Skip to main content

On Complexity of Stochastic Programming Problems

  • Chapter
Continuous Optimization

Part of the book series: Applied Optimization ((APOP,volume 99))

Summary

The main focus of this paper is in a discussion of complexity of stochastic programming problems. We argue that two-stage (linear) stochastic programming problems with recourse can be solved with a reasonable accuracy by using Monte Carlo sampling techniques, while multistage stochastic programs, in general, are intractable. We also discuss complexity of chance constrained problems and multistage stochastic programs with linear decision rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Mathematical Finance, 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D. Ku, H.: Coherent multiperiod risk measurement, Manuscript, ETH Zürich (2003)

    Google Scholar 

  3. Barmish, B.R., Lagoa, C.M.: The uniform distribution: a rigorous justification for the use in robustness analysis. Math. Control, Signals, Systems, 10, 203–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beale, E.M.L.: On minimizing a convex function subject to linear inequalities. Journal of the Royal Statistical Society, Series B, 17, 173–184 (1955)

    MATH  MathSciNet  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Mathematics of Operations Research, 23 (1998)

    Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  7. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear Programs. Mathematical Programming, 99, 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal, A., Golany, B., Nemirovski, A., Vial J.-Ph.: Retailer-supplier flexible commitments contracts: A robust optimization approach. Submitted to Manufacturing & Service Operations Management (2004)

    Google Scholar 

  9. Calafiore G., Campi, M.C.: Uncertain convex programs: Randomized solutions and confidence levels. Mathematical Programming, 102, 25–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calafiore, G., Campi, M.C.: Decision making in an uncertain environment: the scenariobased optimization approach. Working paper (2004)

    Google Scholar 

  11. Charnes, A., Cooper, W.W.: Uncertain convex programs: randomized solutions and confidence levels. Management Science, 6, 73–79 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Dagum, P., Luby, L., Mihail, M., Vazirani, U.: Polytopes, Permanents, and Graphs with Large Factors. Proc. 27th IEEE Symp. on Fondations of Comput. Sci. (1988)

    Google Scholar 

  13. Dantzig, G.B.: Linear programming under uncertainty. Management Science, 1, 197–206 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer-Verlag, New York, NY (1998)

    MATH  Google Scholar 

  15. Dupačová, J.: Minimax stochastic programs with nonseparable penalties. In: Optimization techniques (Proc. Ninth IFIP Conf., Warsaw, 1979), Part 1, 22 of Lecture Notes in Control and Information Sci., 157–163. Springer, Berlin (1980)

    Google Scholar 

  16. Dupačová, J.: The minimax approach to stochastic programming and an illustrative application. Stochastics, 20, 73–88 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Dyer, M., Stougie, L.: Computational complexity of stochastic programming problems. SPOR-Report 2003-20, Dept. of Mathematics and Computer Sci., Eindhoven Technical Univ., Eindhoven (2003)

    Google Scholar 

  18. Eichhorn, A., Römisch, W.: Polyhedral risk measures in stochastic programming. SIAM J. Optimization, to appear (2005)

    Google Scholar 

  19. Ermoliev, Y., Gaivoronski, A., Nedeva, C: Stochastic optimization problems with partially known distribution functions. SIAM Journal on Control and Optimization, 23, 697–716 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance and Stochastics, 6, 429–447 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM Journal of Optimization, 12, 479–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gaivoronski, A.A.: A numerical method for solving stochastic programming problems with moment constraints on a distribution function. Annals of Operations Research, 31, 347–370 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jerrum, M., Vazirani, U.: A mildly exponential approximation algorithm for the permanent. Algorithmica, 16, 392–401 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Annals of Operations Research, to appear (2005)

    Google Scholar 

  25. Linial, N., Samorodnitsky, A., Wigderson, A.: A deterministic strongly poilynomial algorithm for matrix scaling and approximate permanents. Combinatorica, 20, 531–544 (2000)

    Article  MathSciNet  Google Scholar 

  26. Mak, W.K., Morton, D.P., Wood, R.K.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Operations Research Letters, 24, 47–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Markowitz, H.M.: Portfolio selection. Journal of Finance, 7, 77–91 (1952)

    Google Scholar 

  28. H.J. Landau (ed): Moments in mathematics. Proc. Sympos. Appl. Math., 37. Amer. Math. Soc., Providence, RI (1987)

    Google Scholar 

  29. Nemirovski, A.: On tractable approximations of randomly perturbed convex constraints — Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii USA, December 2003, 2419–2422 (2003)

    Google Scholar 

  30. Nemirovski, A., Shapiro, A.: Scenario approximations of chance constraints. In: Calafiore, G., Dabbene, F., (eds) Probabilistic and Randomized Methods for Design under Uncertainty. Springer, Berlin (2005)

    Google Scholar 

  31. Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht, Boston (1995)

    Google Scholar 

  32. Riedel, F.: Dynamic coherent risk measures. Working Paper 03004, Department of Economics, Stanford University (2003)

    Google Scholar 

  33. Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Deviation measures in risk analysis and optimization, Research Report 2002-7, Department of Industrial and Systems Engineering, University of Florida (2002)

    Google Scholar 

  34. Ruszczyński, A., Shapiro, A.: Optimization of convex risk functions. E-print available at: http://www.optimization-online.org (2004)

    Google Scholar 

  35. Ruszczyński, A., Shapiro, A.: Conditional risk mappings. E-print available at: http://www.optimization-online.org (2004)

    Google Scholar 

  36. Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A.: A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167, 96–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shapiro, A., Homem-de-Mello, T.: On rate of convergence of Monte Carlo approximations of stochastic programs. SIAM Journal on Optimization, 11, 70–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shapiro, A., Kleywegt, A.: Minimax analysis of stochastic programs. Optimization Methods and Software, 17, 523–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shapiro, A., Homem de Mello, T., Kim, J.C.: Conditioning of stochastic programs. Mathematical Programming, 94, 1–19 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shapiro, A.: Inference of statistical bounds for multistage stochastic programming problems. Mathematical Methods of Operations Research. 58, 57–68 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Shapiro, A.: Monte Carlo sampling methods. In: Rusczyński, A., Shapiro, A. (eds) Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science. North-Holland (2003)

    Google Scholar 

  42. Shapiro, A.: Worst-case distribution analysis of stochastic programs. E-print available at: http://www.optimization-online.org (2004)

    Google Scholar 

  43. Shapiro, A.: Stochastic programming with equilibrium constraints. Journal of Optimization Theory and Applications (to appear). E-print available at: http://www.optimization-online.org (2005)

    Google Scholar 

  44. Shapiro, A.: On complexity of multistage stochastic programs. Operations Research Letters (to appear). E-print available at: http://www.optimization-online.org (2005)

    Google Scholar 

  45. Takriti, S., Ahmed, S.: On robust optimization of two-stage systems. Mathematical Programming, 99, 109–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G., Shapiro, A.: The sample average approximation method applied to stochastic routing problems: a computational study. Computational Optimization and Applications, 24, 289–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science, 80, 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  48. Žáčková, J.: On minimax solutions of stochastic linear programming problems. Čas. Pěst. Mat., 91, 423–430 (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Shapiro, A., Nemirovski, A. (2005). On Complexity of Stochastic Programming Problems. In: Jeyakumar, V., Rubinov, A. (eds) Continuous Optimization. Applied Optimization, vol 99. Springer, Boston, MA. https://doi.org/10.1007/0-387-26771-9_4

Download citation

Publish with us

Policies and ethics