAS  Google Scholar 

  120. Sharma N, Furter R, Kast P et al. Efficient introduction of aryl bromide functionality into proteins in vivo. Febs Letters 2000; 467:37–40.

    PubMed  CAS  Google Scholar 

  121. Kiick KL, Tirrell DA. Protein engineering by in vivo incorporation of non-natural amino acids: Control of incorporation of methionine analogues by methionyl-tRNA synthetase. Tetrahedron 2000; 56:9487–9493.

    CAS  Google Scholar 

  122. Ibba M, Kast P, Hennecke H. Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-Trna synthetase. Biochem 1994; 33:7107–7112.

    CAS  Google Scholar 

  123. Clark TD, Ghadiri MR. Supramolecular design by covalent capture—design of a peptide cylinder via hydrogen-bond-promoted intermolecular olefin metathesis. Amer Chem Soc 1995; 117:12364–12365.

    CAS  Google Scholar 

  124. Doring V, Mootz HD, Nangle LA et al. Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science 2001; 292:501–504.

    PubMed  CAS  Google Scholar 

  125. Ibba M, Soll D. Aminoacyl-tRNA synthesis. Ann Rev Biochem 2000; 69:617–650.

    PubMed  CAS  Google Scholar 

  126. Liu DR, Magliery TJ, Schultz PG. Characterization of an ‘orthogonal’ suppressor tRNA derived from E-coli tRNA(2)(Gln). Chem Biol 1997; 4:685–691.

    PubMed  CAS  Google Scholar 

  127. Bradley D, Park JV, Soil L. TRNA2Gln Su+2 mutants that increase amber suppression. J Bacteriology 1981; 145:704–12.

    CAS  Google Scholar 

  128. Jahn M, Rogers JM, Soll D. Anticodon and acceptor stem nucleotides in transfer Rnagln are major recognition elements for E-coli glutaminyl-transfer RNA synthetase. Nature 1991; 352:258–260.

    PubMed  CAS  Google Scholar 

  129. Hayase Y, Jahn M, Rogers MJ et al. Recognition of bases in Escherichia-coli transfer Rna(Gln) by glutaminyl-transfer RNA synthetase—a complete identity set. EMBO J 1992; 11:4159–4165.

    PubMed  CAS  Google Scholar 

  130. Englisch-Peters S, Conley J, Plumbridge J et al. Mutant enzymes and transfer RNAs as probes of the glutaminyl-transfer RNA synthetase—transfer RNA Gln interaction. Biochimie 1991; 73:1501–1508.

    PubMed  CAS  Google Scholar 

  131. Ibba M, Hong KW, Soll D. Glutaminyl-tRNA synthetase: From genetics to molecular recognition. Genes Cells 1996; 1:421–427.

    PubMed  CAS  Google Scholar 

  132. Rath VL, Silvian LF, Beijer B et al. How glutaminyl-tRNA synthetase selects glutamine. Structure 1998; 6:439–449.

    PubMed  CAS  Google Scholar 

  133. Freist D, Gauss DH, Ibba M et al. Glutaminyl-tRNA synthetase. Biological Chemistry 1997; 378:1103–1117.

    PubMed  CAS  Google Scholar 

  134. Liu DR, Magliery TJ, Pasternak M et al. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci USA 1997; 94:10092–10097.

    PubMed  CAS  Google Scholar 

  135. Stemmer WPC. DNA shuffling by random fragmentation and reassembly—in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 1994; 91:10747–10751.

    PubMed  CAS  Google Scholar 

  136. Patten PA, Howard RJ, Stemmer WPC. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr Opin Biotech 1997; 8:724–733.

    PubMed  CAS  Google Scholar 

  137. Schimmel P, Soll D. When protein engineering confronts the tRNA world. Proc Natl Acad Sci USA 1997; 94:10007–10009.

    PubMed  CAS  Google Scholar 

  138. Whelihan EF, Schimmel P. Rescuing an essential enzyme RNA complex with a non-essential appended domain. EMBOJ 1997; 16:2968–2974.

    CAS  Google Scholar 

  139. Wang CC, Schimmel P. Species barrier to RNA recognition overcome with nonspecific RNA binding domains. Bio Chem 1999; 274:16508–16512.

    CAS  Google Scholar 

  140. Liu DR, Schultz PG. Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci USA 1999; 96:4780–4785.

    PubMed  CAS  Google Scholar 

  141. Huang WZ, Petrosino J, Hirsch M et al. Amino Acid Sequence Determinants of Beta-Lactamase Structure and Activity. J Mol Biol 1996; 258:688–703.

    PubMed  CAS  Google Scholar 

  142. Ohno S, Yokogawa T, Fujii I et al. Co-expression of yeast amber suppressor tRNA(Tyr) and tyrosyl-tRNA synthetase in Escherichia coli: Possibility to expand the genetic code. J Biochem 1998; 124:1065–1068.

    PubMed  CAS  Google Scholar 

  143. Wang L, Magliery TJ, Liu DR et al. A new functional suppressor tRNA/aminoacyl-tRNA synthetase pair for the in vivo incorporation of unnatural amino acids into proteins. Amer Chem Soc 2000; 122:5010–5011.

    CAS  Google Scholar 

  144. Steer BA, Schimmel P. Major anticodon-binding region missing from an archaebacterial tRNA synthetase. Bio Chem 1999; 274:35601–35606.

    CAS  Google Scholar 

  145. Steer BA, Schimmel P. Domain-domain communication in a miniature archaebacterial tRNA synthetase. Proc Natl Acad Sci USA 1999; 96:13644–13649.

    PubMed  CAS  Google Scholar 

  146. Wang L, Brock A, Herberich B et al. Expanding the genetic code of Escherichia coli. Science 2001; 292:498–500.

    PubMed  CAS  Google Scholar 

  147. Wang L, Schultz PG. 2001, manuscript in preparation.

    Google Scholar 

  148. Kowal AK, Kohrer C, RajBhandary UL. Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci USA 2001; 98:2268–2273.

    PubMed  CAS  Google Scholar 

  149. Drabkin HJ, Park HJ, Rajbhandary UL. Amber Suppression in Mammalian Cells Dependent Upon Expression of an Escherichia Coli Aminoacyl-Trna Synthetase Gene. Mol Cell Biol 1996; 16:907–913.

    PubMed  CAS  Google Scholar 

  150. Doctor BP, Mudd JA. Species specificity of amino acid accepter ribonucleic acid and aminoacyl soluble ribonucleic acid synthetases. Bio Chem 1963; 238:3677–3681.

    CAS  Google Scholar 

  151. Giege R, Florentz C, Kern D et al. Aspartate Identity of Transfer Rnas. Biochimie 1996; 78:605–623.

    PubMed  CAS  Google Scholar 

  152. Martin F. In Universite Louis Pasteur: Strasbourg, France, 1995;pp 186.

    Google Scholar 

  153. Pastrnak M, Magliery TJ, Schultz PG. A new orthogonal suppressor tRNA/aminoacyl-tRNA synthetase pair for evolving an organism with an expanded genetic code. Helvetica Chimica Acta 2000; 83:2277–2286.

    CAS  Google Scholar 

  154. Yarus M. Intrinsic precision of aminoacyl-tRNA synthesis enhanced through parallel systems of ligands. Nature. New Biology 1972; 239:106–8.

    PubMed  CAS  Google Scholar 

  155. Sherman JM, Rogers MJ, Soll D. Competition of aminoacyl-transfer RNA synthetases for transfer RNA ensures the accuracy of aminoacylation. Nucleic Acids Res 1992; 20:2847–2852.

    PubMed  CAS  Google Scholar 

  156. Sherman JM, Soll D. Aminoacyl-tRNA synthetases optimize both cognate tRNA recognition and discrimination against noncognate tRNAs. Biochem 1996; 35:601–607.

    CAS  Google Scholar 

  157. Ibba M, Hennecke H. Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. Febs Letters 1995; 364:272–275.

    PubMed  CAS  Google Scholar 

  158. Behrens C, Nielsen JN, Fan XJ et al. Development of strategies for the site-specific in vivo incorporation of photoreactive amino acids: p-azidophenylalanine, p-acetylphenylalanine and benzofuranylalanine. Tetrahedron 2000; 56:9443–9449.

    CAS  Google Scholar 

  159. Agou F, Quevillon S, Kerjan P et al. Switching the amino acid specificity of an aminoacyl-tRNA synthetase. Biochem 1998; 37:11309–11314.

    CAS  Google Scholar 

  160. Hong KW, Ibba M, Soll D. Retracing the evolution of amino acid specificity in glutaminyl-tRNA synthetase. Febs Letters 1998; 434:149–154.

    PubMed  CAS  Google Scholar 

  161. Ibba M, Hong KW, Sherman JM et al. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proc Natl Acad Sci USA 1996; 93:6953–6958.

    PubMed  CAS  Google Scholar 

  162. Hong KW, Ibba M, Weyganddurasevic I et al. Transfer RNA-dependent cognate amino acid recognition by an aminoacyl-tRNA synthetase. EMBO J 1996; 15:1983–1991.

    PubMed  CAS  Google Scholar 

  163. Liu JH, Ibba M, Hong KW et al. The terminal adenosine of tRNA(Gln) mediates tRNA-dependent amino acid recognition by glutaminyl-tRNA synthetase. Biochem 1998; 37:9836–9842.

    CAS  Google Scholar 

  164. Shaw WV, Leslie AGW. Chloramphenicol acetyltransferase. Ann Rev Biophys Chem 1991; 20:363–386.

    CAS  Google Scholar 

  165. Capone JP, Sedivy JM, Sharp PA et al. Introduction of UAG, UAA, and UGA nonsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells. Mol Cell Biol 1986; 6:3059–67.

    PubMed  CAS  Google Scholar 

  166. Pastrnak M, Schultz PG. Phage selection for site-specific incorporation of unnatural amino acids into proteins in vivo. Bioorganic Medicinal Chem 2001, in press.

    Google Scholar 

  167. Furter R. Expansion of the genetic code: Site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Science 1998; 7:419–426.

    Article  PubMed  CAS  Google Scholar 

  168. Fechter P, Rudinger-Thirion J, Tukalo M et al. Major tyrosine identity determinants in Methanococcus jannaschii and Saccharomyces c erevisiae tRNA(Tyr) conserved but expressed differently. Eur J Biochem 2001; 268:761–767.

    PubMed  CAS  Google Scholar 

  169. Chin JW, Martin AB, King DS et al. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 2002; 99:11020–11024.

    PubMed  CAS  Google Scholar 

  170. Chin JW, Santoro SW, Martin AB et al. Addition of p-azido-L-phenylaianine to the genetic code of Escherichia coli. J Am Chem Soc 2002; 124:9026–9027.

    PubMed  CAS  Google Scholar 

  171. Santoro SW, Wang L, Herberich B et al. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat Biotech 2002; 20:1044–1048.

    CAS  Google Scholar 

  172. Wang L, Brock A, Schultz PG. Adding L-3-(2-naphthyl)alanine to the genetic code of E. coli. J Am Chem Soc 2002; 124:1836–1837.

    PubMed  CAS  Google Scholar 

  173. Zhang ZW, Wang L, Brock A et al. The selective incorporation of alkenes into proteins in Escherichia coli. Angew Chem Int Ed 2002; 41:2840–2842.

    CAS  Google Scholar 

  174. Chin JW, Cropp TA, Anderson JC et al. An expanded eukaryotic genetic code. Science 2003; 301:964–967.

    PubMed  CAS  Google Scholar 

  175. Deiters A, Cropp TA, Mukherji M et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J Am Chem Soc 2003; 125:11782–11783.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Magliery, T.J., Liu, D.R. (2004). Expanding the Genetic Code in Vitro and in Vivo. In: The Genetic Code and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/0-387-26887-1_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-26887-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47843-7

  • Online ISBN: 978-0-387-26887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics