Skip to main content

Protein Coats As Mediators of Intracellular Sorting and Organelle Biogenesis

  • Chapter
The Biogenesis of Cellular Organelles

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Protein sorting through the secretory and endocytic pathways is essential for many aspects of cell function, including the biogenesis and maintenance of numerous intra-cellular organelles. Efficient protein trafficking requires a complex machinery of regulatory and structural factors. Key components of this machinery include protein coats, which mediate selective recruitment of cargo and transport-vesicle formation and targeting. Through these functions, a diversity of protein coats, often with the aid of accessory factors, regulates protein type and number within secretory and endocytic organelles and at the cell surface. Recent studies both in model organisms and humans have provided new insights into the traditional view of protein coat structure and function. In addition, genetic and genome-based analyses have revealed novel coat components as well as the distinct sorting events in which they participate. The significance of these findings to secretory and endocytic sorting, and their relevance to the biogenesis of organelles comprising these pathways, are the subjects of the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delahunty M, Bonifacino JS. Disorders of intracellular protein trafficking in human disease. Connective Tissue Research 1995; 31:283–286.

    PubMed  CAS  Google Scholar 

  2. Dell’Angelica EC, Mullins C, Caplan S et al. Lysosome-related organelles. FASEB 2000; 14:1265–1278.

    CAS  Google Scholar 

  3. Mullins C, Bonifacino JS. The molecular machinery for lysosome biogenesis. BioEssays 2001; 23:333–343.

    PubMed  CAS  Google Scholar 

  4. Lippincott-Schwartz J, Roberts T, Hirschberg K. Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol 2000; 16:557–589.

    PubMed  CAS  Google Scholar 

  5. Donaldson JG, Jackson CL. Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol 2000; 12:475–482.

    PubMed  CAS  Google Scholar 

  6. Kirchhausen T. Three ways to make a vesicle. Nat Rev Mol Cell Biol 2000; 1:182–198.

    Google Scholar 

  7. Wu X, Zhao X, Baylor L et al. Clathrin exchange during clathrin-mediated endocytosis. J Cell Biol 2001; 155:291–300.

    PubMed  CAS  Google Scholar 

  8. Rodman S, Wandinger-Ness A. Rab GTPases coordinate endocytosis. J Cell Sci 2000; 113:183–192.

    CAS  Google Scholar 

  9. Pfeffer SR. Transport-vesicle targeting: Tethers before SNAREs. Nat Cell Biol 1999; 1:E17–E21.

    PubMed  CAS  Google Scholar 

  10. Simons K, Toomre D. Lipid rafts and signal transduction. Mol Cell Biol 2000; 1:31–39.

    CAS  Google Scholar 

  11. Nichols BJ, Lippincott-Schwartz J. Endocytosis without clathrin coats. Trends Cell Biol 2001; 11:406–412.

    PubMed  CAS  Google Scholar 

  12. Blott EJ, Griffiths GM. Secretory lysosomes. Nat Rev Mol Cell Biol 2002; 3:122–131.

    PubMed  CAS  Google Scholar 

  13. Pearse BMF, Smith CJ, Owen DJ. Clathrin coat construction in endocytosis. Curr Opin Struct Biol 2000; 10:220–228.

    PubMed  CAS  Google Scholar 

  14. Liu S-H, Towler MC, Chen E et al. A novel clathrin homolog that codistributes with cytoskeletal components functions in the trans-Golgi network. EMBO J 2001; 20:272–284.

    PubMed  CAS  Google Scholar 

  15. Ungewickell E, Branton D. Assembly units of clathrin coats. Nature 1981; 289:420–422.

    PubMed  CAS  Google Scholar 

  16. ter Haar E, Musacchio A, Harrison SC et al. Atomic structure of clathrin: A β propeller terminal domain joins an α zigzag linker. Cell 1998; 95:563–573.

    PubMed  Google Scholar 

  17. Morgan JR, Prasad K, Hao W et al. A conserved clathrin assembly motif essential for synaptic vesicle endocytosis. J Neurosci 2000; 20:8667–8676.

    PubMed  CAS  Google Scholar 

  18. Goodman Jr OB, Krupnick JG, Santini F et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 1996; 383:447–450.

    PubMed  CAS  Google Scholar 

  19. Krupnick JG, Goodman Jr OB, Keen JH et al. Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J Biol Chem 1997; 272:15011–15016.

    PubMed  CAS  Google Scholar 

  20. Pierce KJ, Lefkowitz RJ. Classical and new roles of β-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neuro 2001; 2:727–733.

    CAS  Google Scholar 

  21. ter Haar E, Harrison SC, Kirchhausen T. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc Natl Acad Sci USA 2000; 97:1096–1100.

    PubMed  Google Scholar 

  22. Ramjaun AR, McPherson PS. Multiple amphiphysin II splice variants display differential clathrin binding: Identification of two distinct clathrin-binding sites. J Neurochem 1998; 70:2369–2376.

    PubMed  CAS  Google Scholar 

  23. Rosenthal JA, Chen H, Slepnev VI et al. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J Biol Chem 1999; 274:33959–33965.

    PubMed  CAS  Google Scholar 

  24. Drake MT, Downs MA, Traub LM. Epsin binds to clathrin by associating directly with the clathrin-terminal domain. Evidence for cooperative binding through two discrete sites. J Biol Chem 2000; 275:6479–6489.

    PubMed  CAS  Google Scholar 

  25. McPherson PS, Garcia EP, Slepnev VI et al. A presynaptic inositol-5-phosphatase. Nature 1996; 379:353–357.

    PubMed  CAS  Google Scholar 

  26. Ungewickell E, Ungewickell H, Holstein SE et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 1995; 378:632–635.

    PubMed  CAS  Google Scholar 

  27. Dell’Angelica EC. Clathrin-binding proteins: Got a motif? Join the network! Trends Cell Biol 2001; 11:315–318.

    PubMed  CAS  Google Scholar 

  28. Slepnev VI, De Camilli P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 2000; 1:161–172.

    PubMed  CAS  Google Scholar 

  29. Takei K, Haucke V. Clathrin-mediated endocytosis: Membrane factors pull the trigger. Trends Cell Biol 2001; 11:385–391.

    PubMed  CAS  Google Scholar 

  30. Lemmon SK, Jones EW. Clathrin requirements for normal growth of yeast. Science 1987; 238:504–509.

    PubMed  CAS  Google Scholar 

  31. Payne GS, Baker D, van Tuinen E et al. Protein transport to the vesicle and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast. J Cell Biol 1988; 106:1453–1461.

    PubMed  CAS  Google Scholar 

  32. Payne GS, Schekman R. Clathrin: A role in the intracellular retention of a Golgi membrane protein. Science 1989; 245:1358–1365.

    PubMed  CAS  Google Scholar 

  33. Chu DS, Pishvaee B, Payne GS. The light chain subunit is required for clathrin function in Saccharomyces cerevisiae. J Biol Chem 1996; 271:33123–33130.

    PubMed  CAS  Google Scholar 

  34. Seeger M, Payne GS. Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae. J Cell Biol 1992; 118:531–540.

    PubMed  CAS  Google Scholar 

  35. Bensen ES, Costaguta G, Payne GS. Synthetic genetic interactions with temperaturesensitive clathrin in Saccharomyces cerevisiae: Roles for synaptojanin-like Inp53p and dynamin-related Vpslp in clathrin-dependent protein sorting at the trans-Golgi network. Genetics 2000; 154:83–97.

    PubMed  CAS  Google Scholar 

  36. Stepp JD, Pellicena-Palle A, Hamilton S et al. A late Golgi sorting function for Saccharomyces cerevisiae Apm1p, but not for Apm2p, a second yeast clathrin AP medium chain-related protein. Mol Biol Cell 1995; 6:41–58.

    PubMed  CAS  Google Scholar 

  37. Yeung BG, Phan HL, Payne GS. Adaptor complex-independent clathrin function in yeast. Mol Biol Cell 1999; 10:3643–3659.

    PubMed  CAS  Google Scholar 

  38. Costaguta G, Stefan CJ, Bensen ES et al. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol Biol Cell 2001; 12:1885–1896.

    PubMed  CAS  Google Scholar 

  39. Bazinet C, Katzen AL, Morgan M et al. The Drosophila clathrin heavy chain gene: Clathrin function is essential in a multicellular organism. Genetics 1993; 134:1119–1134.

    PubMed  CAS  Google Scholar 

  40. Boehm M, Bonifacino JS. Adaptins: The final recount. Mol Biol Cell 2001; 12:2907–2920.

    PubMed  CAS  Google Scholar 

  41. Robinson MS, Bonifacino JS. Adaptor-related proteins. Curr Opin Cell Biol 2001; 13:444–453.

    PubMed  CAS  Google Scholar 

  42. Gallusser A, Kirchhausen T. The β1 and β2 subunits of the AP complexes are the clathrin coat assembly components. EMBO J 1993; 12:5237–5244.

    PubMed  CAS  Google Scholar 

  43. Dell’Angelica EC, Klumperman J, Stoorvogel W et al. Association of the AP-3 adaptor complex with clathrin. Science 1998; 280:431–434.

    PubMed  CAS  Google Scholar 

  44. Traub LM, Kornfeld S, Ungewickell S. Different domains of the AP-1 adaptor complex are required for Golgi membrane binding and clathrin recruitment. J Biol Chem 1995; 270:4933–4942.

    PubMed  CAS  Google Scholar 

  45. Owen DJ, Vallis Y, Pearse BMF et al. The structure and function of the μ2-adaptin appendage domain. EMBO J 2000; 19:4216–4227.

    PubMed  CAS  Google Scholar 

  46. Dell’Angelica EC, Mullins C, Bonifacino JS. AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 1999; 274:7278–7285.

    PubMed  CAS  Google Scholar 

  47. Hirst J, Bright NA, Rous B et al. Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 1999; 10:2787–2802.

    PubMed  CAS  Google Scholar 

  48. Page LJ, Robinson MS. Targeting signals and subunit interactions in coated vesicle adaptor complexes. J Cell Biol 1995; 131:619–630.

    PubMed  CAS  Google Scholar 

  49. Page LJ, Sowerby PJ, Winnie WY et al. Gamma-synergin: An EH domain-containing protein that interacts with γ-adaptin. J Cell Biol 1999; 146:993–1004.

    PubMed  CAS  Google Scholar 

  50. Doray B, Kornfeld S. Gamma subunit of the AP-1 adaptor complex binds clathrin: Implications for cooperative binding in coated vesicle assembly. Mol Biol Cell 2001; 12:1925–1935.

    PubMed  CAS  Google Scholar 

  51. Yeung BG, Payne GS. Clathrin interactions with C-terminal regions of the yeast AP-1 β and γ subunits are important for AP-1 association with clathrin coats. Traffic 2001; 2:565–576.

    PubMed  CAS  Google Scholar 

  52. Owen DJ, Vallis Y, Noble ME et al. A structural explination for the binding of multiple ligands by the alpha-adaptin appendage domain. Cell 1999; 97:805–815.

    PubMed  CAS  Google Scholar 

  53. Bonifacino JS, Marks MS, Ohno H et al. Mechanisms of signal-mediated protein sorting in the endocytic and secretory pathways. Proc Assoc American Phy 1996; 108:285–295.

    CAS  Google Scholar 

  54. Bonifacino JS, Dell’Angelica EC. Molecular basis for the recognition of tyrosine-based sorting signals. J Cell Biol 1999; 145:923–926.

    PubMed  CAS  Google Scholar 

  55. Heilker R, Spiess M, Crottet P. Recognition of sorting signals by clathrin adaptors. BioEssays 1999; 21:558–567.

    PubMed  CAS  Google Scholar 

  56. Hofmann MW, Honing S, Rodionov D et al. The leucine-based sorting motifs in the cytoplasmic domain of the invariant chain are recognized by the clathrin adaptors AP-1 and AP-2 and their medium chains. J Biol Chem 1999; 274:36153–36158.

    PubMed  CAS  Google Scholar 

  57. Rapoport I, Chen YC, Cupers P et al. Dileucine-based sorting signals bind to the β chain of AP-1 at a site distinct and regulated differently from the tyrosine-based motif binding-site. EMBO J 1998; 17:2148–2155.

    PubMed  CAS  Google Scholar 

  58. Takatsu H, Futatsumori M, Yoshino K et al. Similar subunit interactions contribute to assembly of clathrin adaptor complexes and COPI complex: Analysis using yeast three-hybrid system. Biochem Biophys Res Commun 2001; 284:1083–1089.

    PubMed  CAS  Google Scholar 

  59. Zhu Y, Traub LM, Kornfeld S. ADP-ribosylation factor 1 transiently activates high-affinity adaptor protein complex AP-1 binding sites on Golgi membranes. Mol Biol Cell 1998; 9:1323–1337.

    PubMed  CAS  Google Scholar 

  60. Wagner M, Rajasekaran AK, Hanzel DK et al. Brefeldin A causes structural and functional alterations of the trans-Golgi network of MDCK cells. J Cell Sci 1994; 107:933–943.

    PubMed  CAS  Google Scholar 

  61. Ooi CE, Dell’Angelica EC, Bonifacino JS. ADP-ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J Cell Biol 1998; 142:391–402.

    PubMed  CAS  Google Scholar 

  62. Ohno H, Tomemori T, Nakatsu F et al. Mu 1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Letts 1999; 449:215–220.

    CAS  Google Scholar 

  63. Folsch H, Ohno H, Bonifacino JS et al. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 1999; 99:189–198.

    PubMed  CAS  Google Scholar 

  64. Folsch H, Pypaert M, Schu P et al. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J Cell Biol 2001; 152:595–606.

    PubMed  CAS  Google Scholar 

  65. Sugimoto H, Sugahara M, Folsch H et al. Differential recognition of tyrosine-based basolateral signals by AP-1 subunit μ1B in polarized epithelial cells. Mol Biol Cell 2002; 13:2374–2382.

    PubMed  CAS  Google Scholar 

  66. Gan Y, McGraw TE, Rodriguez-Boulan E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nat Cell Biol 2002; 4:605–609.

    PubMed  CAS  Google Scholar 

  67. Glickman JN, Conibear E, Pearse BM. Specificity of binding of clathrin adaptors to signals on the mannose-6-phosphate/insulin-like growth factor II receptor. EMBO J 1989; 8:1041–1047.

    PubMed  CAS  Google Scholar 

  68. Mauxion F, Le Borgne R, Munier-Lehmann H et al. A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J Biol Chem 1996; 271:2171–2178.

    PubMed  CAS  Google Scholar 

  69. Zhu Y, Traub LM, Kornfeld S. High-affinity binding of the AP-1 adaptor complex to trans-Golgi network membranes devoid of mannose 6-phosphate receptors. Mol Biol Cell 1999; 10:537–549.

    PubMed  CAS  Google Scholar 

  70. Le Borgne R, Hoflack B. Mannose 6-phosphate receptors regulate the formation of clathrin-coated vesicles in the TGN. J Cell Biol 1997; 137:335–345.

    PubMed  Google Scholar 

  71. Aguilar RC, Ohno H, Roche KW et al. Functional domain mapping of the clathrin-associated adaptor medium chains μ1 and μ2. J Biol Chem 1997; 272:27160–27166.

    PubMed  CAS  Google Scholar 

  72. Ohno H, Aguilar RC, Yeh D et al. The medium subunits of adaptor complexes recognize distince but overlapping sets of tyrosine-based sorting signals. J Biol Chem 1998; 273:25915–25921.

    PubMed  CAS  Google Scholar 

  73. Honing S, Sosa M, Hille-Rehfeld A et al. The 46-kDa mannose 6-phosphate receptor contains multiple binding sites for clathrin adaptors. J Biol Chem 1997; 272:19884–19890.

    PubMed  CAS  Google Scholar 

  74. Zhu Y, Doray B, Poussu A et al. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 2001; 292:1716–1718.

    PubMed  CAS  Google Scholar 

  75. Zizioli D, Meyer C, Gundula G et al. Early Embryonic death of mice deficient in γ-adaptin. J Biol Chem 1999; 274:5385–5390.

    PubMed  CAS  Google Scholar 

  76. Meyer C, Zizioli D, Lausmann S et al. Mu1A-adaptin-deficient mice: Lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J 2000; 19:2193–2203.

    PubMed  CAS  Google Scholar 

  77. Ohno H, Stewart J, Fournier M-C et al. Interactions of tyrosine-based sorting signals with clathrin-associated proteins. Science 1995; 269:1872–1875.

    PubMed  CAS  Google Scholar 

  78. Boll W, Ohno H, Songyang Z et al. Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes. EMBO J 1996; 15:5789–5795.

    PubMed  CAS  Google Scholar 

  79. Rapoport I, Miyazaki M, Boll W et al. Regulatory interactions in the recognition of endocytic sorting signals by AP-2 complexes. EMBO J 1997; 16:2240–2250.

    PubMed  CAS  Google Scholar 

  80. Fingerhut A, von Figura K, Honing S. Binding of AP-2 to sorting signals is modulated by AP-2 phosphorylation. J Biol Chem 2001; 276:5476–5482.

    PubMed  CAS  Google Scholar 

  81. Ricotta D, Conner SD, Schmid SL et al. Phosphorylation of the AP-2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J Cell Biol 2002; 156:791–795.

    PubMed  CAS  Google Scholar 

  82. Conner SD, Schmid SL. Identification of an adaptor-associated kinase, AAK1, as a regulator of dathrin-mediated endocytosis. J Cell Biol 2002; 156:921–929.

    PubMed  CAS  Google Scholar 

  83. Kirchhausen T. Clathrin adaptors really adapt. Cell 2002; 109:413–416.

    PubMed  CAS  Google Scholar 

  84. Collins BM, McCoy AJ, Kent HM et al. Molecular architecture and functional model of the endocytic AP2 complex. Cell 2002; 109:523–535.

    PubMed  CAS  Google Scholar 

  85. Slepnev VI, Ochoa G-C, Butler MH et al. Tandem arrangement of the clathrin and AP-2 binding domains in amphiphysin 1 and distribution of clathrin coat function by amphiphysin fragments comprising these sites. J Biol Chem 2000; 275:17583–17589.

    PubMed  CAS  Google Scholar 

  86. Laporte SA, Oakley RH, Zhang J et al. The beta2-adrenergic receptor/beta-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 1999; 96:3712–3717.

    PubMed  CAS  Google Scholar 

  87. Salcini AE, Chen H, Iannolo G et al. Epidermal growth factor pathway substrate 15, Epsl5. Int J Biochem Cell Biol 1999; 31:805–809.

    PubMed  CAS  Google Scholar 

  88. Chen H, Fre S, Slepnev VI et al. Epsin is an EH-domain-binding protein implicated in dathrin-mediated endocytosis. Nature 1998; 394:793–797.

    PubMed  CAS  Google Scholar 

  89. Umeda A, Meyerholz A, Ungewickell E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur J Cell Biol 2000; 79:336–342.

    PubMed  CAS  Google Scholar 

  90. Hao W, Luo Z, Zheng L et al. API80 and AP-2 interact directly in a complex that cooperatively assembles clathrin. J Biol Chem 1999; 274:22785–22794.

    PubMed  CAS  Google Scholar 

  91. Robinson MS, Kreis TE. Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: Effects of brefeldin A and G protein activators. Cell 1992; 69:129–138.

    PubMed  CAS  Google Scholar 

  92. Zhang JZ, Davletov BA, Sudhof TC et al. Synaptotagmin I is a high affinity receptor for clathrin AP-2: Implications for membrane recycling. Cell 1994; 78:751–760.

    PubMed  CAS  Google Scholar 

  93. Chapman ER, Desai RC, Davis AF et al. Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. J Biol Chem 1998; 273:32966–32972.

    PubMed  CAS  Google Scholar 

  94. Haucke V, Wenk MR, Chapman ER et al. Dual interactions of synaptotagmin with μ2-and a-adaptin facilitates clathrin-coated pit nucleation. EMBO J 2000; 19:6011–6019.

    PubMed  CAS  Google Scholar 

  95. Rohde G, Wenzel D, Haucke V. A phosphatidylinositol (4,5)-bisphosphate binding site within mu2-adaptin regulates clathrin-mediated endocytosis. J Cell Biol 2002; 158:209–214.

    PubMed  CAS  Google Scholar 

  96. Huang KM, D’Hondt K, Riezman H et al. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J 1999; 18:3897–3908.

    PubMed  CAS  Google Scholar 

  97. Rad MR, Phan HL, Kirchrath L et al. Saccharomyces cerevisiae Ap12p, a homologue of the mammalian clathrin AP beta subunit, plays a role in dathrin-dependent Golgi functions. J Cell Sci 1995; 108:1605–1615.

    PubMed  CAS  Google Scholar 

  98. Grant B, Hirsh D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 1999; 10:4311–4326.

    PubMed  CAS  Google Scholar 

  99. Shim J, Lee J. Molceular genetic analysis of apm-2 and aps-2, genes encoding the medium and small chains of the AP-2 clathrin-associated protein complex in the nematode Caenorhabditis elegans. Mol Cells 2000; 10:309–316.

    PubMed  CAS  Google Scholar 

  100. Gonzalez-Gaitan M, Jackie H. Role of Drosophila α-adaptin in presynaptic vesicle recycling. Cell 1997; 88:767–776.

    PubMed  CAS  Google Scholar 

  101. Berdnik D, Torok T, Gonzalez-Gaitan M et al. The endocytic protein α-adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell 2002; 3:221–231.

    PubMed  CAS  Google Scholar 

  102. Nesterov A, Carter RE, Sorkina T et al. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant μ2 subunit and its effects on endocytosis. EMBO J 1999; 18:2489–2499.

    PubMed  CAS  Google Scholar 

  103. Rous BA, Reaves BJ, Ihrke G et al. Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol Biol Cell 2002; 13:1071–1082.

    PubMed  CAS  Google Scholar 

  104. Blumstein J, Faundez V, Nakatsu F et al. The neuronal form of adaptor protein-3 is required for synaptic vesicle formation from endosomes. J Neuro 2001; 21:8034–8042.

    CAS  Google Scholar 

  105. Le Borgne R, Alconada A, Bauer U et al. The mammalian AP-3 adaptor-like complex mediates the intracellular transport of lysosomal membrane glycoproteins. J Biol Chem 1998; 273:29451–29461.

    PubMed  Google Scholar 

  106. Storch S, Braulke T. Multiple C-terminal motifs of the 46-kDa Mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3. J Biol Chem 2001; 276:4298–4303.

    PubMed  CAS  Google Scholar 

  107. Drake MT, Zhu Y, Kornfeld S. The assembly of AP-3 adaptor complex-containing clathrin-coated vesicles on synthetic liposomes. Mol Biol Cell 2000; 11:3723–3736.

    PubMed  CAS  Google Scholar 

  108. Simpson F, Bright NA, West MA et al. A novel adaptor-related protein complex. J Cell Biol 1996; 133:749–760.

    PubMed  CAS  Google Scholar 

  109. Faundez V, Horng JT, Kelly RB. A function for the AP-3 coat complex in synaptic vesivle formation from endosomes. Cell 1998; 93:423–432.

    PubMed  CAS  Google Scholar 

  110. Peden AA, Rudge RE, Winnie WY et al. Assembly and function of AP-3 complexes in cells expressing mutant subunits. J Biol Chem 2002; 156:327–336.

    CAS  Google Scholar 

  111. Cowles CR, Odorizzi G, Payne GS et al. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 1997; 91:109–118.

    PubMed  CAS  Google Scholar 

  112. Piper RC, Bryant NJ, Stevens TH. The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. J Cell Biol 1997; 138:531–545.

    PubMed  CAS  Google Scholar 

  113. Stepp JD, Huang K, Lemmon SK. The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternative pathway to the vacuole. J Cell Biol 1997; 139:1761–1774.

    PubMed  CAS  Google Scholar 

  114. Vowels JJ, Payne GS. A dileucine-like sorting signal directs transport into an AP-3-dependent, clathrin-independent pathway to the yeast vacuole. EMBO J 1998; 17:2482–2493.

    PubMed  CAS  Google Scholar 

  115. Rehling P, Darsow T, Katzmann DJ et al. Formation of AP-3 transport intermediates requires Vps4lp function. Nat Cell Biol 1999; 1:346–353.

    PubMed  CAS  Google Scholar 

  116. Ooi CE, Moreira JE, Dell’Angelica EC et al. Altered expression of a novel adaptin leads to defective pigment granule biogenesis in the Drosophila eye color mutant garnet. EMBO J 1997; 16:4508–4518.

    PubMed  CAS  Google Scholar 

  117. Mullins C, Hartnell LM, Wassarman DA et al. Defective expression of the µ3 subunit of the AP-3 adaptor complex in the Drosophila pigmentation mutant carmine. Mol Gen Genet 1999; 262:401–412.

    PubMed  CAS  Google Scholar 

  118. Mullins C, Hartnell LM, Bonifacino JS. Distinct requirements for the AP-3 adaptor complex in pigment granule and synaptic vesicle biogenesis in Drosophila melanogaster. Mol Gen Genet 2000; 263:1003–1014.

    PubMed  CAS  Google Scholar 

  119. Kretzschmar D, Poeck B, Roth H et al. Defective pigment granule biogenesis and aberrant behavior caused by mutations in the Drosophila AP-3 β-adaptin gene ruby. Genetics 2000; 155:213–223.

    PubMed  CAS  Google Scholar 

  120. Salem N, Faundez V, Horng JT et al. A v-SNARE participates in synaptic vesicle formation mediated by the AP-3 adaptor complex. Nat Neurosci 1998; 1:551–556.

    PubMed  CAS  Google Scholar 

  121. Kantheti P, Qiao X, Diaz ME et al. Mutation in AP-3 δ in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron 1998; 21:111–122.

    PubMed  CAS  Google Scholar 

  122. Feng L, Seymour AB, Jiang S et al. The β3A subunit gene (Ap3bl) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky-Pudlal syndrome and night blindness. Hum Mol Genet 1999; 8:323–330.

    PubMed  CAS  Google Scholar 

  123. Dell’Angelica EC, Shotelersuk V, Aguilar RC et al. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the β3A subunit of the AP-3 adaptor. Mol Cell 1999; 3:11–21.

    PubMed  CAS  Google Scholar 

  124. Boehm M, Aguilar RC, Bonifacino JS. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). EMBO J 2001; 20:6265–6276.

    PubMed  CAS  Google Scholar 

  125. Goldberg J. Structural basis for activation of ARF GTPase: Mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 1998; 95:237–248.

    PubMed  CAS  Google Scholar 

  126. Pasqualato S, Menetrey J, Franco M et al. The structural GDP/GTP cycle of human Arf6. EMBO Rep 2001; 2:234–238.

    PubMed  CAS  Google Scholar 

  127. Puertollano R, Randazzo PA, Presley JF et al. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 2001; 105:93–102.

    PubMed  CAS  Google Scholar 

  128. Aguilar RC, Boehm M, Gorshkova I et al. Signal-binding specificity of the µ4 subunit of the adaptor protein complex AP-4. J Biol Chem 2001; 276:13145–13152.

    PubMed  CAS  Google Scholar 

  129. Simmen T, Honing S, Icking A et al. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nat Cell Biol 2002; 4:154–159.

    PubMed  CAS  Google Scholar 

  130. Barlowe C. Traffic COPs of the early secretory pathway. Traffic 2000; 1:371–377.

    PubMed  CAS  Google Scholar 

  131. Klumperman J. Transport between ER and Golgi. Curr Opin Cell Biol 2000; 12:445–449.

    PubMed  CAS  Google Scholar 

  132. Presley JF, Cole NB, Schroer TA et al. ER-to-Golgi transport visualized in living cells. Nature 1997; 389:81–85.

    PubMed  CAS  Google Scholar 

  133. Malhotra V, Serafini T, Orci L et al. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 1989; 58:329–336.

    PubMed  CAS  Google Scholar 

  134. Waters MG, Serafina T, Rothman JE. “Coatomer”: A cytosolic protein complex containing subunits of nonclathrin-coated Golgi transport vesicles. Nature 1991; 349:248–251.

    PubMed  CAS  Google Scholar 

  135. Gu F, Gruenberg J. Biogenesis of transport intermediates in the endocytic pathway. FEBS Letts 1999; 452:61–66.

    CAS  Google Scholar 

  136. Griffiths G, Pepperkok R, Locker JK et al. Immunocytochemical localization of β-COP to the ER-Golgi boundary and the TGN. J Cell Sci 1995; 108:2839–2856.

    PubMed  CAS  Google Scholar 

  137. Letourneur F, Gaynor EC, Hennecke S et al. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 1994; 79:1199–1207.

    PubMed  CAS  Google Scholar 

  138. Lewis MJ, Pelham HRB. SNAREmediated retrograde traffic from the Golgi complex to the endoplasmic reticulum. Cell 1996; 85:205–215.

    PubMed  CAS  Google Scholar 

  139. Lin C-C, Love HD, Gushue JN et al. ER/Golgi intermediates acquire Golgi enzymes by brefeldin A-sensitive retrograde transport in vitro. J Cell Biol 1999; 147:1457–1472.

    PubMed  CAS  Google Scholar 

  140. Nickel W, Wieland FT. Biogenesis of COPI-coated transport vesicles. FEBS Letts 1997; 413:395–400.

    CAS  Google Scholar 

  141. Gaynor EC, Emr SD. COPI-independent anterograde transport: Cargo-selective ER to Golgi protein transport in yeast COPI mutants. J Cell Biol 1997; 136:789–802.

    PubMed  CAS  Google Scholar 

  142. Pelham HRB. Traffic through the Golgi apparatus. J Cell Biol 2001; 155:1099–1101.

    PubMed  CAS  Google Scholar 

  143. Whitney AJ, Gomez M, Sheff D et al. Cytoplasmic coat proteins involved in endosome function. Cell 1995; 83:703–713.

    PubMed  CAS  Google Scholar 

  144. Aniento F, Gu F, Parton RG et al. An endosomal β-COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol 1996; 133:29–41.

    PubMed  CAS  Google Scholar 

  145. Daro E, Sheff D, Gomez M et al. Inhibition of endosome function in CHO cells bearing a temperaturesensitive defect in the coatomer (COPI) component ε-COP. J Cell Biol 1997; 139:1747–1759.

    PubMed  CAS  Google Scholar 

  146. Piguet V, Gu F, Foti M et al. Nef-induced CD4 degradation: A diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of β-COP in endosomes. Cell 1999; 97:63–73.

    PubMed  CAS  Google Scholar 

  147. Botelho RJ, Hackman DJ, Schreiber AD et al. Role of COPI in phagosome maturation. J Biol Chem 2000; 275:15717–15727.

    PubMed  CAS  Google Scholar 

  148. Gu F, Aniento F, Parton RG et al. Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J Cell Biol 1997; 139:1183–1195.

    PubMed  CAS  Google Scholar 

  149. Cosson P, Letourneur F. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 1994; 263:1629–1631.

    PubMed  CAS  Google Scholar 

  150. Stamnes MA, Craighead MW, Hoe MH et al. An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding. Proc Natl Acad Sci USA 1995; 92:8011–8015.

    PubMed  CAS  Google Scholar 

  151. Majoul I, Sohn K, Wieland FT et al. KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J Cell Biol 1998; 143:601–612.

    PubMed  CAS  Google Scholar 

  152. Donaldson JG, Cassel D, Kahn RA et al. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomre protein β-COP to Golgi membranes. Proc Natl Acad Aci USA 1992; 89:6408–6412.

    CAS  Google Scholar 

  153. Palmer DJ, Helms JB, Beckers CJ et al. Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J Biol Chem 1993; 268:12083–12089.

    PubMed  CAS  Google Scholar 

  154. Presley JF, Ward TH, Pfeifer AC et al. Dissection of COPI and Arf dynamics in vivo and role in Golgi membrane transport. Nature 2002; 417:187–193.

    PubMed  CAS  Google Scholar 

  155. Goldberg J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 2000; 100:671–679.

    PubMed  CAS  Google Scholar 

  156. Lanoix J, Ouwendijk J, Stark A et al. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: A role for ArfGAP1. J Cell Biol 2001; 155:1199–1212.

    PubMed  CAS  Google Scholar 

  157. Gu F, Gruenberg J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J Biol Chem 2000; 275:8154–8160.

    PubMed  CAS  Google Scholar 

  158. Gaynor EC, Chen C-Y, Emr SD et al. ARF is required for maintenance of yeast Golgi and endosome structure and function. Mol Biol Cell 1998; 9:653–670.

    PubMed  CAS  Google Scholar 

  159. Rambourg A, Clermont Y, Jackson CL et al. Effects of brefeldin A on the three-dimensional structure of the Golgi apparatus in a sensitive strain of Saccharomyces cerevisiae. Anat Rec 1995; 241:109.

    Google Scholar 

  160. Dascher C, Balch WE. Dominant inhibitory mutants of ARF 1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J Biol Chem 1994; 269:1437–1448. 164.

    PubMed  CAS  Google Scholar 

  161. Lippincott-Schwartz J, Cole NB, Donaldson JG. Building a secretory apparatus: Role of ARF1/COPI in Golgi biogenesis and maintenance. Histochem Cell Biol 1998; 109:449–462.

    PubMed  CAS  Google Scholar 

  162. Baker D, Hicke L, Rexach M et al. Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell 1988; 54:335–344.

    PubMed  CAS  Google Scholar 

  163. Barlowe C, d’Enfert C, Schekman R. Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J Biol Chem 1993; 268:873–879.

    PubMed  CAS  Google Scholar 

  164. Salama NR, Yeung T, Schekman RW. The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBO J 1993; 12:4073–4082.

    PubMed  CAS  Google Scholar 

  165. Antonny B, Schekman R. ER export: Public transportation by the COPII coach. Cur Opin Cell Biol 2001; 13:438–443.

    CAS  Google Scholar 

  166. Matsuoka K, Schekman R, Orci L et al. Surface structure of the COPII-coated vesicle. Proc Natl Acad Sci USA 2001; 98:13705–13709.

    PubMed  CAS  Google Scholar 

  167. Lederkremer GZ, Cheng Y, Petre BM et al. Structure of the Sec23p/34p and Sec13p/31p complexes of COPII. Proc Natl Acad Sci USA 2001; 98:10704–10709.

    PubMed  CAS  Google Scholar 

  168. Scales SJ, Pepperkok R, Kreis TE. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 1997; 90:1137–1148.

    PubMed  CAS  Google Scholar 

  169. Stephens DJ, Lin-Marq N, Pagano A et al. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J Cell Sci 2000; 113:2177–2185.

    PubMed  CAS  Google Scholar 

  170. Hammond AT, Glick BS. Dynamics of translational endoplasmic reticulum sites in vertebrate cells. Mol Cel Biol 2000; 11:3013–3030.

    CAS  Google Scholar 

  171. Antonny B, Madden D, Hamamoto S et al. Dynamics of the COPII coat with GTP and stable analogues. Nat Cell Biol 2001; 3:531–537.

    PubMed  CAS  Google Scholar 

  172. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980; 21:205–215.

    PubMed  CAS  Google Scholar 

  173. Barlowe C. COPII: A membrane coat that forms endoplasmic reticulum-derived vesicles. FEBS Letts 1995; 369:93–96.

    CAS  Google Scholar 

  174. Nakano A, Muramatsu M. A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 1989; 109:2677–2691.

    PubMed  CAS  Google Scholar 

  175. Kappeler F, Klopfenstein DR, Foguet M et al. The recycling of ERGIC-53 in the early secretory pathway. J Biol Chem 1997; 272:31801–31808.

    PubMed  CAS  Google Scholar 

  176. Nishimura N, Balch WE. A di-acidic signal required for selective export from the endoplasmic reticulum. Science 1997; 277:556–558.

    PubMed  CAS  Google Scholar 

  177. Votsmeier C, Gallwitz D. An acidic sequence of a putative yeast Golgi membrane protein binds COPII and facilitates ER export. EMBO J 2001; 20:6742–6750.

    PubMed  CAS  Google Scholar 

  178. Ma D, Zerangue N, Lin Y-F. Role of ER export signals in controlling surface potassium channel numbers. Science 2001; 291:316–319.

    PubMed  CAS  Google Scholar 

  179. Fiedler K, Veit M, Stamnes MA et al. Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 1996; 273:1396–1399.

    PubMed  CAS  Google Scholar 

  180. Bermak JC, Li M, Bullock C et al. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 2001; 3:492–498.

    PubMed  CAS  Google Scholar 

  181. Boehm M, Bonifacino JS. Genetic analyses of adaptin function from yeast to mammals. Gene 2002; 20:175–186.

    Google Scholar 

  182. Dell’Angelica EC, Puertollano R, Mullins C et al. GGAs: A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 2000; 149:81–93.

    PubMed  CAS  Google Scholar 

  183. Hirst J, Lui WWY, Bright NA et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J Cell Biol 2000; 149:67–79.

    PubMed  CAS  Google Scholar 

  184. Boman AL, Zhang C-J, Zhu X et al. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol Biol Cell 2000; 11:1241–1255.

    PubMed  CAS  Google Scholar 

  185. Takatsu H, Yoshino K, Nakayama K. Adaptor γ-ear homology domain conserved in γ-adaptin and GGA proteins that interact with γ-synergin. Biochem Biophys Res Comm 2000; 271:719–725.

    PubMed  CAS  Google Scholar 

  186. Poussu A, Lohi O, Lehto V-P. Vear, a novel Golgi-associated protein with VHS and γ-adaptin “ear” domains. J Biol Chem 2000; 275:7176–7183.

    PubMed  CAS  Google Scholar 

  187. Doray B, Ghosh P, Griffiths J et al. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 2002; 297:1700–1703.

    PubMed  CAS  Google Scholar 

  188. Mao Y, Nickitenko A, Duan X et al. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 2000; 100:447–456.

    PubMed  CAS  Google Scholar 

  189. Misra S, Beach BM, Hurley JH. Structure of the VHS domain of human Tom1 (target of myb1): insights into interactions with proteins and membranes. Biochemistry 2000; 19:11282–11290.

    Google Scholar 

  190. Puertollano R, Aguilar RC, Gorshkova I et al. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 2001; 292:1712–1716.

    PubMed  CAS  Google Scholar 

  191. Takatsu H, Katoh Y, Shiba Y et al. Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J Biol Chem 2001; 276:28541–28545.

    PubMed  CAS  Google Scholar 

  192. Nielsen MS, Madsen P, Christensen EI et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J 2001; 2180–2190.

    Google Scholar 

  193. He X, Chang W-P, Koelsch G et al. Memapsin 2 (β-secretase) cytosolic domain binds to the VHS domains of GGA1 and GGA2: Implications on the endocytosis mechanism of memapsin 2. FEBS Letts 2002; 524:183–187.

    CAS  Google Scholar 

  194. Jacobsen L, Madsen P, Nielsen MS et al. The sorLA cytoplasmic domain interacts with GGA1 and-2 and defines minimum requirements for GGA binding. FEBS Letts 2002; 511:155–158.

    CAS  Google Scholar 

  195. Kato Y, Misra S, Puertollano R et al. Phosphoregulation of sorting signal-VHS domain interactions by a direct electrostatic mechanism. Nat Struct Biol 2002; 9:532–536.

    PubMed  CAS  Google Scholar 

  196. Misra S, Puertollano R, Kato Y et al. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 2002; 415:933–937.

    PubMed  CAS  Google Scholar 

  197. Shiba T, Takatsu H, Nogi T et al. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 2002; 415:937–941.

    PubMed  CAS  Google Scholar 

  198. Zhdankina O, Strand NL, Redmond JM et al. Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast 2001; 18:1–18.

    PubMed  CAS  Google Scholar 

  199. Mullins C, Bonifacino JS. Structural requirements for function of yeast GGAs in vacuolar protein sorting, α-factor maturation, and interactions with clathrin. Mol Biol Cell 2001; 21:7981–7994.

    CAS  Google Scholar 

  200. Hirst J, Lindsay MR, Robinson MS. GGAs: Roles of the different domains and comparisons with AP-1 and clathrin. Mol Biol Cell 2001; 12:373–3588.

    Google Scholar 

  201. Black MW, Pelham HRB. A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins. J Cell Biol 2000; 151:587–600.

    PubMed  CAS  Google Scholar 

  202. Grigliatti TA, Hall L, Rosenbluth R et al. Temperaturesensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol Gen Genet 1973; 120:107–114.

    PubMed  CAS  Google Scholar 

  203. Andrews J, Smith M, Merakovsky J et al. The stoned locus of Drosophila melanogaster produces a dicistronic transcript and encodes two distinct polypeptides. Genetics 1996; 143:1699–1711.

    PubMed  CAS  Google Scholar 

  204. Fergestad T, Davis WS, Broadie K. The stoned protein regulates synaptic vesicle recycling in the presynaptic terminal. J Neurosci 1999; 19:5847–5860.

    PubMed  CAS  Google Scholar 

  205. Phillips AM, Smith M, Ramaswami M et al. The products of the Drosophila stoned locus interact with synaptic vesicles via synaptotagmin. J Neurosci 2000; 20:8254–8261.

    PubMed  CAS  Google Scholar 

  206. Fergestad T, Broadie K. Interactions of stoned and synaptotagmin in synaptic vesicle endocytosis. J Neurosci 2001; 21:1218–1227.

    PubMed  CAS  Google Scholar 

  207. Cremona O, De Camilli P. Synaptic vesicle endocytosis. Curr Opin Neurobiol 1997; 7:323–330.

    PubMed  CAS  Google Scholar 

  208. Martina JA, Bonangelino CJ, Aguilar RC et al. Stonin 2: An adaptor-like protein that interacts with components of the endocytic machinery. J Cell Biol 2001; 153:1111–1120.

    PubMed  CAS  Google Scholar 

  209. Walther K, Krauss M, Diril MK et al. Human stoned B interacts with AP-2 and synaptotagmin and facilitates clathrin-coated vesicle uncoating. EMBO reports 2001; 2:634–640.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Mullins, C. (2005). Protein Coats As Mediators of Intracellular Sorting and Organelle Biogenesis. In: The Biogenesis of Cellular Organelles. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26867-7_2

Download citation

Publish with us

Policies and ethics