Basic Structure of the Villous Trees

  • M. Castellucci
  • P. Kaufmann

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, E., Mocharla, H., Yamate, T., Taguchi Y. and Manolagas, S.C.: Meltrin-alpha, a fusion protein involved in multinucleated giant cell and osteoclast formation. Calcif. Tissue Int. 64:508–515, 1999.PubMedCrossRefGoogle Scholar
  2. Aboagye-Mathiesen, G., Zdravkovic, M., Toth, F.D. and Ebbesen, P.: Effects of human trophoblast-induced interferons on the expression of proto-oncogenes c-fms/CSF-1R, EGF-R and c-erbB2 in invasive and non invasive trophoblast. Placenta 18:155–161, 1997.PubMedCrossRefGoogle Scholar
  3. Acconci, G.: Mola vesicolare destruente e corioepitelioma. Folia Ginecol. (Genoa) 21:253–268, 1925.Google Scholar
  4. Adamson, E.D.: Review article: Expression of proto-oncogenes in the placenta. Placenta 8:449–466, 1987.PubMedGoogle Scholar
  5. Aderem, A. and Ulevitch, R.J.: Toll-like receptors in the induction of the innate immune response. Nature 406:782–787, 2000.PubMedCrossRefGoogle Scholar
  6. Adler, R.R., Ng, A.K. and Rote, N.S.: Monoclonal antiphosphatidylserine antibody inhibits intercellular fusion of the choriocarcinoma line, JAR. Biol. Reprod. 53:905–910, 1995.CrossRefGoogle Scholar
  7. Akira, S., Takeda, K. and Kaisho, T.: Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675–680, 2001.PubMedCrossRefGoogle Scholar
  8. Albe, K.R., Witkin, H.J., Kelley, L.K. and Smith, C.H.: Protein kinases of the human placental microvillous membrane. Exp. Cell Res. 147:167–176, 1983.PubMedCrossRefGoogle Scholar
  9. Ali, K.Z.M.: Stereological study of the effect of altitude on the trophoblast cell populations of human term placental villi. Placenta 18:447–450, 1997.PubMedCrossRefGoogle Scholar
  10. Alsat, E., Mondon, F., Rebourcet, R., Berthelier, M., Ehrlich, D., Cedard, L. and Goldstein, S.: Identification of specific binding sites for acetylated low density lipoprotein in microvillous membranes from human placenta. Mol. Cell. Endocrinol. 41:229–235, 1985.PubMedCrossRefGoogle Scholar
  11. Alsat, E., Marcotty, C., Gabriel, R., Igout, A., Frankenne, F., Hennen, G. and Evain-Brion, D.: Molecular approach to intrauterine growth retardation: an overview of recent data. Reprod. Fertil. Dev. 7:1457–1464, 1995.PubMedCrossRefGoogle Scholar
  12. Alsat, E., Guibourdenche, J., Luton, D., Frankenne, F. and Evain-Brion, D.: Human placental growth hormone. Amer. J. Obstet. Gynecol. 177:1526–1534, 1997.CrossRefGoogle Scholar
  13. Alvarez, H.: Proliferation du trophoblaste et sa relation avec l’hypertension arterielle de la toxemie gravidique. Gynecol. Obstet. (Paris) 69:581–588, 1970.Google Scholar
  14. Alvarez, H., Benedetti, W.L., Morel, R.L. and Scavarelli, M.: Trophoblast development gradient and its relationship to placental hemodynamics. Amer. J. Obstet. Gynecol. 106:416–420, 1970.Google Scholar
  15. Alvarez, H., Medrano, C.V., Sala, M.A. and Benedetti, W.L.: Trophoblast development gradient and its relationship to placental hemodynamics. II. Study of fetal cotyledons from the toxemic placenta. Amer. J. Obstet. Gynecol. 114:873–878, 1972.Google Scholar
  16. Al-Zuhair, A.G.H., Ibrahim, M.E.H., Mughal, S. and Mohammed, M.E.: Scanning electron microscopy of maternal blood cells and their surface relationship with the placenta. Acta Obstet. Gynecol. Scand. 62:493–498, 1983.PubMedGoogle Scholar
  17. Al-Zuhair, A.G.H., Ibrahim, M.E.A., Mughal, S. and Abdulla, M.A.: Loss and regeneration of the microvilli of human placental syncytiotrophoblast. Arch. Gynecol. 240:147–151, 1987.PubMedCrossRefGoogle Scholar
  18. Amaladoss, A.S. and Burton, G.J.: Organ culture of human placental villi in hypoxic and hyperoxic conditions: a morphometric study. J. Dev. Physiol. 7:113–118, 1985.PubMedGoogle Scholar
  19. Amenta, P.S., Gay, S., Vaheri, A. and Martinez-Hernandez, A.: The extracellular matrix is an integrated unit: ultrastructural localization of collagen types I, III, IV, V, VI, fibronectin, and laminin in human term placenta. Collagen Relat. Res. 6:125–152, 1986.Google Scholar
  20. Amstutz, E.: Beobachtungen Über die Reifung der Chorionzotten in der menschlichen Placenta mit besonderer Berücksi chtigung der Epithelplatten. Acta Anat. (Basel) 42:122–130, 1960.Google Scholar
  21. Arnholdt, H., Meisel, F., Fandrey, K. and Löhrs, U.: Proliferation of villous trophoblast of the human placenta in normal and abnormal pregnancies. Virchows Arch. B Cell Pathol. 60:365–372, 1991.Google Scholar
  22. Arnold, M., Geller, H. and Sasse, D.: Beitrag zur elektronenmikroskopischen Morphologie der menschlichen Plazenta. Arch. Gynäkol. 196:238–253, 1961.PubMedCrossRefGoogle Scholar
  23. Atwood, H.D. and Park, W.W.: Embolism to the lung by trophoblast. J. Obstet. Gynaecol. Br. Emp. 63:611–617, 1961.Google Scholar
  24. Aufderheide, E. and Ekblom, P.: Tenascin during gut development: appearance in the mesenchyme, shift in molecular forms, and dependence on epithelial-mesenchymal interaction. J. Cell Biol. 107:2341–2349, 1988.PubMedCrossRefGoogle Scholar
  25. Autio-Harmainen, H., Sandberg, M., Pihlajaniemi, T. and Vuorio, E.: Synthesis of laminin and type IV collagen by trophoblastic cells and fibroblastic stromal cells in the early human placenta. Lab. Invest. 64:483–491, 1991.PubMedGoogle Scholar
  26. Autio-Harmainen, H., Hurskainen, T., Niskasaari, K., Höyhtyä, M. and Tryggvason, K.: Simultaneous expression of 70 kilodalton type IV collagenase and type IV collagen a1 (IV) chain genes by cells of early human placenta and gestational endometrium. Lab. Invest. 67:191–200, 1992.PubMedGoogle Scholar
  27. Baker, B.L., Hook, S.J. and Severinghaus, A.E.: The cytological structure of the human chorionic villus and decidua parietalis. Amer. J. Anat. 74:291–325, 1944.CrossRefGoogle Scholar
  28. Bamberger, A., Schulte, H.M., Thuneke, I., Erdmann, I., Bamberger, C.M. and Asa, S.L.: Expression of the apoptosis-inducing Fas ligand (FasL) in human first and third trimester placenta and choriocarcinoma cells. J. Clin. Endocrinol. Metab. 82:3173–3175, 1997.PubMedCrossRefGoogle Scholar
  29. Bargmann, W. and Knoop, A.: Elektronenmikroskopische Untersuchungen an Plazentarzotten des Menschen. Bemerkungen zum Synzytiumproblem. Z. Zellforsch. 50:472–493, 1959.PubMedCrossRefGoogle Scholar
  30. Bautzmann, H. and Schröder, R.: Über Vorkommen und Bedeutung von “Hofbauerzellen” ausserhalb der Placenta. Arch. Gynäkol. 187:65–76, 1955.PubMedCrossRefGoogle Scholar
  31. Beck, T., Schweikhart, G. and Stolz, E.: Immunohistochemical location of hPL, SP1 and b-hCG in normal placentas of varying gestational age. Arch. Gynecol. 239:63–74, 1986.PubMedCrossRefGoogle Scholar
  32. Becker, V.: Gefäße der Chorionplatte und Stammzotten. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and F. Kubli, eds. Thieme Verlag, Stuttgart, 1981.Google Scholar
  33. Becker, V. and Bleyl, U.: Placentarzotte bei Schwangerschaftstoxicose und fetaler Erythroblastose im fluorescenzmikroskopischen Bilde. Virchows Arch. Pathol. Anat. 334:516–527, 1961.CrossRefGoogle Scholar
  34. Becker, V. and Röckelein, G., eds.: Pathologie der weiblichen Genitalorgane. Springer-Verlag, Heidelberg, 1989.Google Scholar
  35. Becker, V. and Seifert, K.: Die Ultrastruktur der Kapillarwand in der menschlichen Placenta zur Zeit der Schwangerschaftsmitte. Z. Zellforsch. 65:380–396, 1965.PubMedCrossRefGoogle Scholar
  36. Beham, A., Denk, H. and Desoye, G.: The distribution of intermediate filament proteins, actin and desmoplakins in human placental tissue as revealed by polyclonal and monoclonal antibodies. Placenta 9:479–492, 1988.PubMedGoogle Scholar
  37. Benirschke, K. and Bourne, G.L.: Plasma cells in immature human placenta. Obstet. Gynecol. 12:495–503, 1958.PubMedGoogle Scholar
  38. Benirschke, K. and Driscoll, S.G.: The Pathology of the Human Placenta. Springer-Verlag, New York, 1967.Google Scholar
  39. Benyo, D.F., Miles, T.M. and Conrad, K.P.: Hypoxia stimulates cytokine production by villous explants from the human placenta. J. Clin. Endocrinol. Metab. 82:1582–1588, 1997.PubMedCrossRefGoogle Scholar
  40. Berryman, M., Gary, R. and Bretscher, A.: Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J. Cell Biol. 131:1231–1242, 1995.PubMedCrossRefGoogle Scholar
  41. Bevers, E.M., Comfurius, P. and Zwaal, R.F.: Regulatory mechanisms in maintenance and modulation of transmembrane lipid asymmetry: pathophysiological implications. Lupus 5:480–487, 1996.PubMedGoogle Scholar
  42. Bianco, P., Fisher, L.W., Young, M.F., Termine, J.D. and Robey, P.G.: Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J. Histochem. Cytochem. 38:1549–1563, 1990.PubMedGoogle Scholar
  43. Bierings, M.B.: Placental iron uptake and its regulation. Med. Thesis, University of Rotterdam, 1989.Google Scholar
  44. Bischof, P., Friedli, E., Martelli, M. and Campana, A.: Expression of extracellular matrix degrading metalloproteinases by cultured human cytotrophoblast cells. Effects of cell adhesion and immunopurification. Amer. J. Obstet. Gynecol. 165:1791–1801, 1991.Google Scholar
  45. Black, S., Kadyrov, M., Kaufmann, P., Ugele, B., Emans, N. and Huppertz, B.: Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differentiation 11:90–98, 2004.CrossRefGoogle Scholar
  46. Blackburn, P. and Gavilanes, J.G.: The Role of lysine-41 of ribonuclease A in the interaction with RNAse inhibitor from human placenta. J. Biol. Chem. 255:10959–10965, 1980.PubMedGoogle Scholar
  47. Blaise, S., de Parseval, N., Benit, L. and Heidmann, T.: Genome-wide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc. Natl. Acad. Sci. USA 100:13013–13018, 2003.PubMedCrossRefGoogle Scholar
  48. Blaschitz, A., Hutter, H. and Dohr, G.: HLA Class I protein expression in the human placenta. Early Pregnancy 5:67–69, 2001.PubMedGoogle Scholar
  49. Blay, J. and Hollenberg, M.D.: The nature and function of polypeptide growth factor receptors in the human placenta. J. Dev. Physiol. (Oxf.) 12:237–248, 1989.PubMedGoogle Scholar
  50. Bleyl, U.: Histologische, histochemische und fluoreszenzmikroskopische Untersuchungen an Hofbauer-Zellen. Arch. Gynäkol. 197:364–386, 1962.PubMedCrossRefGoogle Scholar
  51. Blond, J.-L., Beseme, F., Duret, L., Bouton, O., Bedin, F., Perron, H., Mandrand, B. and Mallet F.: Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol. 73:1175–1185, 1999.PubMedGoogle Scholar
  52. Blond, J.-L., Lavillette, D., Cheynet, V., Bouton, O., Oriol, G., Chapel-Fernandes, S., Mandrand, B., Mallet, F. and Cosset, F.-L.: An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74: 3321–3329, 2000.PubMedCrossRefGoogle Scholar
  53. Boehm, K.D., Kelley, M.F. and Ilan, J.: Expression of insulin-like growth factors by the human placenta. In, Molecular and Cellular Biology of Insulin-Like Growth Factors and Their Receptors. D. Leroith and M.K. Raizada, eds., pp. 179–193. Plenum, New York, 1989a.Google Scholar
  54. Boehm, K.D., Kelley, M.F., Ilan, J. and Ilan, J.: The interleukin 2 gene is expressed in the syncytiotrophoblast of the human placenta. Proc. Natl. Acad. Sci. U.S.A. 86:656–660, 1989b.PubMedCrossRefGoogle Scholar
  55. Boime, I., Otani, T., Otani, F., Daniels-McQueen, S. and Bo, M.: Factors regulating peptide hormone biosynthesis in human placenta. In, Abstracts of the 11th Rochester Trophoblast Conference, Rochester N.Y., p. 1, 1988.Google Scholar
  56. Borges, M., Bose, P., Frank, H.-G., Kaufmann, P. and Pötgens A.J.G.: A two-colour fluorescence assay fort he measurement of syncytial fusion between trophoblast-derived cell lines. Placenta, 24:959–964, 2003.PubMedCrossRefGoogle Scholar
  57. Borst, R., Kussäther, E. and Schuhmann, R.: Ultrastrukturelle Untersuchungen zur Verteilung der alkalischen Phosphatase im Placenton (maternofetale Strömungseinheit) der menschlichen Placenta. Arch. Gynäkol. 215:409–415, 1973.PubMedCrossRefGoogle Scholar
  58. Bourgeois, C., Robert, B., Rebourcet, R., Mondon, F., Mignot, T.M., Duc-Goiran, P. and Ferre, F.: Endothelin-1 and ETA receptor expression in vascular smooth muscle cells from human placenta: a new ETA receptor messenger ribonucleic acid is generated by alternative splicing of exon 3. J. Clin. Endocrinol. Metab. 82:3116–3123, 1997.PubMedCrossRefGoogle Scholar
  59. Bourne, G.: The Human Amnion and Chorion. Lloyd-Luke, London, 1962.Google Scholar
  60. Boyd, J.D. and Hamilton, W.J.: Electron microscopic observations on the cytotrophoblast contribution to the syncytium in the human placenta. J. Anat. 100:535–548, 1966.PubMedGoogle Scholar
  61. Boyd, J.D. and Hamilton, W.J.: Development and structure of the human placenta from the end of the 3rd month of gestation. J. Obstet. Gynaecol. Br. Commonw. 74:161–226, 1967.PubMedGoogle Scholar
  62. Boyd, J.D. and Hamilton, W.J.: The Human Placenta. Heffer, Cambridge, 1970.Google Scholar
  63. Boyd, J.D. and Hughes, A.F.W.: Etude des villosites placentaires au moyen du microscope electronique. In, 6th Congress, International Federation of Anatomists, Abstract 32. Masson, Paris, 1955.Google Scholar
  64. Boyd, J.D., Boyd, C.A.R. and Hamilton, W.J.: Observations on the vacuolar structure of the human syncytiotrophoblast. Z. Zellforsch. 88:57–79, 1968a.PubMedCrossRefGoogle Scholar
  65. Boyd, J.D., Hamilton, W.J. and Boyd, C.A.R.: The surface of the syncytium of the human chorionic villus. J. Anat. 102:553–563, 1968b.PubMedGoogle Scholar
  66. Bozhok, J.M., Bannikov, G.A., Tavokina, L.V., Svitkina, T.M. and Troyanovsky, S.M.: Local expression of keratins 8, 17, and 19 in mesenchyme and smooth muscle at early stages of organogenesis in man. Ontogenesis 20:250–257, 1990.Google Scholar
  67. Bradbury, S., Billington, W.D., Kirby, D.R.S. and Williams, E.A.: Surface mucin of human trophoblast. Amer. J. Obstet. Gynecol. 104:416–418, 1969.Google Scholar
  68. Bradbury, S., Billington, W.D., Kirby, D.R.S. and Williams, E.A.: Histochemical characterization of the surface mucoprotein of normal and abnormal human trophoblast. Histochem. J. 2:263–274, 1970.PubMedCrossRefGoogle Scholar
  69. Braunhut, S.J., Blanc, W.A., Ramanarayanan, M., Marboe, C. and Mesa-Tejada, R.: Immunocytochemical localization of lysozyme and alpha-1-antichymotrypsin in the term human placenta: an attempt to characterize the Hofbauer cell. J. Histochem. Cytochem. 32:1204–1210, 1984.PubMedGoogle Scholar
  70. Bray, B.A.: Presence of fibronectin in basement membranes and acidic structural glycoproteins from human placenta and lung. Ann. N.Y. Acad. Sci. 312:142–150, 1978.PubMedGoogle Scholar
  71. Bremer, J.L.: The interrelations of the mesonephros, kidney and placenta in different classes of mammals. Am. J. Anat. 19:179–209, 1916.CrossRefGoogle Scholar
  72. Bright, N.A. and Ockleford, C.D.: Fc-γ receptor bearing cells in human term amniochorion. J. Anat. 183:187–188, 1993.Google Scholar
  73. Bright, N.A., Ockleford, C.D. and Anwar, M.: Ontogeny and distribution of Fc-γ receptors in the human placenta. Transport or immune surveillance? J. Anat. 184:297–308, 1994.PubMedGoogle Scholar
  74. Brown, P.J. and Johnson, P.M.: Isolation of a transferrin receptor structure from sodium deoxycholate-solubilized human placental syncytiotrophoblast plasma. Placenta 2:1–10, 1981.PubMedGoogle Scholar
  75. Bryant-Greenwood, G.D., Rees, M.C.P. and Turnbull, A.C.: Immunohistochemical localization of relaxin, prolactin and prostaglandin synthetase in human amnion, chorion and decidua. J. Endocrinol. 114:491–496, 1987.PubMedGoogle Scholar
  76. Buckley, P.J., Smith, M.R., Broverman, M.F. and Dickson, S.A.: Human spleen contains phenotypic subsets of macrophages and dendritic cells that occupy discrete microanatomic locations. Amer. J. Pathol. 128:505–520, 1987.Google Scholar
  77. Bukovsky, A., Cekanova, M., Caudle, M.R., Wimalasena, J., Foster, J.S., Henley, D.C. and Elder, R.F.: Expression and localization of estrogen receptor-alpha protein in normal and abnormal term placentae and stimulation of trophoblast differentiation by estradiol. Reprod. Biol. Endocrinol. 1:13, 2003a.PubMedCrossRefGoogle Scholar
  78. Bukovsky, A., Caudle, M.R., Cekanova, M., Fernando, R.I., Wimalasena, J., Foster, J.S., Henley, D.C. and Elder, R.F.: Placental expression of estrogen receptor-beta and its hormone binding variant—comparison with estrogen receptor alpha and a role for estrogen receptor in asymmetric division and differentiation of estrogen-dependent cells. Reprod. Biol. Endocrinol. 1:36, 2003b.PubMedCrossRefGoogle Scholar
  79. Bulmer, J.N. and Johnson, P.M.: Macrophage populations in the human placenta and amniochorion. Clin. Exp. Immunol. 57:393–403, 1984.PubMedGoogle Scholar
  80. Bulmer, J.N., Morrison, L. and Smith, J.C.: Expression of class II MHC gene products by macrophages in human uteroplacental tissue. Immunology 63:707–714, 1988.PubMedGoogle Scholar
  81. Bulmer, J.N., Thrower, S. and Wells, M.: Expression of epidermal growth factor receptor and transferrin receptor by human trophoblast populations. Am. J. Reprod. Immunol. 21:87–93, 1989.PubMedGoogle Scholar
  82. Bulmer, J., Morrison, L., Johnson, P.M. and Meager, A.: Immunohistochemical localization of interferons in human placental tissues in normal, ectopic, and molar pregnancy. Amer. J. Reprod. Immunol. 22:109–116, 1990.Google Scholar
  83. Burgos, M.H. and Rodriguez, E.M.: Specialized zones in the trophoblast of the human term placenta. Amer. J. Obstet. Gynecol. 96:342–356, 1966.Google Scholar
  84. Burstein, R., Berns, A.W., Hirtata, Y. and Blumenthal, H.T.: A comparative histo-and immunopathological study of the placenta in diabetes mellitus and in erythroblastosis fetalis. Amer. J. Obstet. Gynecol. 86:66–76, 1963.Google Scholar
  85. Burstein, R., Frankel, S., Soule, S.D. and Blumenthal, H.T.: Ageing in the placenta: autoimmune theory of senescence. Amer. J. Obstet. Gynecol. 116:271–274, 1973.Google Scholar
  86. Burton, G.J.: Intervillous connections in the mature human placenta: Instances of syncytial fusion or section artifacts? J. Anat. 145:13–23, 1986a.PubMedGoogle Scholar
  87. Burton, G.J.: Scanning electron microscopy of intervillous connections in the mature human placenta. J. Anat. 147:245–254, 1986b.PubMedGoogle Scholar
  88. Burton, G.J.: The fine structure of the human placental villus as revealed by scanning electron microscopy. Scanning Electron Microsc. 1:1811–1828, 1987.Google Scholar
  89. Burton, G.J., Mayhew, T.M. and Robertson, L.A.: Stereological re-examination of the effects of varying oxygen tensions on human placental villi maintained in organ culture for up to 12 h. Placenta 10:263–273, 1989.PubMedGoogle Scholar
  90. Burton, G.J., Skepper, J.N., Hempstock, J., Cindrova, T., Jones, C.J. and Jauniaux, E.: A reappraisal of the contrasting morphological appearances of villous cytotrophoblast cells during early human pregnancy; evidence for both apoptosis and primary necrosis. Placenta 24:297–305, 2003.PubMedCrossRefGoogle Scholar
  91. Cantle, S.J., Kaufmann, P., Luckhardt, M. and Schweikhart, G.: Interpretation of syncytial sprouts and bridges in the human placenta. Placenta 8:221–234, 1987.PubMedGoogle Scholar
  92. Cariappa, R., Heath-Monnig, E. and Smith, C.H.: Isoforms of amino acid transporters in placental STB: plasma membrane localization and potential role in maternal/fetal transport. Placenta 24:713–726, 2003.PubMedCrossRefGoogle Scholar
  93. Carter, J.E.: The ultrastructure of the human trophoblast. Transcripts, 2nd Rochester Trophoblast Conference, C.J. Lund and H.A. Thiede, eds., Plenum, New York, 1963.Google Scholar
  94. Carter, J.E.: Morphologic evidence of syncytial formation from the cytotrophoblastic cells. Obstet. Gynecol. 23:647–656, 1964.PubMedGoogle Scholar
  95. Casalini, P., Iorio, M. V., Galmozzi, E. and Ménard, S.: Role of HER receptors family in development and differentiation. J. Cellular Physiol. 200:343–350, 2004.CrossRefGoogle Scholar
  96. Castellucci, M. and Kaufmann, P.: A three-dimensional study of the normal human placental villous core: II. Stromal architecture. Placenta 3:269–285, 1982a.PubMedCrossRefGoogle Scholar
  97. Castellucci, M. and Kaufmann, P.: Evolution of the stroma in human chorionic villi throughout pregnancy. Bibl. Anat. 22:40–45, 1982b.PubMedGoogle Scholar
  98. Castellucci, M. and Zaccheo, D.: The Hofbauer cells of the human placenta: morphological and immunological aspects. Prog. Clin. Biol. Res. 269:443–451, 1989.Google Scholar
  99. Castellucci, M., Zaccheo, D. and Pescetto, G.: A threedimensional study of the normal human placental villous core. I. The Hofbauer cells. Cell Tissue Res. 210:235–247, 1980.PubMedCrossRefGoogle Scholar
  100. Castellucci, M., Schweikhart, G., Kaufmann, P. and Zaccheo, D.: The stromal architecture of immature intermediate villus of the human placenta: functional and clinical implications. Gynecol. Obstet. Invest. 18:95–99, 1984.PubMedGoogle Scholar
  101. Castellucci, M., Richter, A., Steininger, B., Celona, A. and Schneider, J.: Light and electron microscopy identification of mitotic Hofbauer cells in the human placenta. Arch. Gynecol. 237(suppl.):235, 1985.Google Scholar
  102. Castellucci, M., Celona, A., Bartels, H., Steininger, B., Benedetto, V. and Kaufmann, P.: Mitosis of the Hofbauer cell: possible implications for a fetal macrophage. Placenta 8:65–76, 1987.PubMedGoogle Scholar
  103. Castellucci, M., Kaufmann, P. and Bischof, P.: Extracellular matrix influences hormone and protein production by human chorionic villi. Cell Tissue Res. 262:135–142, 1990a.PubMedCrossRefGoogle Scholar
  104. Castellucci, M., Mühlhauser, J. and Zaccheo, D.: The Hofbauer cell: the macrophage of the human placenta. In, Immunobiology of Normal and Diabetic Pregnancy. D. Andreani, G. Bompiani, U. Di Mario, W.P. Faulk and A. Galluzzo, eds, pp. 135–144. Wiley, Chichester, 1990b.Google Scholar
  105. Castellucci, M., Scheper, M., Scheffen, I., Celona, A. and Kaufmann, P.: The development of the human placental villous tree. Anat. Embryol. (Berl.) 181:117–128, 1990c.PubMedCrossRefGoogle Scholar
  106. Castellucci, M., Classen-Linke, I., Mühlhauser, J., Kaufmann, P., Zardi, L. and Chiquet-Ehrismann, R.: The human placenta: a model for tenascin expression. Histochemistry 95:449–458, 1991.PubMedCrossRefGoogle Scholar
  107. Castellucci, M., Crescimanno, C., Schroeter, C.A., Kaufmann, P. and Mühlhauser, J.: Extravillous trophoblast: Immunohistochemical localization of extracellular matrix molecules. In, Frontiers in Gynecologic and Obstetric Investigation. A.R. Genazzani, F. Petraglia and A.D. Genazzani, eds. Parthenon, New York, pp. 19–25, 1993a.Google Scholar
  108. Castellucci, M., Crescimanno, C., Mühlhauser, J., Frank, H.G., Kaufmann, P. and Zardi, L.: Expression of extracellular matrix molecules related to placental development. Placenta 14:A9, 1993b.CrossRefGoogle Scholar
  109. Castellucci, M., Mühlhauser, J., Pierleoni, C., Krusche, C., Crescimanno, C., Beier, H.M. and Kaufmann, P.: BCL-2 expression in the human trophoblast. Ann. Anat. 175:38–39, 1993c.Google Scholar
  110. Castellucci, M., Theelen, T., Pompili, E., Fumagalli, L., De Renzis G. and Mühlhauser, J.: Immunohistochemical localization of serine-protease inhibitors in the human placenta. Cell Tissue Res. 278:283–289, 1994.PubMedGoogle Scholar
  111. Castellucci, M., de Matteis, R., Meisser, A., Cancello, R., Monsurro, V., Islami, D., Sarzani, R., Marzioni, D., Cinti, S. and Bischof, P.: Leptin modulates extracellular matrix molecules and metalloproteinases: implications for trophoblast invasion. Mol. Hum. Reprod. 6:951–958, 2000a.PubMedCrossRefGoogle Scholar
  112. Castellucci, M., Kosanke, G., Verdenelli, F., Huppertz, B. and Kaufmann, P.: Villous sprouting: fundamental mechanisms of human placental development. Hum. Reprod. Update 6:485–494, 2000b.PubMedCrossRefGoogle Scholar
  113. Chaletzky, E.: Hydatidenmole. Thesis, University of Bern, 1891.Google Scholar
  114. Chegini, N. and Rao, C.H.V.: Epidermal growth factor binding to human amnion, chorion, decidua, and placenta from mid-and term pregnancy: quantitative light microscopic autoradiographic studies. J. Clin. Endocrinol. Metabl. 61:529–535, 1985.Google Scholar
  115. Chen, C.-F., Kurachi, H., Fujita, Y., Terakawa, N., Miyake, A. and Tanizawa, O.: Changes in epidermal growth factor receptor and its messenger ribonucleic acid levels in human placenta and isolated trophoblast cells during pregnancy. J. Clin. Endocrinol. Metab. 67:1171–1177, 1988.PubMedGoogle Scholar
  116. Chen, C.P. and Aplin, J.D.: Placental extracellular matrix: gene expression, deposition by placental fibroblasts and the effect of oxygen. Placenta 24:316–325, 2003.PubMedCrossRefGoogle Scholar
  117. Cheung, C.Y.: Vascular endothelial growth factor: possible role in fetal development and placental function. J. Soc. Gynecol. Invest. 4:169–177, 1997.CrossRefGoogle Scholar
  118. Cho, C., Bunch, D.O., Faure, J.E., Goulding, E.H., Eddy, E.M., Primakoff, P. and Myles, D.G.: Fertilization defects in sperm from mice lacking fertilin beta. Science, 281:1857–1859, 1998.PubMedCrossRefGoogle Scholar
  119. Cho, C., Turner, L., Primakoff, P. and Myles, D.G.: Genomic organization of the mouse fertilin beta gene that encodes an ADAM family protein active in sperm-egg fusion. Dev. Genet., 20:320–328, 1997.PubMedCrossRefGoogle Scholar
  120. Chwalisz, K., Ciesla, I. and Garfield, R.E.: Inhibition of nitric oxide (NO) synthesis induces preterm parturition and preeclampsia-like conditions in guinea pigs. Society for Gynecologic Investigation Meeting, Chicago, IL, 1994.Google Scholar
  121. Clavero-Nunez, J.A. and Botella-Llusia, J.: Measurement of the villus surface in normal and pathologic placentas. Amer. J. Obstet. Gynecol. 86:234–240, 1961.Google Scholar
  122. Colman, P.M. and Lawrence, M.C.: The structural biology of type I viral membrane fusion. Nature Reviews, 4:309–319, 2003.PubMedCrossRefGoogle Scholar
  123. Conrad, K.P., Benyo, D.F., Westerhausen-Larsen, A. and Miles, T.M.: Expression of erythropoietin by human placenta. FASEB J. 10:760–768, 1996.PubMedGoogle Scholar
  124. Contractor, S.F.: Lysosomes in human placenta. Nature (Lond.) 223:1274–1275, 1969.PubMedCrossRefGoogle Scholar
  125. Contractor, S.F., Banks, R.W., Jones, C.J.P. and Fox, H.: A possible role for placental lysosomes in the formation of villous syncytiotrophoblast. Cell Tissue Res. 178:411–419, 1977.PubMedCrossRefGoogle Scholar
  126. Corte, G., Moretta, A., Cosulich, M.E., Ramarli, D. and Bargellesi, A.: A monoclonal anti-DC1 antibody selectively inhibits the generation of effector T cells mediating specific cytolytic activity. J. Exp. Med. 156:1539–1544, 1982.PubMedCrossRefGoogle Scholar
  127. Crisp, T.M., Dessouky, D.A. and Denys, F.R.: The fine structure of the human corpus luteum of early pregnancy and during the progestational phase of the menstrual cycle. Amer. J. Anat. 127:37–70, 1970.PubMedCrossRefGoogle Scholar
  128. Crocker, I.P., Tansinda, D.M., Jones, C.J. and Baker, P.N.: The influence of oxygen and tumor necrosis factor-alpha on the cellular kinetics of term placental villous explants in culture. J. Histochem. Cytochem. 52:749–757, 2004.PubMedCrossRefGoogle Scholar
  129. Cronier, L., Herve, J.C. and Malassine, A.: Regulation of gap junctional communication during human trophoblast differentiation. Microsc. Res. Tech. 38:21–28, 1997.PubMedCrossRefGoogle Scholar
  130. Cuthbert, P., Sedmak, D., Morgan, C., Lairmore, M. and Anderson, C.: Placental syncytiotrophoblasts do not express CD4 antigen or MRNA [abstract]. Mod. Pathol. 5:91A, 1992.Google Scholar
  131. Daughaday, W.H., Mariz, I.K. and Trivedi, B.: A preferential binding site for insulin-like growth factor II in human and rat placental membranes. J. Clin. Endocrinol. Metabl. 53:282–288, 1981.Google Scholar
  132. De Cecco, L., Pavone, G. and Rolfini, G.: La placenta umana nella isoimmunizzazione anti Rh. Quad. Clin. Ostet. Ginecol. 18:675–682, 1963.Google Scholar
  133. De Ikonicoff, L.K. and Cedard, L.: Localization of human chorionic gonadotropic and somatomammotropic hormones by the peroxidase immunohisto-enzymologic method in villi and amniotic epithelium of human placenta (from six weeks to term). Amer. J. Obstet. Gynecol. 116:1124–1132, 1973.Google Scholar
  134. DeLoia, J.A., Burlingame, J.M., and Karasnow, J.S.: Differential expression of G1 cyclins during human placentogenesis. Placenta 18:9–16, 1997.PubMedCrossRefGoogle Scholar
  135. Demir, R. and Erbengi, T.: Some new findings about Hofbauer cells in the chorionic villi of the human placenta. Acta Anat. (Basel) 119:18–26, 1984.PubMedGoogle Scholar
  136. Demir, R., Kaufmann, P., Castellucci, M., Erbengi, T. and Kotowski, A.: Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat. (Basel) 136:190–203, 1989.PubMedGoogle Scholar
  137. Demir, R., Demir, N., Kohnen, G., Kosanke, G., Mironov, V., Üstünel, I. and Kocamaz, E.: Ultrastructure and distribution of myofibroblast-like cells in human placental stem villi. Electron Microsc. 3:509–510, 1992.Google Scholar
  138. Demir, R., Kosanke, G., Kohnen, G., Kertschanska, S. and Kaufmann, P.: Classification of human placental stem villi: review of structural and functional aspects. Microsc. Res. Tech. 38:29–41, 1997.PubMedCrossRefGoogle Scholar
  139. Dempsey, E.W. and Zergollern, L.: Zonal regions of the human placenta barrier. Anat. Rec. 163:177, 1969.Google Scholar
  140. Dempsey, E.W. and Luse, S.A.: Regional specializations in the syncytial trophoblast of early human placentas. J. Anat. 108:545–561, 1971.PubMedGoogle Scholar
  141. Desoye, G., Hartmann, M., Blaschitz, A., Dohr, G., Hahn, T., Kohnen, G. and Kaufmann, P.: Insulin receptors in syn cytiotrophoblast and fetal endothelium of human placenta. Immunohistochemical evidence for developmental changes in distribution pattern. Histochemistry 101:277–285, 1994.PubMedCrossRefGoogle Scholar
  142. Desoye, G., Hartmann, M., Jones, C.C.P., Wolf, H.J., Kohnen, G., Kosanke, G. and Kaufmann, P.: Location of insulin receptors in the placenta and its progenitor tissues. Microsc. Res. Tech. 38:63–75, 1997.PubMedCrossRefGoogle Scholar
  143. Devés, R. and Boyd, C.A.R.: Surface antigen CD98(4F2): not a single membrane protein, but a family of proteins with multiple functions. J. Membr. Biol. 173:165–177, 2000.PubMedCrossRefGoogle Scholar
  144. Dong, Y.L., Vegiraju, S., Chauhan, M., Gangula, P.R., Hankins, G.D., Goodrum, L. and Yallampalli, C.: Involvement of calcitonin gene-related peptide in control of human fetoplacental vascular tone. Am. J. Heart Circ. Physiol. 28:H230–H239, 2004.Google Scholar
  145. Dorgan, W.J. and Schultz, R.L.: An in vitro study of programmed death in rat placental giant cells. J. Exp. Zool. 178:497–512, 1971.PubMedCrossRefGoogle Scholar
  146. Dreskin, R.B., Spicer, S.S. and Greene, W.B.: Ultrastructural localization of chorionic gonadotropin in human term placenta. J. Histochem. Cytochem. 18:862–874, 1970.PubMedGoogle Scholar
  147. Duance, V.C. and Bailey, A.J.: Structure of the trophoblast basement membrane. In, Biology of Trophoblast. Y.W. Loke and A. Whyte, eds., pp. 597–625. Elsevier, Amsterdam, 1983.Google Scholar
  148. Dujardin, M., Robyn, C. and Wilkin, P.: Mise en evidence immuno-histoenzymologique de l’hormone chorionique somatomammotrope (HCS) au niveau des divers constituents cellulaires du placenta humain normal. Biol. Cell 30:151–154, 1977.Google Scholar
  149. Dunne, F.P., Ratcliffe, W.A., Mansour, P. and Heath, D.A.: Parathyroid hormone related protein (PTHrP) gene expression in fetal and extra-embryonic tissues of early pregnancy. Hum. Reprod. (Oxf.) 9:149–156, 1994.PubMedGoogle Scholar
  150. Durst-Zivkovic, B.: Das Vorkommen der Mastzellen in der Nachgeburt. Anat. Anz. 134:225–229, 1973.PubMedGoogle Scholar
  151. Earl, U., Estlin, C. and Bulmer, J.N.: Fibronectin and laminin in the early human placenta. Placenta 11:223–231, 1990.PubMedCrossRefGoogle Scholar
  152. Eden, T.W.: A study of the human placenta, physiological and pathological. J. Pathol. Bacteriol. 4:265–283, 1897.CrossRefGoogle Scholar
  153. Edwards, D., Jones, C.J.P., Sibley, C.P., Farmer, D.R. and Nelson, D.M.: Areas of syncytial denudation may provide routes for paracellular diffusion across the human placenta. Placenta 12:383, 1991.Google Scholar
  154. Edwards, J.A., Jones, D.B., Evans, P.R. and Smith, J.L.: Differential expression of HLA class II antigens on human fetal and adult lymphocytes and macrophages. Immunology 55:489–500, 1985.PubMedGoogle Scholar
  155. Emly, J.F., Gregory, J., Bowden, S.J., Ahmed, A., Whittle, M.J., Rushton, D.I. and Ratcliffe, W.A.: Immunohistochemical localization of parathyroid hormone-related protein (PTHrP) in human placenta and membranes. Placenta 15:653–660, 1994.PubMedCrossRefGoogle Scholar
  156. Emonard, H., Christiane, Y., Smet, M., Grimaud, J.A. and Foidart, J.M.: Type IV and interstitial collagenolytic activities in normal and malignant trophoblast cells are specifically regulated by the extracellular matrix. Invasion Metastasis 10:170–177, 1990.PubMedGoogle Scholar
  157. Enders, A.C. and King, B.F.: The cytology of Hofbauer cells. Anat. Rec. 167:231–252, 1970.PubMedCrossRefGoogle Scholar
  158. Evain-Brion, D. and Alsat, E.: Epidermal growth factor receptor and human fetoplacental development. J. Pediatr. Endocrinol. 7:295–302, 1994.PubMedGoogle Scholar
  159. Evans, J.P., Schultz, R.M. and Kopf, G.S.: Roles of the disintegrin domains of mouse fertilins alpha and beta in fertilization. Biol. Reprod. 59:145–152, 1998.PubMedCrossRefGoogle Scholar
  160. Farley, A.E., Graham, C.H. and Smith, G.N.: Contractile properties of human placental anchoring villi. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R680–R685, 2004.PubMedGoogle Scholar
  161. Faulk, P., Trenchev, P., Dorling, J. and Holborow, J.: Antigens on post-implantation placentae. In, Immunobiology of Trophoblast. R.G. Edwards, C.W.S. Howe and M.H. Johnson, eds. pp. 113–125, Cambridge University Press, Cambridge, 1975.Google Scholar
  162. Faulk, W.P., Jarret, R., Keane, M., Johnson, P.M. and Boackle, R.J.: Immunological studies of human placentae: complement components in immature and mature chorionic villi. Clin. Exp. Immunol. 40:299–305, 1980.PubMedGoogle Scholar
  163. Feller, A.C., Schneider, H., Schmidt, D. and Parwaresch, M.R.: Myofibroblast as a major cellular constituent of villous stroma in human placenta. Placenta 6:405–415, 1985.PubMedCrossRefGoogle Scholar
  164. Filla, M.S. and Kaul, K.L.: Relative expression of epidermal growth factor receptor in placental cytotrophoblasts and choriocarcinoma cell lines. Placenta 18:17–27, 1997PubMedCrossRefGoogle Scholar
  165. Firth, J.A. and Leach, L.: Not trophoblast alone: A review of the contribution of the fetal microvasculature to transplacental exchange. Placenta 17:89–96, 1996.PubMedGoogle Scholar
  166. Firth, J.A. and Leach, L.: Structure and permeability in human placental capillaries. A review. Trophoblast Res. 10:205–213, 1997.Google Scholar
  167. Firth, J.A., Farr, A. and Bauman, K.: The role of gap junctions in trophoblastic cell fusion in the guinea-pig placenta. Cell Tissue Res. 205:311–318, 1980.PubMedCrossRefGoogle Scholar
  168. Firth, J.A., Bauman, K. and Sibley, C.P.: Permeability pathways in fetal placental capillaries. Trophoblast Res. 3:163–177, 1988.Google Scholar
  169. Fisher, S.J. and Laine, R.A.: High alpha-amylase activity in the syncytiotrophoblastic cells of first-trimester human placentas. J. Cell Biochem. 22:47–54, 1983.PubMedCrossRefGoogle Scholar
  170. Fisher, S.J., Leitch, M.S. and Laine, A.: External labelling of glycoproteins from first-trimester human placental microvilli. Biochem. J. 221:821–828, 1984.PubMedGoogle Scholar
  171. Flynn, A., Finke, J.H. and Hilfiker, M.L.: Placental mononuclear phagocytes as a source of interleukin-1. Science 218:475–477, 1982.PubMedCrossRefGoogle Scholar
  172. Flynn, A., Finke, J.H. and Loftus, M.A.: Comparison of interleukin-1 production by adherent cells and tissue pieces from human placenta. Immunopharmacology 9:19–26, 1985.PubMedCrossRefGoogle Scholar
  173. Fox, H.: The villous cytotrophoblast as an index of placental ischaemia. J. Obstet. Gynaecol. Br. Commonw. 71:885–893, 1964.PubMedGoogle Scholar
  174. Fox, H.: The significance of villous syncytial knots in the human placenta. J. Obstet. Gynaecol. Br. Commonw. 72:347–355, 1965.PubMedGoogle Scholar
  175. Fox, H.: The incidence and significance of Hofbauer cells in the mature human placenta. J. Pathol. Bacteriol. 93:710–717, 1967a.PubMedCrossRefGoogle Scholar
  176. Fox, H.: Perivillous fibrin deposition in the human placenta. Amer. J. Obstet. Gynecol. 98:245–251, 1967b.Google Scholar
  177. Fox, H.: Fibrinoid necrosis of placental villi. J. Obstet. Gynaecol. Br. Commonw. 75:448–452, 1968.PubMedGoogle Scholar
  178. Fox, H.: Effect of hypoxia on trophoblast in organ culture. Amer. J. Obstet. Gynecol. 107:1058–1064, 1970.Google Scholar
  179. Fox, H.: Morphological pathology of the placenta. In, The Placenta and Its Maternal Supply Line: Effects of Insufficiency on the Fetus. P. Gruenwald, ed. Medical Technical Publications, Lancaster, 1975.Google Scholar
  180. Fox, H.: Pathology of the Placenta. 2nd Ed. Saunders, Philadelphia, 1997.Google Scholar
  181. Fox, H. and Blanco, A.A.: Scanning electron microscopy of the human placenta in normal and abnormal pregnancies. Eur. J. Obstet. Gynecol. 4:45–50, 1974.CrossRefGoogle Scholar
  182. Frank, H.G., Malekzadeh, F., Kertschanska, S., Crescimanno, C., Castellucci, M., Lang, I., Desoye, G. and Kaufmann, P.: Immunohistochemistry of two different types of placental fibrinoid. Acta Anat. (Basel) 150:55–68, 1994.PubMedGoogle Scholar
  183. Frauli, M. and Ludwig, H.: Demonstration of the ability of Hofbauer cells to phagocytose exogenous antibodies. Eur. J. Obstet. Gynecol. Reprod. Biol. 26:135–144, 1987a.PubMedGoogle Scholar
  184. Frauli, M. and Ludwig, H.: Immunocytochemical identification of mitotic Hofbauer cells in cultures of first trimester human placental villi. Arch. Gynecol. Obstet. 241:47–51, 1987b.PubMedCrossRefGoogle Scholar
  185. Frauli, M. and Ludwig, H.: Identification of human chorionic gonadotropin (HCG) secreting cells and other cell types using antibody to HCG and a new monoclonal antibody (mABlu-5) in cultures of human placental villi. Arch. Gynecol. Obstet. 241:97–110, 1987c.PubMedCrossRefGoogle Scholar
  186. Freese, U.E.: The fetal-maternal circulation of the placenta. I. Histomorphologic, plastoid injection, and X-ray cinematographic studies on human placentas. Amer. J. Obstet. Gynecol. 94:354–360, 1966.Google Scholar
  187. Frendo, J.-L., Olivier, D., Cheynet, V., Blond, J.-L., Bouton, O., Vidaud, M., Rabreau, M., Evain-Brion, D. and Mallet, F.: Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol. Cell. Biol. 23:3566–3574, 2003.PubMedCrossRefGoogle Scholar
  188. Frolik, C.A., Dart, L.L., Meyers, C.A., Smith, D.M. and Sporn, M.B.: Purification and initial characterization of a type b transforming growth factor from human placenta. Proc. Natl. Acad. Sci. U.S.A. 80:3676–3680, 1983.PubMedCrossRefGoogle Scholar
  189. Fujimoto, S., Hamasaki, K., Ueda, H. and Kagawa, H.: Immunoelectron microscope observations on secretion of human placental lactogen (hPL) in the human chorionic villi. Anat. Rec. 216:68–72, 1986.PubMedCrossRefGoogle Scholar
  190. Gabius, H.-J., Debbage, P.L., Engelhardt, R., Osmers, R. and Lange, W.: Identification of endogenous sugar-binding proteins (lectins) in human placenta by histochemical localization and biochemical characterization. Eur. J. Cell Biol. 44:265–272, 1987.PubMedGoogle Scholar
  191. Galbraith, G.M.P., Galbraith, R.M., Temple, A. and Faulk, W.P.: Demonstration of transferrin receptors on human placental trophoblast. Blood 55:240–242, 1980.PubMedGoogle Scholar
  192. Galliano, M.F., Huet, C., Frygelius, J., Polgren, A., Wewer, U.M. and Engvall, E.: Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha-actinin-2, is required for myoblast fusion. J. Biol. Chem. 275:13933–13939, 2000.PubMedCrossRefGoogle Scholar
  193. Galton, M.: DNA content of placental nuclei. J. Cell Biol. 13:183–191, 1962.PubMedCrossRefGoogle Scholar
  194. Garfield, R.E., Yallampalli, C., Buhimschi, I. and Chwalisz, K.: Reversal of preeclampsia symptoms induced in rats by nitric oxide inhibition with l-arginine, steroid hormones and an endothelin antagonist. Society for Gynecologic Investigation Meeting, Chicago, IL, 1994.Google Scholar
  195. Gaspard, U.J., Hustin, J., Reuter, A.M., Lambotte, R. and Franchimont, P.: Immunofluorescent localization of placental lactogen, chorionic gonadotrophin and its alpha and beta subunits in organ cultures of human placenta. Placenta 1:135–144, 1980.PubMedCrossRefGoogle Scholar
  196. Geier, G., Schuhmann, R. and Kraus, H.: Regional unterschiedliche Zellproliferation innerhalb der Plazentone reifer menschlicher Plazenten. Autoradiographische Untersuchungen. Arch. Gynäkol. 218:31–37, 1975.PubMedCrossRefGoogle Scholar
  197. Geller, H.F.: Über die sogenannten Hofbauerzellen in der reifen menschlichen Placenta. Arch. Gynäkol. 188:481–496, 1957.PubMedCrossRefGoogle Scholar
  198. Geller, H.F.: Elektronenmikroskopische Befunde am Synzytium der menschlichen Plazenta. Geburtsh. Frauenheilkd. 22:1234–1237, 1962.Google Scholar
  199. Genbacev, O., Robyn, C. and Pantic, V.: Localization of chorionic gonadotropin in human term placenta on ultrathin sections with peroxidase-labeled antibody. J. Microsc. 15:399–402, 1972.Google Scholar
  200. Gerl, D., Eichhorn, H., Eichhorn, K.-H. and Franke, H.: Quantitative Messungen synzytialer Zellkernkonzentrationen der menschlichen Plazenta bei normalen und pathologischen Schwangerschaften. Zentralbl. Gynäkol. 95:263–266, 1973.PubMedGoogle Scholar
  201. Getsios, S. and MacCalman, C.D.: Cadherin-11 modulates the terminal differentiation and fusion of human trophoblastic cells in vitro. Dev. Biol. 257: 41–54, 2003.PubMedCrossRefGoogle Scholar
  202. Gey, G.O., Seegar, G.E. and Hellman, L.M.: The production of a gonadotrophic substance (prolan) by placental cells in tissue culture. Science 88:306–307, 1938.CrossRefPubMedGoogle Scholar
  203. Gille, J., Börner, P., Reinecke, J., Krause, P.-H. and Deicher, H.: Über die Fibrinoidablagerungen in den Endzotten der menschlichen Placenta. Arch. Gynäkol. 217:263–271, 1974.PubMedCrossRefGoogle Scholar
  204. Gillim, S.W., Christensen, A.K. and McLennan, C.E.: Fine structure of the human menstrual corpus luteum at its stage of maximum secretory activity. Amer. J. Anat. 126:409–428, 1969.PubMedCrossRefGoogle Scholar
  205. Gilpin, B.J., Loechel, F., Mattei, M.G., Engvall, E., Albrechtsen, R. and Wewer, U.M.: A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J. Biol. Chem. 273:157–166, 1998.PubMedCrossRefGoogle Scholar
  206. Glover, D.M., Brownstein, D., Burchette, S., Larsen, A. and Wilson, C.B.: Expression of HLA class II antigens and secretion of interleukin-1 by monocytes and macrophages from adults and neonates. Immunology 61:195–201, 1987.PubMedGoogle Scholar
  207. Goldstein, J., Braverman, M., Salafia, C. and Buckley, P.: The phenotype of human placental macrophages and its variation with gestational age. Amer. J. Pathol. 133:648–659, 1988.Google Scholar
  208. Gosseye, S. and Fox, H.: An immunohistological comparison of the secretory capacity of villous and extravillous trophoblast in the human placenta. Placenta 5:329–348, 1984.PubMedCrossRefGoogle Scholar
  209. Gossrau, R., Graf, R., Ruhnke, M. and Hanski, C.: Proteases in the human full-term placenta. Histochemistry 86:405–413, 1987.PubMedCrossRefGoogle Scholar
  210. Goyert, S.M., Ferrero, E.M., Seremetis, S.V., Winchester, R.J., Silver, J. and Mattison, A.C.: Biochemistry and expression of myelomonocytic antigens. J. Immunol. 137:3909–3914, 1986.PubMedGoogle Scholar
  211. Goyert, S.M., Ferrero, E.M., Rettig, W.J., Yenamandra, A.K., Obata, F. and Le Beau, M.M.: The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science 239:497–500, 1988.PubMedCrossRefGoogle Scholar
  212. Graf, R., Langer, J.U., Schoenfelder, G., Oeney, T., Hartel-Schenk, S., Reutter, W. and Schmidt, H.H.H.W.: The extravascular contractile system in the human placenta. Morphological and immunohistochemical investigations. Anat. Embryol. 190:541–548, 1994.PubMedCrossRefGoogle Scholar
  213. Graf, R., Schoenfelder, G., Muehlberger, M. and Gutsmann, M.: The perivascular contractile sheath of human placental stem villi: its isolation and characterization. Placenta 16:57–66, 1995.PubMedCrossRefGoogle Scholar
  214. Graf Spee, F.: Anatomie und Physiologie der Schwangerschaft. In, Handbuch der Geburtshilfe, Vol. 1. A. Doederlein, ed., pp. 3–152. Bergmann, Wiesbaden, 1915.Google Scholar
  215. Green, T. and Ford, H.C.: Human placental microvilli contain high-affinity binding sites for folate. Biochem. J. 218:75–80, 1984.PubMedGoogle Scholar
  216. Grillo, M.A.: Cytoplasmic inclusions resembling nucleoli in sympathetic neurones of adult rats. J. Cell Biol. 45:100–117, 1970.PubMedCrossRefGoogle Scholar
  217. Gröschel-Stewart, U.: Plazenta als endokrines Organ. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and F. Kubli, eds., pp. 217–233. Thieme Verlag, Stuttgart, 1981.Google Scholar
  218. Haigh, T., Chen, C., Jones, C.J. and Aplin, J.D.: Studies of mesenchymal cells from 1st trimester human placentae: expression of cytokeratin outside the trophoblast lineage. Placenta 20:615–625, 1999.PubMedCrossRefGoogle Scholar
  219. Hamanaka, N., Tanizawa, O., Hashimoto, T., Yoshinari, S. and Okudaira, Y.: Electron microscopic study on the localization of human chorionic gonadotropin (HCG) in the chorionic tissue by enzyme labeled antibody technique. J. Electron Microsc. 20:46–48, 1971.Google Scholar
  220. Hamilton, W.J. and Boyd, J.D.: Specializations of the syncytium of the human chorion. Br. Med. J. 1:1501–1506, 1966.PubMedGoogle Scholar
  221. Hardingham, T.E. and Fosang, A.J.: Proteoglycans: many forms and many functions. FASEB J. 6:861–870, 1992.PubMedGoogle Scholar
  222. Hashimoto, M., Kosaka, M., Mori, Y., Komori, A. and Akashi, K.: Electron microscopic studies on the epithelium of the chorionic villi of the human placenta. I. J. Jpn. Obstet. Gynaecol. Soc. 7:44, 1960a.Google Scholar
  223. Hashimoto, M., Shimoyama, T., Hirasawa, T., Komori, A., Kawasaki, T. and Akashi, K.: Electron microscopic studies on the epithelium of the chorionic villi of the human placenta. II. J. Jpn. Obstet. Gynaecol. Soc. 7:122, 1960b.Google Scholar
  224. Hay, D.L.: Placental histology and the production of human choriogonadotrophin and its subunits in pregnancy. Br. J. Obstet. Gynaecol. 95:1268–1275, 1988.PubMedGoogle Scholar
  225. Hayakawa, S., Watanabe, K. and Satoh, K.: Increased apoptosis and repair hyperplasia of the villous trophoblast in placentae with preeclampsia and IUGR. Placenta 16:A2, 1995.CrossRefGoogle Scholar
  226. Haziot, A., Chen, S., Ferrero, E., Low, M.G., Silber, R. and Goyert, S.M.: The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J. Immunol. 141:547–552, 1988.PubMedGoogle Scholar
  227. Hedley, R. and Bradbury, M.B.W.: Transport of polar nonelectrolytes across the intact and perfused guinea-pig placenta. Placenta 1:277–285, 1980.PubMedCrossRefGoogle Scholar
  228. Heinrich, D., Metz, J., Raviola, E. and Forssmann, W.G. Ultrastructure of perfusion fixed fetal capillaries in the human placenta. Cell Tissue Res. 172:157–169, 1976.PubMedCrossRefGoogle Scholar
  229. Heinrich, D., Weihe, E., Gruner, C. and Metz, J.: Vergleichende Morphologie der Placentakapillaren. Anat. Anz. 71:489–491, 1977.Google Scholar
  230. Heinrich, D., Aoki, A. and Metz, J.: Fetal capillary organization in different types of placenta. Trophoblast Res. 3:149–162, 1988.Google Scholar
  231. Hempel, E. and Geyer, G.: Submikroskopische Verteilung der alkalischen Phosphatase in der menschlichen Placenta. Acta Histochem. 34:138–147, 1969.PubMedGoogle Scholar
  232. Hemsen, A., Gillis, C., Larson, O., Haegerstrand, A. and Lundberg, J.M.: Characterization, localization and actions of endothelin in umbilical vessels and placenta of man. Acta Physiol. Scand. 43:395–404, 1991.Google Scholar
  233. Herbst, R. and Multier, A.M.: Les microvillosites a la surface des villosites chorioniques du placenta humain. Gynecol. Obstet. 69:609–616, 1970.Google Scholar
  234. Herbst, R., Multier, A.M. and Hörmann, G.: Die menschlichen Plazentazotten des 2. Schwangerschaftstrimenon im elektronenoptischen Bild. Z. Geburtshilfe Gynäkol. 169:1–16, 1968.PubMedGoogle Scholar
  235. Herbst, R., Multier, A.M. and Hšrmann, G.: Elektronenoptische Untersuchungen an menschlichen Placentazotten. Zentralbl. Gynäkol. 91:465–475, 1969.PubMedGoogle Scholar
  236. Hey, A. and Röckelein, G.: Die sog. Endothelvakuolen der Plazentagefäße. Physiologie oder Krankheit? Pathologe 10:66–67, 1989.PubMedGoogle Scholar
  237. Hofbauer, J.: Über das konstante Vorkommen bisher unbekannter zelliger Formelemente in der Chorionzotte der menschlichen Plazenta und über Embryotrophe. Wien. Klin. Wochenschr. 16:871–873, 1903.Google Scholar
  238. Hofbauer, J.: Grundzüge einer Biologie der menschlichen Plazenta mit besonderer Berücksichtigung der Fragen der fötalen Ernährung. Braumüller, Vienna, 1905.Google Scholar
  239. Hofbauer, J.: The function of the Hofbauer cells of the chorionic villus particularly in relation to acute infection and syphilis. Amer. J. Obstet. Gynecol. 10:1–14, 1925.Google Scholar
  240. Hoffman, L.H. and Di Pietro, D.L.: Subcellular localization of human placental acid phosphatases. Amer. J. Obstet. Gynecol. 114:1087–1096, 1972.Google Scholar
  241. Horky, Z.: Beitrag zur Funktionsbedeutung der Hofbauer-Zellen (Beobachtungen in der Placenta bei Diabetes mellitus). Zentralbl. Gynäkol. 86:1621–1626, 1964.PubMedGoogle Scholar
  242. Hörmann, G.: Haben die sogenannten Hofbauerzellen der Chorionzotten funktionelle Bedeutung? Zentralbl. Gynäkol. 69:1199–1205, 1947.Google Scholar
  243. Hörmann, G.: Die Reifung der menschlichen Chorionzotte im Lichte ökonomischer Zweckmäßigkeit. Zentralbl. Gynäkol. 70:625–631, 1948.Google Scholar
  244. Hörmann, G.: Ein Beitrag zur funktionellen Morphologie der menschlichen Placenta. Arch. Gynäkol. 184:109–123, 1953.CrossRefGoogle Scholar
  245. Hörmann, G.: Die Fibrinoidisierung des Chorionepithels als Konstruktionsprinzip der menschlichen Plazenta. Z. Geburtshilfe Gynäkol. 164:263–269, 1965.PubMedGoogle Scholar
  246. Hörmann, G., Herbst, R. and Ullmann, G.: Die Transformation des Zytotrophoblasten in den Synzytiotrophoblasten. Z. Geburtshilfe Gynäkol. 171:171–182, 1969.Google Scholar
  247. Hoshina, M., Boothby, M. and Boime, I.: Cytological localization of chorionic gonadotropin and placental lactogen mRNAs during development of the human placenta. J. Cell Biol. 93:190–198, 1982.PubMedCrossRefGoogle Scholar
  248. Hoshina, M., Hussa, R., Patillo, R. and Boime, I.: Cytological distribution of chorionic gonadotropin subunit and placental lactogen messenger RNA in neoplasms derived from human placenta. J. Cell Biol. 97:1200–1206, 1983.PubMedCrossRefGoogle Scholar
  249. Hoshina, M., Boime, I. and Mochizuki, M.: Cytological localization of hPL and hCG mRNA in chorionic tissue using in situ hybridization. Acta Obstet. Gynaecol. Jpn. 36:397–404, 1984.Google Scholar
  250. Howatson, A.G., Farquharson, M., Meager, A., McNicol, A.M. and Foulis, A.K.: Localization of alpha-interferon in the human feto-placental unit. J. Endocrinol. 119:531–534, 1988.PubMedGoogle Scholar
  251. Hoyer, P.E. and Kirkeby, S.: The impact of fixative on the binding of lectins to N-acetyl-glucosamine residues of human syncytiotrophoblast: a quantitative histochemical study. J. Histochem. Cytochem. 44:855–863, 1996.PubMedGoogle Scholar
  252. Huber, C.P., Carter, J.E. and Vellios, F.: Lesions of the circulatory system of the placenta: a study of 243 placentas with special reference to the developments of infarcts. Amer. J. Obstet. Gynecol. 81:560–572, 1961.Google Scholar
  253. Huguenin, B.: Über die Genese der Fibringerinnungen und Infarktbildungen der menschlichen Placenta. Beitr. Geburtshilfe Gynäkol. 13:339–357, 1909.Google Scholar
  254. Hulstaert, C.E., Torringa, J.L., Koudstaal, J., Hardonk, M.J. and Molenaar, I.: The characteristic distribution of alkaline phosphatase in the full-term human placenta. Gynecol. Invest. 4:24–30, 1973.Google Scholar
  255. Hunt, J.S.: Cytokine networks in the uteroplacental unit: macrophages as pivotal regulatory cells. J. Reprod. Immunol. 16:1–17, 1989.PubMedCrossRefGoogle Scholar
  256. Huppertz, B. and Kaufmann, P.: The apoptosis cascade in human villous trophoblast. A review. Trophoblast Res. 13:215–242, 1999.Google Scholar
  257. Huppertz, B., Frank, H.G., Kingdom, J.C.P., Reister, F. and Kaufmann, P.: Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem. Cell Biol. 110:495–508, 1998.PubMedCrossRefGoogle Scholar
  258. Huppertz, B., Frank, H.G., Reister, F., Kingdom, J., Korr, H. and Kaufmann, P.: Apoptosis cascade progresses during turnover of human trophoblast: Analysis of villous cytotrophoblast and syncytial fragments in vitro. Lab. Invest. 79:1687–1702, 1999.PubMedGoogle Scholar
  259. Huppertz, B., Tews, D.S., and Kaufmann, P.: Apoptosis and syncytial fusion in human placental trophoblast and skeletal muscle. Int. Rev. Cytol. 205:215–253, 2001.PubMedGoogle Scholar
  260. Huppertz, B., Kaufmann, P. and Kingdom, J.: Trophoblast turnover in health and disease. Mat. Fet. Med. Rev., 13:103–118, 2002.CrossRefGoogle Scholar
  261. Huppertz, B., Kingdom, J., Caniggia, I., Desoye, G., Korr, H., and Kaufmann, P.: Hypoxia favors necrotic versus apoptotic shedding of placental syncytiotrophoblast into the maternal circulation. Implications for the pathogenesis of preeclampsia. Placenta 24:181–190, 2003.PubMedCrossRefGoogle Scholar
  262. Ikawa, A.: Observations on the epithelium of human chorionic villi with the electron microscope. J. Jpn. Obstetr. Gynaecol. Soc. 6:219, 1959.Google Scholar
  263. Iklé, F.A.: Trophoblastzellen im strömenden Blut. Schweiz. Med. Wochenschr. 91:934–945, 1961.Google Scholar
  264. Iklé, F.A.: Dissemination von Syncytiotrophoblastzellen im mütterlichen Blut während der Gravidität. Bull. Schweiz. Akad. Med. Wissenschaft. 20:62–72, 1964.Google Scholar
  265. Jackson, M.R., Joy, C.F., Mayhem, T.M. and Haas, J.D.: Stereological studies on the true thickness of the villous membrane in human term placentae: a study of placentae from highaltitude pregnancies. Placenta 6:249–258, 1985.PubMedCrossRefGoogle Scholar
  266. Jacquemin, P., Alsat, E., Oury, C., Belayew, A., Muller, M., Evain-Brion, D. and Martial, J.A.: The enhancers of the human placental lactogen B, A, and L genes: progressive activation during in vitro trophoblast differentiation and importance of the DF-3 element in determining their respective activities. DNA Cell Biol. 15:845–854, 1996.PubMedGoogle Scholar
  267. Jaggi, M., Mehrotra, P.K., Maitra, S.C., Agarwal, S.L., Das, K. and Kamboj, V.P.: Ultrastructure of cellular components of human trophoblasts during early pregnancy. Reprod. Fertil. Dev. 7:1539–1546, 1995.PubMedCrossRefGoogle Scholar
  268. Jansson, T.: Amino acid transporters in the human placenta. Pediatric Research 49:141–147, 2001.PubMedGoogle Scholar
  269. Jeffcoate, T.N.A. and Scott, J.S.: Some observations on the placental factor in pregnancy toxemia. Am. J. Obstet. Gynecol. 77:475–489, 1959.PubMedGoogle Scholar
  270. Jemmerson, R., Klier, F.G. and Fishman, W.H.: Clustered distribution of human placental alkaline phosphatase on the surface of both placental and cancer cells. J. Histochem. Cytochem. 33:1227–1234, 1985.PubMedGoogle Scholar
  271. Jimenez, E., Vogel, M., Arabin, B., Wagner, G. and Mirsalim, P.: Correlation of ultrasonographic measurement of the uteroplacental and fetal blood flow with the morphological diagnosis of placental function. Trophoblast Res. 3:325–334, 1988.Google Scholar
  272. Johansen, M., Redman, C.W., Wilkins, T. and Sargent, I.L.: Trophoblast deportation in human pregnancy—its relevance for pre-eclampsia. Placenta 20:531–539, 1999.PubMedCrossRefGoogle Scholar
  273. Johnson, P.M. and Brown, P.J.: The IgG and transferrin receptors of the human syncytiotrophoblast microvillous plasma membrane. Amer. J. Reprod. Immunol. 1:4–9, 1980.Google Scholar
  274. Johnson, P.M. and Brown, P.J.: Fc gamma receptors in the human placenta. Placenta 2:355–369, 1981.PubMedGoogle Scholar
  275. Jones, C.J.P. and Fox, H.: Syncytial knots and intervillous bridges in the human placenta. An ultrastructural study. J. Anat. 124:275–286, 1977.Google Scholar
  276. Jones, C.J.P. and Fox, H.: Ultrastructure of the normal human placenta. Electron Microsc. Rev. 4:129–178, 1991.PubMedCrossRefGoogle Scholar
  277. Jones, C.J.P., Hartmann, M., Blaschitz, A. and Desoye, G.: Ultrastructural localization of insulin receptors in human placenta. Amer. J. Reprod. Immunol. 30:136–145, 1993.Google Scholar
  278. Jury, J.A., Frayne, J. and Hall, L.: The human fertilin alpha gene is non-functional: implications for its proposed role in fertilization. Biochem. J. 321:577–581, 1997.PubMedGoogle Scholar
  279. Jury, J.A., Frayne, J. and Hall, L.: Sequence analysis of a variety of primate fertilin alpha genes: evidence for non-functional genes in the gorilla and man. Mol. Reprod. Dev. 51:92–97, 1998.PubMedCrossRefGoogle Scholar
  280. Kacemi, A., Vervelle, C., Uzan, S. and Challier, J.C.: Immunostaining of vascular, perivascular cells and stromal components in human placental villi. Cell. Mol. Biol. (Noisy-le-grand) 45:101–113, 1999.PubMedGoogle Scholar
  281. Kadyrov, M., Kaufmann, P. and Huppertz, B.: Expression of a Cytokeratin 18 Neo-epitope is a Specific Marker for Trophoblast Apoptosis in Human Placenta. Placenta 22: 44–48, 2001.PubMedCrossRefGoogle Scholar
  282. Kameda, T., Koyama, M., Matsuzaki, N., Taniguchi, T., Fumitaka, S. and Tanizawa, O.: Localization of three subtypes of Fc gamma receptors in human placenta by immunohistochemical analysis. Placenta 12:15–26, 1991.PubMedGoogle Scholar
  283. Kameya, T., Watanabe, K., Kobayashi, T. and Mukojima, T.: Enzyme-and immuno-histochemical localization of human placental alkaline phosphatase. Acta Histochem. Cytochem. 6:124–136, 1973.Google Scholar
  284. Kao, L.-C., Caltabiano, S., Wu, S., Strauss J.F. III and Kliman, H.J.: The human villous cytotrophoblast: interactions with extracellular matrix proteins, endocrine function, and cytoplasmic differentiation in the absence of syncytium formation. Dev. Biol. (Oxf.) 130:693–702, 1988.PubMedCrossRefGoogle Scholar
  285. Kasper, M., Moll, R. and Stosiek, P.: Distribution of intermediate filaments in human umbilical cord: Unusual triple expression of cytokeratins, vimentin, and desmin. Zool. Jahrb. Anat. 117:227–233, 1988.Google Scholar
  286. Kastschenko, N.: Das menschliche Chorionepithel und dessen Rolle bei der Histogenese der Placenta. Arch. Anat. Physiol. (Leipzig), 451–480, 1885.Google Scholar
  287. Kasznica, J. M. and Petcu, E. B.: Placental calcium pump: clinical-based evidence. Pediatric Pathol. Mol. Med. 22:223–227, 2003.CrossRefGoogle Scholar
  288. Katabuchi, H., Naito, M., Miyamura, S., Takahashi, K. and Okamura, H.: Macrophages in human chorionic villi. Prog. Clin. Biol. Res. 296:453–458, 1989.PubMedGoogle Scholar
  289. Katsuragawa, H., Kanzaki, H., Inoue, T., Hirano, T., Mori, T. and Rote, N.S.: Monoclonal antibody against phosphatidylserine inhibits in vitro human trophoblastic hormone production and invasion. Biol. Reprod. 56:50–58, 1997.PubMedCrossRefGoogle Scholar
  290. Kaufmann, P.: Über polypenartige Vorwölbungen an Zell-und Syncytiumoberflächen in reifen menschlichen Plazenten. Z. Zellforsch. 102:266–272, 1969.PubMedCrossRefGoogle Scholar
  291. Kaufmann, P.: Untersuchungen Über die Langhanszellen in der menschlichen Placenta. Z. Zellforsch. 128:283–302, 1972.PubMedCrossRefGoogle Scholar
  292. Kaufmann, P.: Über die Bedeutung von Plasmaprotrusionen an reifenden und alternden Zellen. Anat. Anz. Verh. Anat. Ges. 69:307–312, 1975a.Google Scholar
  293. Kaufmann, P.: Experiments on infarct genesis caused by blockage of carbohydrate metabolism in guinea pig placenta. Virchows Arch. Pathol. Anat. Histol. 368:11–21, 1975b.CrossRefGoogle Scholar
  294. Kaufmann, P.: Vergleichend-anatomische und funktionelle Aspekte des Placenta-Baues. Funkt. Biol. Med. 2:71–79, 1983.Google Scholar
  295. Kaufmann, P.: Influence of ischemia and artificial perfusion on placental ultrastructure and morphometry. Contrib. Gynecol. Obstet. 13:18–26, 1985.PubMedGoogle Scholar
  296. Kaufmann, P. and Miller, R.K., eds.: Placental vascularization and blood flow. Basic research and clinical applications. Trophoblast Res. 3:1–370, 1988.Google Scholar
  297. Kaufmann, P. and Stark, J.: Enzymhistochemische Untersuchungen an reifen menschlichen Placentazotten. I. Reifungs-und Alterungsvorgänge am Trophoblasten. Histochemistry 29:65–82, 1972.PubMedCrossRefGoogle Scholar
  298. Kaufmann, P. and Stark, J.: Semidünnschnitt-cytochemische und immunautoradiographische Befunde zum Hormonstoffwechsel der reifen menschlichen Placenta. Anat. Anz. Verh. Anat. Ges. 67:245–249, 1973.Google Scholar
  299. Kaufmann, P. and Stegner, H.E.: Über die funktionelle Differenzierung des Zottensyncytiums in der menschlichen Placenta. Z. Zellforsch. 135:361–382, 1972.PubMedCrossRefGoogle Scholar
  300. Kaufmann, P., Thorn, W. and Jenke, B.: Die Morphologie der Meerschweinchenplacenta nach Monojodacetat-und Fluorid-Vergiftung. Arch. Gynäkol. 216:185–203, 1974a.PubMedCrossRefGoogle Scholar
  301. Kaufmann, P., Schiebler, T.H., Ciobotaru, C. and Stark, J.: Enzymhistochemische Untersuchungen an reifen menschlichen Placentazotten. II. Zur Gliederung des Syncytiotrophoblasten. Histochemistry 40:191–207, 1974b.PubMedCrossRefGoogle Scholar
  302. Kaufmann, P., Gentzen, D.M. and Davidoff, M.: Die Ultrastruktur von Langhanszellen in pathologischen menschlichen Placenten. Arch. Gynäkol. 22:319–332, 1977a.Google Scholar
  303. Kaufmann, P., Stark, J. and Stegner, H.E.: The villous stroma of the human placenta. I. The ultrastructure of fixed connective tissue cells. Cell Tissue Res. 177:105–121, 1977b.PubMedCrossRefGoogle Scholar
  304. Kaufmann, P., Schröder, H. and Leichtweiss, H.-P.: Fluid shift across the placenta: II. Fetomaternal transfer of horseradish peroxidase in the guinea pig. Placenta 3:339–348, 1982.PubMedCrossRefGoogle Scholar
  305. Kaufmann, P., Nagl. W. and Fuhrmann, B.: Die funktionelle Bedeutung der Langhanszellen der menschlichen Placenta. Anat. Anz. Verh. Anat. Ges. 77:435–436, 1983.Google Scholar
  306. Kaufmann, P., Luckhardt, M., Schweikhart, G. and Cantle, S.J.: Cross-sectional features and three-dimensional structure of human placental villi. Placenta 8:235–247, 1987a.PubMedGoogle Scholar
  307. Kaufmann. P., Schröder, H., Leichtweiss, H.-P. and Winterhager, E.: Are there membrane-lined channels through the trophoblast? A study with lanthanum hydroxide. Trophoblast Res. 2:557–571, 1987b.Google Scholar
  308. Kaufmann, P., Firth, J.A., Sibley, C.P. and Schröder, H.: Fetomaternal protein permeability of the placenta-tracer studies using various haeme proteins and lanthanum hydroxide. Gegenbaurs Morphol. Jahrb. 135:305, 1989.Google Scholar
  309. Kekuda, R., Prasad, P.D., Fei, Y.-J., Torres-Zamorano, V., Sinha, S., Yang-Feng, T.L., Leibach, F.H. and Ganapathy, V.: Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter B0 from a human placental choriocarcinoma cell line. J. Biol. Chem. 271:18657–18661, 1996.PubMedCrossRefGoogle Scholar
  310. Kelley, L.K., King, B.F., Johnson, L.W. and Smith, C.H.: Protein composition and structure of human placental microvillous membrane. Exp. Cell Res. 123:167–176, 1979.PubMedCrossRefGoogle Scholar
  311. Kemnitz, P.: Die Morphogenese des Zottentrophoblasten der menschlichen Plazenta. Ein Beitrag zum Synzytiumproblem. Zentralbl. Allg. Pathol. 113:71–76, 1970.PubMedGoogle Scholar
  312. Kerr, J.F.R., Gobé, G.C., Winterford, C.M. and Harmon, B.V.: Anatomical methods in cell death. Methods Cell Biol. 46:1–27, 1995.PubMedGoogle Scholar
  313. Kertschanska, S. and Kaufmann, P.: Morphological evidence for the existence of transtrophoblastic channels in human placental villi. Placenta 13:A33, 1992.Google Scholar
  314. Kertschanska, S., Kosanke, G. and Kaufmann, P.: Is there morphological evidence for the existence of transtrophoblastic channels in human placental villi? Trophoblast Res. 8:581–596, 1994.Google Scholar
  315. Kertschanska, S., Kosanke, G. and Kaufmann, P.: Pressure dependence of so-called transtrophoblastic channels during fetal perfusion of human placental villi. Microsc. Res. Tech. 38:52–62, 1997.PubMedCrossRefGoogle Scholar
  316. Kertschanska, S., Stulcova, B., Kaufmann, P. and Stulc, J.: Distensible transtrophoblastic channels in the rat placenta. Placenta 21:670–677, 2000.PubMedCrossRefGoogle Scholar
  317. Khaliq, A., Li, X.F., Shams, M., Sisi, P., Acevedo, C.A., Whittle, M.J., Weich, H. and Ahmed, A.: Localisation of placenta growth factor (PIGF) in human term placenta. Growth Factors 13:243–250, 1996.PubMedGoogle Scholar
  318. Khansari, N. and Fudenberg, H.H.: Functional heterogeneity of human cord blood monocytes. Scand. J. Immunol. 19:337–342, 1984.PubMedCrossRefGoogle Scholar
  319. Khodr, G.S. and Siler-Khodr, T.M.: Localization of luteinizing hormone releasing factor (LRF) in the human placenta. Fertil. Steril. 29:523–526, 1978.PubMedGoogle Scholar
  320. Khong, T.Y., Lane, E.B. and Robertson, W.B.: An immunocytochemical study of fetal cells at the maternal-placental interface using monoclonal antibodies to keratins, vimentin and desmin. Cell Tissue Res. 246:189–195, 1986.PubMedCrossRefGoogle Scholar
  321. Kilby, M.D., Afford, S., Li, X.F., Strain, A.J., Ahmed, A. and Whittle, M.J.: Localisation of hepatocyte growth factor and its receptor (c-met) protein and mRNA in human term placenta. Growth Factors 13:133–139, 1996.PubMedGoogle Scholar
  322. Kim, C.J., Choe, Y.J., Yoon, B.H., Kim, C.W. and Chi, J.G.: Patterns of bcl-2 expression in placenta. Pathol. Res. Pract. 191:1239–1244, 1995.PubMedGoogle Scholar
  323. Kim, C.K. and Benirschke, K.: Autoradiographic study of the “X cells” in the human placenta. Amer. J. Obstet. Gynecol. 109:96–102, 1971.Google Scholar
  324. Kim, C.K., Naftolin, F. and Benirschke, K.: Immunohistochemical studies of the “X cell” in the human placenta with anti-human chorionic gonadotropin and anti-human placental lactogen. Amer. J. Obstet. Gynecol. 111:672–676, 1971.Google Scholar
  325. King, B.F.: Localization of transferrin on the surface of the human placenta by electron microscopic immunocytochemistry. Anat. Rec. 186:151–159, 1976.PubMedCrossRefGoogle Scholar
  326. King, B.F.: The distribution and mobility of anionic sites on the surface of human placental syncytial trophoblast. Anat. Rec. 199:15–22, 1981.PubMedCrossRefGoogle Scholar
  327. King, B.F.: The organization of actin filaments in human placental villi. J. Ultrastruct. Res. 85:320–328, 1983.PubMedCrossRefGoogle Scholar
  328. King, B.F.: Ultrastructural differentiation of stromal and vascular components in early macaque placental villi. Amer. J. Anat. 178:30–44, 1987.PubMedCrossRefGoogle Scholar
  329. King, B.F. and Menton, D.N.: Scanning electron microscopy of human placental villi from early and late in gestation. Amer. J. Obstet. Gynecol. 122:824–828, 1975.Google Scholar
  330. King, R.G., Gude, N.M., Di Iulio, J.L. and Brennecke, S.P.: Regulation of human placental vessel tone: role of nitric oxide. Reprod. Fertil. Dev. 7:1407–1411, 1995.PubMedCrossRefGoogle Scholar
  331. Kingdom, J.C.P. and Kaufmann, P.: Oxygen and placental villous development: origins of fetal hypoxia. Placenta 18:613–621, 1997.PubMedCrossRefGoogle Scholar
  332. Kliman, H.J. and Feinberg, R.F.: Human trophoblastextracellular matrix (ECM) interactions in vitro: ECM thickness modulates morphology and proteolytic activity. Proc. Natl. Acad. Sci. U.S.A. 87:3057–3061, 1990.PubMedCrossRefGoogle Scholar
  333. Kliman, H.J., Nestler, J.E., Sermasi, E., Sanger, J.M. and Strauss, J.F. III: Purification, characterization and in vitro differentiation of cytotrophoblasts from human term placenta. Endocrinology 118:1567–1582, 1986.PubMedGoogle Scholar
  334. Kliman, H.J., Feinman, M.A. and Strauss, J.F. III: Differentiation of human cytotrophoblasts into syncytiotrophoblasts in culture. In, Trophoblast Research, vol. 2. R. Miller and H. Thiede, eds., pp. 407–421. Plenum, New York, 1987.Google Scholar
  335. Kline, B.S.: Microscopic observations of development of human placenta. Amer. J. Obstet. Gynecol. 61:1065–1074, 1951.Google Scholar
  336. Knerr, I., Weigel, C., Linnemann, K., Dötsch, J., Meissner, U., Fusch, C. and Rascher, W.: Transcriptional effects of hypoxia on fusogenic syncytin and its receptor in human cytotrophoblast cells and in ex vivo perfused placental cotyledons. Placenta 24:A21, 2003.CrossRefGoogle Scholar
  337. Knobil, E. and Neill, J.D., eds.: The Physiology of Reproduction, Vol. 2. Raven Press, New York, 1993.Google Scholar
  338. Knoth, M.: Ultrastructure of chorionic villi from a four-somite human embryo. J. Ultrastruct. Res. 25:423–440, 1968.PubMedCrossRefGoogle Scholar
  339. Kockx, M. M., Muhring, J., Knaapen, M. W., and de Meyer, G. R.: RNA synthesis and splicing interferes with DNA in situ end labeling techniques used to detect apoptosis. Amer. J. Pathol. 152:885–888, 1998.Google Scholar
  340. Kohnen, G., Kosanke, G., Korr, H. and Kaufmann, P.: Comparison of various proliferation markers applied to human placental tissue. Placenta 14:A38, 1993.Google Scholar
  341. Kohnen, G., Castellucci, M., Hsi, B.L., Yeh, C.J.G. and Kaufmann, P.: The monoclonal antibody GB42-a useful marker for the differentiation of myofibroblasts. Cell Tissue Res. 281:231–242, 1995.PubMedGoogle Scholar
  342. Kohnen, G., Kertschanska, S., Demir, R. and Kaufmann, P.: Placental villous stroma as model system for myofibroblast differentiation. Histochem. Cell Biol. 105:415–429, 1996.PubMedCrossRefGoogle Scholar
  343. Kokawa, K., Shikone, T. and Nakano, R.: Apoptosis in human chorionic villi and decidua during normal embryonic development and spontaneous abortion in the first trimester. Placenta 19:21–26, 1998.PubMedCrossRefGoogle Scholar
  344. Korhonen, M., Ylanne, J., Laitinen, L., Cooper, H.M., Quaranta, V. and Virtanen, I.: Distribution of the alpha 1-alpha 6 integrin subunits in human developing and term placenta. Lab. Invest. 65:347–356, 1991.PubMedGoogle Scholar
  345. Korhonen, M. and Virtanen, I.: Immunohistochemical localization of laminin and fibronectin isoforms in human placental villi. J. Histochem. Cytochem. 49:313–322, 2001.PubMedGoogle Scholar
  346. Kosanke, G., Kadyrov, M., Korr, H. and Kaufmann, P.: Maternal anemia results in increased proliferation in human placental villi. Trophoblast Res. 11:339–357, 1998.Google Scholar
  347. Krantz, K.E. and Parker, J.C.: Contractile properties of the smooth muscle in the human placenta. Clin. Obstet. Gynecol. 93:253–258, 1963.Google Scholar
  348. Kristoffersen, E.K., Ulvestad, E., Vedeler, C.A. and Matre, R.: Fc-gamma receptor heterogeneity in the human placenta. Scand. J. Immunol. 31:561–564, 1990.CrossRefGoogle Scholar
  349. Kubli, F. and Budliger, H.: Beitrag zur Morphologie der insuffizienten Plazenta. Geburtsh. Frauenheilkd. 23:37–43, 1963.Google Scholar
  350. Kudo, Y., Boyd, C.A.R., Sargent, I.L. and Redman, C.W.G.: Hypoxia alters expression and function of syncytin and its receptor during trophoblast cell fusion of human placental BeWo cells: implications for impaired trophoblast syncytialisation in pre-eclampsia. Biochim. Biophys. Acta 1638:63–71, 2003a.PubMedGoogle Scholar
  351. Kudo, Y., Boyd, C.A.R., Kimura, H., Cook, P.R., Sargent, I.L., Redman, C.W.G. and Ohama, K.: Quantifying the syncytialisation of a human placental trophoblast cell line (BeWo) grown in vitro and effects thereon of manipulation of CD98 expression. Placenta 24:A58, 2003b.Google Scholar
  352. Kumazaki, K., Nakayama, M., Yanagihara, I., Suehara, N. and Wada, Y.: Immunohistochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum. Pathol. 35:47–54, 2004.PubMedCrossRefGoogle Scholar
  353. Kunicki, T.J., Nugent, D.J., Staats, S.J., Orchekowski, R.P., Wayner, E.A. and Carter, W.G.: The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet la-lla complex. J. Biol. Chem. 263:4516–4519, 1988.PubMedGoogle Scholar
  354. Kurman, R.J., Young, R.H., Norris, H.J., Main, C.S., Lawrence, W.D. and Scully, R.E.: Immunocytochemical localization of placental lactogen and chorionic gonadotropin in the normal placenta and trophoblastic tumors, with emphasis on intermediate trophoblast and the placental site trophoblastic tumor. Int. J. Gynecol. Pathol. 3:101–121, 1984.PubMedGoogle Scholar
  355. Küstermann, W.: Über „Proliferationsknoten” und „Syncytialknoten” der menschlichen Placenta. Anat. Anz. 150:144–157, 1981.PubMedGoogle Scholar
  356. Laatikainen, T., Saijonmaa, O., Salminen, K. and Wahlström, T.: Localization and concentrations of beta-endorphin and betalipotrophin in human placenta. Placenta 8:381–387, 1987.PubMedGoogle Scholar
  357. Ladines-Llave, C.A., Maruo, T., Manalo, A.S. and Mochizuki, M.: Cytologic localization of epidermal growth factor and its receptor in developing human placenta varies over the course of pregnancy. Amer. J. Obstet. Gynecol. 165:1377–1382, 1991.Google Scholar
  358. Lafond, J., Auger, D., Fortier, J. and Brunette, M.G.: Parathyroid hormone receptor in human placental syncytiotrophoblast brush border and basal plasma membranes. Endocrinology 123:2834–2840, 1988.PubMedGoogle Scholar
  359. Lafond, J., Simoneau, L., Savard, R. and Lajeunesse, D.: Calcitonin receptor in human placental syncytiotrophoblast brush border and basal plasma membranes. Mol. Cell Endocrinol. 99:285–292, 1994.PubMedCrossRefGoogle Scholar
  360. Lafond, J., St.-Pierre, S., Masse, A., Savard, R. and Simoneau, L.: Calcitonin gene-related peptide receptor in human placental syncytiotrophoblast brush-border and basal plasma membranes. Placenta 18:181–188, 1997.PubMedCrossRefGoogle Scholar
  361. Lairmore, M.D., Cuthbertt, P.S., Utley, L.L., Morgan, C.J., Dezzutti, C.S., Anderson, C.L., and Sedmak, D.D. Cellular localization of CD4 in the human placenta. Implications for maternal-to-fetal transmission of HIV. J. Immunol. 151:1673–1681, 1993.PubMedGoogle Scholar
  362. Lamarre, D., Ashkenazi, A., Fleury, S., Smith, D.H., Sekaly, R.-P. and Capon, D.J.: The MHC-binding and gp 120-binding functions of CD4 are separable. Science 245:743–746, 1989.PubMedCrossRefGoogle Scholar
  363. Lang, I., Hartmann, M., Blaschitz, A., Dohr, G., Skofitsch, G. and Desoye, G.: Immunohistochemical evidence for the heterogeneity of maternal and fetal vascular endothelial cells in human full-term placenta. Cell Tissue Res. 274:211–218, 1993a.PubMedCrossRefGoogle Scholar
  364. Lang, I., Dohr, G. and Desoye, G.: Isolation and culture of fetal vascular endothelial cells derived from human full term placenta. Placenta 14:A40, 1993b.Google Scholar
  365. Lang, I., Hahn, T., Dohr, G., Skofitsch, G. and Desoye, G.: Heterogeneous histochemical reaction pattern of the lectin Bandeiraea (Griffonia) simplicifolia with blood vessels of human full-term placenta. Cell Tissue Res. 278:433–438, 1994a.PubMedGoogle Scholar
  366. Lang, I., Hartmann, M., Blaschitz, A., Dohr, G., Kaufmann, P., Frank, H.G., Hahn, T., Skofitsch, G. and Desoye, G.: Differential lectin binding to the fibrinoid of human full term placenta: correlation with a fibrin antibody and the PAF-Halmi method. Acta Anat. 150:170–177, 1994b.PubMedGoogle Scholar
  367. Lang, I., Hoffmann, C., Olip, H., Pabst, M.A., Hahn, T., Dohr, G. and Desoye, G.: Differential mitogenic responses of human macrovascular and microvascular endothelial cells to cytokines underline their phenotypic heterogeneity. Cell Prolif. 34:143–155, 2001.PubMedCrossRefGoogle Scholar
  368. Langhans, T.: Zur Kenntnis der menschlichen Placenta. Arch. Gynäkol. 1:317–334, 1870.CrossRefGoogle Scholar
  369. Langhans, T.: Untersuchungen Über die menschliche Placenta. Arch. Anat. Physiol. Anat. Abt. 188–267, 1877.Google Scholar
  370. Lash, G.E., McLaughlin, B.E., MacDonald-Goodfellow, S.K., Smith, G.N., Brien, J.F., Marks, G.S., Nakatsu, K. and Graham, C.H.: Relationship between tissue damage and heme oxygenase expression in chorionic villi of term human placenta. Amer. J. Heart Circ. Physiol. 284:H160–H167, 2003.Google Scholar
  371. Latta, J.S. and Beber, C.R.: Cells with metachromatic granules in the stroma of human chorionic villi. Science 117:498–499, 1953.PubMedCrossRefGoogle Scholar
  372. Lavillette, D., Maurice, M., Roche, C., Russell, S.J., Sitbon, M. and Cosset, F.-L.: A proline-rich motif downstream of the receptor binding domain modulates conformation and fusogenicity of murine retroviral envelopes. J. Virol. 72:9955–9965, 1998.PubMedGoogle Scholar
  373. Lea, R.G., al-Sharekh, N., Tulppala, M. and Critchley, H.O.: The immunolocalization of bcl-2 at the maternal-fetal interface in healthy and failing pregnancies. Hum. Reprod. (Oxf.) 12:153–158, 1997.PubMedCrossRefGoogle Scholar
  374. Leach, L. and Firth, J.A.: Structure and permeability of human placental microvasculature. Microsc. Res. Tech. 38:137–144, 1997.PubMedCrossRefGoogle Scholar
  375. Leach, L., Eaton, B.M., Firth, J.A. and Contractor, S.F.: Immunogold localisation of endogenous immunoglobulin-G in ultrathin frozen sections of the human placenta. Cell Tissue. Res. 257:603–607, 1989.PubMedCrossRefGoogle Scholar
  376. Leach, L., Bhasin, Y., Clark, P. and Firth, J.A.: Isolation and characterisation of human microsvascular endothelial cells from chorionic villi of term placenta. Placenta 14:A41, 1993.CrossRefGoogle Scholar
  377. Leach, L., Bhasin, Y., Clark, P. and Firth, J.A.: Isolation endothelial cells from human term placental villi using immunomagnetic beads. Placenta 15:355–364, 1994.PubMedCrossRefGoogle Scholar
  378. Leach, L., Lammiman, M.J., Babawale, M.O., Hobson, S.A., Bromilou, B., Lovat, S. and Simmonds, M.J.: Molecular organization of tight and adherens junctions in the human placental vascular tree. Placenta 21:547–557, 2000.PubMedCrossRefGoogle Scholar
  379. LeBrun, D.P., Warnke, R.A. and Cleary, M.L.: Expression of bcl-2 in fetal tissues suggests a role in morphogenesis. Amer. J. Pathol. 142:743–753, 1993.Google Scholar
  380. Lee, X., Keith, J.C., Stumm, N., Moutsatsos, I., McCoy, J.M., Crum, C.P., Genest, D., Chin, D., Ehrenfels, C., Pijnenborg, R., van Assche, F.A. and Mi, S.: Downregulation of placental syncytin expression and abnormal protein localization in preeclampsia. Placenta 22:808–812, 2001.PubMedCrossRefGoogle Scholar
  381. Leibl, W., Kerjaschki, D. and Hörandner, H.: Mikrovillusfreie Areale an Chorionzotten menschlicher Placenten. Gegenbaurs Morphol. Jahrb. 121:26–28, 1975.PubMedGoogle Scholar
  382. Leist, M., Gantner, F., Bohlinger, I., Germann, P. G., Tiegs, G., and Wendel, A.: Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. J. Immunol. 153:1778–1788, 1994.PubMedGoogle Scholar
  383. Lemtis, H.: Über die Architektonik des Zottengefäßapparates der menschlichen Plazenta. Anat. Anz. 102:106–133, 1955.PubMedGoogle Scholar
  384. Lemtis, H.: Physiologie der Placenta. Bibl. Gynaecol. (Basel) 54:1–52, 1970.Google Scholar
  385. Lessin, D.L., Hunt, J.S., King, C.R. and Wood, G.W.: Antigen expression by cells near the maternal-fetal interface. Amer. J. Reprod. Immunol. Microbiol. 16:1–7, 1988.Google Scholar
  386. Levy, R., Smith, S.D., Chandler, K., Sadovsky, Y., and Nelson, D.M.: Apoptosis in human cultured trophoblasts is enhanced by hypoxia and diminished by epidermal growth factor. Amer. J. Physiol. Cell Physiol. 278:C982–C988, 2000.Google Scholar
  387. Lewis, G.D., Lofgren, J.A., McMurtrey, A.E., Nuijens, A., Fendly, B.M., Bauer, K.D. and Sliwkowski, M.X.: Growth regulation of human breast and ovarian tumor cells by heregulin: evidence for the requirement of ErbB2 as a critical component in mediating heregulin responsiveness. Cancer Res. 56:1457–1465, 1996.PubMedGoogle Scholar
  388. Lewis, M.P., Clements, M., Takeda, S., Kirby, P.L., Seki, H., Lonsdale, L.B., Sullivan, M.H.F., Elder, M.G. and White, J.O.: Partial characterization of an immortalized human trophoblast cell line, TCL-1, which possesses a CSF-1 autocrine loop. Placenta 17:137–146, 1996.PubMedGoogle Scholar
  389. Lewis, S.H., Reynolds-Kohler, C., Fox, H.E. and Nelson, J.A.: HIV-1 in trophoblastic and villous Hofbauer cells, and haematological precursors in eight-week fetuses. Lancet 335:565–568, 1990.PubMedCrossRefGoogle Scholar
  390. Lewis, W.H.: Hofbauer cells (clasmatocytes) of the human chorionic villus. Bull. Johns Hopkins Hosp. 35:183–185, 1924.Google Scholar
  391. Librach, C.L., Werb, Z., Fitzgerald, M.L., Chiu, K., Corwin, N.M., Esteves, R.A., Grobelny, D., Galardy, R., Damsky, C.H. and Fisher, S.J.: 92-kD Type IV collagenase mediates invasion of human cytotrophoblasts. J. Cell Biol. 113:437–449, 1991.PubMedCrossRefGoogle Scholar
  392. Liebhaber, S.A., Urbanek, M., Ray, J., Ruan, R.S. and Cooke, N.E.: Characterization and histologic localization of human growth hormone-variant gene expression in the placenta. J. Clin. Invest. 83:1985–1991, 1989.PubMedGoogle Scholar
  393. Liebhart, M.: Some observations on so-called fibrinoid necrosis of placental villi: an electron-microscopic study. Pathol. Eur. 6:217–220, 1971.PubMedGoogle Scholar
  394. Liebhart, M.: Polysaccharide surface coat (glycocalix) of human placental villi. Pathol. Eur. 9:3–10, 1974.PubMedGoogle Scholar
  395. Lister, U.M.: Ultrastructure of the early human placenta. J. Obstetr. Gynaecol. Br. Commonw. 71:21–32, 1964.Google Scholar
  396. Lister, U.M.: The localization of placental enzymes with the electron microscope. J. Obstet. Gynaecol. Br. Commonw. 74:34–49, 1967.PubMedGoogle Scholar
  397. Loke, Y.W., Eremin, O., Ashby, J. and Day, S.: Characterization of the phagocytic cells isolated from the human placenta. J. Reticuloendothel. Soc. 31:317–324, 1982.PubMedGoogle Scholar
  398. Lyden, T.W., Ng, A.K. and Rote, N.S.: Modulation of phosphatidylserine epitope expression by BeWo cells during forskolin treatment. Placenta 14:177–186, 1993.PubMedCrossRefGoogle Scholar
  399. Lysiak, J.J., Han, V.K.M., and Lala, P.K.: Localization of transforming growth factor alpha in the human placenta and decidua: role in trophoblast growth. Biol. Reprod. 49:885–894, 1993.PubMedCrossRefGoogle Scholar
  400. Mabrouk, M. el, Simoneau, L., Bouvier, C. and Lafond, J.: Asymmetrical distribution of G proteins in syncytiotrophoblast brush-border and basal-plasma membranes of human term placenta. Placenta 17:471–478, 1996.PubMedCrossRefGoogle Scholar
  401. Macara, L.M., Kingdom, J.C.P. and Kaufmann, P.: Control of fetoplacental circulation. Fetal Maternal Med. Rev. 5:167–179, 1993.Google Scholar
  402. Mahnke, P.F. and Jacob, C.: Histologische, histochemische und papierchromatographische Untersuchungen an Mastzellen (MZ) der menschlichen Plazenta. Z. Mikrosk. Anat. Forsch. 85:105–122, 1972.PubMedGoogle Scholar
  403. Malassine, A., Goldstein, S., Alsat, E., Merger, C. and Cedard, L.: Ultrastructural localization of low density lipoprotein bindings site on the surface of the syncytial microvillous membranes of the human placenta. IRCS Med. Sci. 12:166–167, 1984.Google Scholar
  404. Malassine, A., Besse, C., Roche, A., Alsat, E., Rebourcet, R., Mondon, F. and Cedard, L.: Ultrastructural visualization of the internalization of low density lipoprotein by human placental cells. Histochemistry 87:457–464, 1987.PubMedCrossRefGoogle Scholar
  405. Malassine, A., Cronier, L., Mondon, F., Mignot, T.M. and Ferre, F.: Localization and production of immunoreactive endothelin-1 in the trophoblast of human placenta. Cell Tissue Res. 271:491–497, 1993.PubMedGoogle Scholar
  406. Malassiné, A., Frendo, J.L., Olivier, D., Pidoux, G., Guibourdenche, J. and Mallet, F.: Direct role for HERV-W Env glycoprotein and for connexion 43 in trophoblastic cell fusion demonstrated by antisense strategy. Placenta 24:A58, 2003.Google Scholar
  407. Marchand, F.: Über das maligne Chorionepitheliom. Berl. Klin. Wochenschr. 35:249–250, 1898.Google Scholar
  408. Marcuse, P.M.: Pulmonary syncytial giant cell embolism. Obstet. Gynecol 3:210–213, 1954.PubMedGoogle Scholar
  409. Marin, M., Lavillette, D., Kelly, S.M. and Kabat, D.: N-linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions. J. Virol. 77:2936–2945; 2003.PubMedCrossRefGoogle Scholar
  410. Marin, M., Tailor, C.S., Nouri, A. and Kabat, D.: Sodium-dependent neutral amino acid transporter type 1 is an auxiliary receptor for baboon endogenous retrovirus. J. Virol. 74:8085–8093, 2000.PubMedCrossRefGoogle Scholar
  411. Marinoni, E., Picca, A., Scucchi, L., Cosmi, E.V. and Di Iorio, R.: Immunohistochemical localization of endothelin-1 in placenta and fetal membranes in term and preterm human pregnancy. Amer. J. Reprod. Immunol. 34:213–218, 1995.Google Scholar
  412. Martin, B.J. and Spicer, S.S.: Multivesicular bodies and related structures of the syncytiotrophoblast of human term placenta. Anat. Rec. 175:15–36, 1973a.PubMedCrossRefGoogle Scholar
  413. Martin, B.J. and Spicer, S.S.: Ultrastructural features of cellular maturation and aging in human trophoblast. J. Ultrastruct. Res. 43:133–149, 1973b.PubMedGoogle Scholar
  414. Martin, B.J., Spicer, S.S. and Smythe, N.M.: Cytochemical studies of the maternal surface of the syncytiotrophoblast of human early and term placenta. Anat. Rec. 178:769–786, 1974.PubMedCrossRefGoogle Scholar
  415. Martin, S.J., Reutelingsberger, C.P., McGahon, A.J., Rader, J.A., Van Schie, R.C., Laface, D.M. and Green, D.R.: Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182:1545–1556, 1995.PubMedCrossRefGoogle Scholar
  416. Martinez, F., Kiriakidou, M. and Strauss, J.F. III: Structural and functional changes in mitochondria associated with trophoblast differentiation: methods to isolate enriched preparations of syncytiotrophoblast mitochondria. Endocrinology 138:2172–2183, 1997.PubMedCrossRefGoogle Scholar
  417. Martinoli, C., Castellucci, M., Zaccheo, D. and Kaufmann, P.: Scanning electron microscopy of stromal cells of human placental villi throughout pregnancy. Cell Tissue Res. 235:647–655, 1984.PubMedCrossRefGoogle Scholar
  418. Maruo, T. and Mochizuki, M.: Immunohistochemical localization of epidermal growth factor receptor and myc oncogene product in human placenta: implication for trophoblast proliferation and differentiation. Amer. J. Obstet. Gynecol. 156:721–727, 1987.Google Scholar
  419. Maruo, T., Matsuo, H., Oishi, T., Hayashi, M., Nishino, R. and Mochizuki, M.: Induction of differentiated trophoblast function by epidermal growth factor: relation of immunohistochemically detected cellular epidermal growth factor receptor levels. J. Clin. Endocrinol. Metabol. 64:744–750, 1987.Google Scholar
  420. Maruo, T., Matsuo, H., Otani, T. and Mochizuki, M.: Role of epidermal growth factor (EGF) and its receptor in the development of the human placenta. Reprod. Fertil. Dev. 7:1465–1470, 1996.CrossRefGoogle Scholar
  421. Marzioni, D., Mühlhauser, J., Crescimanno, C., Banita, M., Pierleoni, C. and Castellucci, M.: BCL-2 expression in the human placenta and its correlation with fibrin deposits. Hum. Reprod. (Oxf.) 13:1717–1722, 1998.PubMedCrossRefGoogle Scholar
  422. Marzioni, D., Banita, M., Felici, A., Paradinas, F. J., Newlands, E., De Nictolis, M., Mühlhauser, J. and Castellucci M.: Expression of ZO-1 and occludin in normal human placenta and in hydatiform moles. Molecular Human Reprod. 7:279–285, 2001.CrossRefGoogle Scholar
  423. Marzioni, D., Crescimanno, C., Zaccheo, D., Coppari, R., Underhill, C.B. and Castellucci, M.: Hyaluronate and CD44 expression patterns in the human placenta throughout pregnancy. Eur. J. Histochem. 45:131–140, 2001.PubMedGoogle Scholar
  424. Masuzaki, H., Ogawa, Y., Sagawa, N., Hosoda, K., Matsumoto, T., Mise, H., Nishimura, H., Yoshimasa, Y., Tanaka, I., Mori, T. and Nakao, K.: Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nature Med. 9:1029–1033, 1997.Google Scholar
  425. Matsubara, S., Tamada, T., Kurahashi, K. and Saito, T.: Ultracytochemical localizations of adenosine nucleotidase activities in the human term placenta, with special reference to 5′-nucleotidase activity. Acta Histochem. Cytochem. 20:409–419, 1987a.Google Scholar
  426. Matsubara, S., Tamada, T. and Saito, T.: Cytochemical study of the electron microscopical localization of Ca ATPase activity in the human trophoblast. Acta Obstet. Gynaecol. Jpn. 39:1080–1086, 1987b.Google Scholar
  427. Matsubara, S., Tamada, T. and Saito, T.: Ultracytochemical localizations of alkaline phosphatase and acid phosphatase activities in the human term placenta. Acta Histochem. Cytochem. 20:283–294, 1987c.Google Scholar
  428. Matsubara, S., Tamada, T. and Saito, T.: Ultracytochemical localizations of adenylate cyclase, guanylate cyclase and cyclic 3′,5′-nucleotide phosphodiesterase activity on the trophoblast in the human placenta. Histochemistry 87:505–509, 1987d.PubMedCrossRefGoogle Scholar
  429. Matsubara, S., Minakami, H., Takayama, T. and Sato, I.: Cellular and subcellular localization of nicotinamide adenine dinucleotide phosphate diaphorase activity. J. Obstet. Gynaecol. 23:133–138, 1997.Google Scholar
  430. Maubert, B., Guilbert, L.J. and Deloron, P.: Cytoadherence of plasmodium falciparum to intercellular adhesion molecule 1 and chondroitin-4-sulfate expressed by the syncytiotrophoblast in the human placenta. Infect. Immun. 65:1251–1257, 1997.PubMedGoogle Scholar
  431. Mayer, M., Panigel, M. and Tozum, R.: Observations sur l’aspect radiologique de la vascularisation fetale du placenta humain isole mainten en survie par perfusion de liquides physiologiques. Gynecol. Obstet. (Paris) 58:391–397, 1959.Google Scholar
  432. Mayhew, T.M.: The problem of ambiguous profiles of microvilli between apposed cell surfaces: a stereological solution. J. Microsc. 139:327–330, 1985.PubMedGoogle Scholar
  433. Mayhew, T.M.: Scaling placental oxygen diffusion to birthweight: studies on placentae from low-and high-altitude pregnancies. J. Anat. 175:187–194, 1991.PubMedGoogle Scholar
  434. Mayhew, T.M. and Burton, G.J.: Methodological problems in placental morphometry: apologia for the use of stereology based on sound sampling practice. Placenta 9:565–581, 1988.PubMedGoogle Scholar
  435. Mayhew, T.M., Jackson, M.R. and Haas, J.D.: Oxygen diffusive conductances of human placentae from term pregnancies at low and high altitudes. Placenta 11:493–503, 1990.PubMedCrossRefGoogle Scholar
  436. Mazel, S., Burtrum, D., and Petrie, H. T.: Regulation of cell division cycle progression by bcl-2 expression: A potential mechanism for inhibition of programmed cell death. J. Exp. Med. 183:2219–2226, 1996.PubMedCrossRefGoogle Scholar
  437. Mazzanti, L., Staffolani, R., Cester, N., Romanini, C., Pugnaloni, A., Belmonte, M.M., Salvolini, E., Brunelli, M.A. and Biagini, G.: A biochemical-morphological study on microvillus plasma membrane development. Biochem. Biophys. Acta 1192:101–106, 1994.PubMedGoogle Scholar
  438. McCormick, J.N., Faulk, W.P., Fox, H. and Fudenberg, H.H.: Immunohistological and elution studies of the human placenta. J. Exp. Med. 91:1–13, 1971.CrossRefGoogle Scholar
  439. McGann, K.A., Collman, R., Kolson, D.L., Gonzalez-Scarano, F., Coukos, G., Coutifaris, C., Strauss, J.F. and Nathanson, N.: Human immunodeficiency virus type 1 causes productive infection of macrophages in primary placental cell cultures. J. Infect. Dis. 169:746–753, 1994.PubMedGoogle Scholar
  440. McKay, D.G., Hertig, A.T., Adams, E.C. and Richardson, M.V.: Histochemical observations on the human placenta. Obstet. Gynecol. 12:1–36, 1958.PubMedGoogle Scholar
  441. McKenzie, P. P., Foster, J. S., House, S., Bukovsky, A., Caudle, M. R. and Wimalasena, J.: Expression of G1 cyclins and cyclindependent kinase-2 activity during terminal differentiation of cultured human trophoblast. Biol. Reprod. 58:1283–1289, 1998.PubMedCrossRefGoogle Scholar
  442. McLean, M., Bowman, M., Clifton, V., Smith, R. and Grossman, A.B.: Expression of the heme oxygenase-carbon monoxide signaling system in human placenta. J. Clin. Endocrinol. Metab. 85:2345–2349, 2000.PubMedCrossRefGoogle Scholar
  443. Mebius, R.E., Martens, G., Brevé, J., Delemarra, F.G.A. and Kraal, G.: Is early repopulation of macrophage-depleted lymph node independent of blood monocyte immigration? Eur. J. Immunol. 21:3041–3044, 1991.PubMedGoogle Scholar
  444. Merrill, J.A.: Common pathological changes of the placenta. Clin. Obstet. Gynecol. 6:96–109, 1963.PubMedCrossRefGoogle Scholar
  445. Merttens, I.: Beiträge zur normalen und pathologischen Anatomie der menschlichen Placenta. Z. Geburtshilfe Gynäkol. 30:1–22, 1894.Google Scholar
  446. Metz, J., Heinrich, D. and Forssmann, W.G.: Ultrastructure of the labyrinth in the rat full term placenta. Anat. Embryol. 149:123–148, 1976.PubMedCrossRefGoogle Scholar
  447. Metz, J., Weihe, E. and Heinrich, D.: Intercellular junctions in the full term human placenta. I. Syncytiotrophoblastic layer. Anat. Embryol. 158:41–50, 1979.PubMedCrossRefGoogle Scholar
  448. Meyer, A.W.: On the nature, occurrence and identity of the plasma cells of Hofbauer. J. Morphol. 32:327–349, 1919.CrossRefGoogle Scholar
  449. Mi, S., Lee, X., Li, X.-P., Veldman, G.M., Finnerty, H., Racie, L., LaVallie, E., Tang, X.-Y., Edouard, P., Howes, S., Keith, J.C. and McCoy J.M.: Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789, 2000.PubMedCrossRefGoogle Scholar
  450. Midgley, A.R. and Pierce, G.B.: Immunohistochemical localization of human chorionic gonadotropin. J. Exp. Med. 115:289–297, 1962.PubMedCrossRefGoogle Scholar
  451. Miller, D., Pelton, R., Deryick, R. and Moses, H.: Transforming growth factor-b. A family of growth regulatory peptides. Ann. N.Y. Acad. Sci. 593:208–217, 1990.PubMedGoogle Scholar
  452. Miller, R.K. and Thiede, H.A. eds.: Fetal nutrition, metabolism, and immunology. The role of the placenta. Trophoblast Res. 1:1–387, 1984.Google Scholar
  453. Minot, C.S.: Uterus and embryo. I. Rabbit. II. Man. J. Morphol. 2:341–460, 1889.Google Scholar
  454. Mitchell, M.D., Trautman, M.S. and Dudley, D.J.: Cytokine networking in the placenta. Placenta 14:249–275, 1993.PubMedCrossRefGoogle Scholar
  455. Moe, N.: Deposits of fibrin and plasma proteins in the normal human placenta. Acta Pathol. Microbiol. Scand. 76:74–88, 1969a.PubMedCrossRefGoogle Scholar
  456. Moe, N.: Histological and histochemical study of the extracellular deposits in the normal human placenta. Acta Pathol. Microbiol. Scand. 76:419–431, 1969b.PubMedCrossRefGoogle Scholar
  457. Moe, N.: The deposits of fibrin and fibrin-like materials in the basal plate of the normal human placenta. Acta Pathol. Microbiol. Scand. 75:1–17, 1969c.PubMedGoogle Scholar
  458. Moe, N.: Mitotic activity in the syncytiotrophoblast of the human chorionic villi. Amer. J. Obstet. Gynecol. 110:431, 1971.Google Scholar
  459. Moe, N. and Joergensen, L.: Fibrin deposits on the syncytium of the normal human placenta: evidence of their thrombogenic origin. Acta Pathol. Microbiol. Scand. 72:519–541, 1968.PubMedCrossRefGoogle Scholar
  460. Moll, U.M. and Lane, B.L.: Proteolytic activity of first trimester human placenta: localization of interstitial collagenase in villous and extravillous trophoblast. Histochemistry 94:555–560, 1990.PubMedCrossRefGoogle Scholar
  461. Morrish, D.W., Bhardwaj, D., Dabbagh, L.K., Marusyk, H. and Siy, O.: Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta. J. Clin. Endocrinol. Metabol. 65:1282–1290, 1987.Google Scholar
  462. Morrish, D.W., Marusyk, H. and Bhardwaj, D.: Ultrastructural localization of human placental lactogen in distinctive granules in human term placenta: comparison with granules containing human chorionic gonadotropin. J. Histochem. Cytochem. 36:193–197, 1988.PubMedGoogle Scholar
  463. Morrish, D.W., Bhardwaj, D. and Paras, M.T.: Transforming growth factor b1 inhibits placental differentiation and human chorionic gonadotropin and placental lactogen secretion. Endocrinology 129:22–26, 1991.PubMedGoogle Scholar
  464. Morrish, D.W., Dakour, J., Li, H., Xiao, J., Miller, R., Sherburne, R., Berdan, R.C. and Guilbert, L.J.: In vitro cultured human term cytotrophoblast: a model for normal primary epithelial cells demonstrating a spontaneous differentiation programme that requires EGF for extensive development of syncytium. Placenta 18:577–585, 1997.PubMedCrossRefGoogle Scholar
  465. Morrish, D.W., Dakour, J., and Li, H.S.: Functional regulation of human trophoblast differentiation. J. Reprod. Immunol. 39:179–195, 1998.PubMedCrossRefGoogle Scholar
  466. Moskalewski, S., Ptak, W. and Czarnik, Z.: Demonstration of cells with IgG receptor in human placenta. Biol. Neonate 26:268–273, 1975.PubMedGoogle Scholar
  467. Moussa, M., Mognetti, B., Dubanchet, S., Menu, E., Roques, P., Dormont, D., Barre-Sinoussi, F. and Chaouat, G.: Expression of beta chemokines in explants and trophoblasts from early and term human placentae. Am. J. Reprod. Immunol. 46:309–317, 2001PubMedCrossRefGoogle Scholar
  468. Mues, B., Langer, D., Zwadlo, G. and Sorg, C.: Phenotypic characterization of macrophages in human term placenta. Immunology 67:303–307, 1989.PubMedGoogle Scholar
  469. Mühlhauser, J., Crescimanno, C., Kaufmann, P., Höfler, H., Zaccheo, D. and Castellucci, M.: Differentiation and proliferation patterns in human trophoblast revealed by c-erbB-2 oncogene product and EGF-R. J. Histochem. Cytochem. 41:165–173, 1993.PubMedGoogle Scholar
  470. Mühlhauser, J., Crescimanno, C., Rajaniemi, H., Parkkila, S., Milovanov, A.P., Castellucci, M. and Kaufmann, P.: Immunohistochemistry of carbonic anhydrase in human placenta and fetal membranes. Histochemistry 101:91–98, 1994.PubMedCrossRefGoogle Scholar
  471. Mühlhauser, J., Crescimanno, C., Kasper, M., Zaccheo, D. and Castellucci, C.: Differentiation of human trophoblast populations involves alterations in cytokeratin patterns. J. Histochem. Cytochem. 43:579–589, 1995.PubMedGoogle Scholar
  472. Mühlhauser, J., Marzioni, D., Morroni, M., Vuckovic, M., Crescimanno, C., and Castellucci, M.: Codistribution of basic fibroblast growth factor and heparan sulfate proteoglycan in the growth zones of the human placenta. Cell Tissue Res. 285: 101–107, 1996.PubMedCrossRefGoogle Scholar
  473. Muir, A., Lever, A. and Moffet, A.: Expression of human endogenous retroviral RNA and protein in first trimester trophoblast populations and regulation by steroid hormones. Placenta 24:A6, 2003.Google Scholar
  474. Müller, H.: Abhandlung über den Bau der Molen. Bonitas-Bauer, Würzburg, 1847.Google Scholar
  475. Murphy, B.E.P.: Cortisol and cortisone in human fetal development. J. Steroid Biochem. 11:509–513, 1979.PubMedCrossRefGoogle Scholar
  476. Myatt, L., Brewer, A. and Brockman, D.E.: The action of nitric oxide in the perfused human fetal-placental circulation. Amer. J. Obstet. Gynecol. 164:687–692, 1991.Google Scholar
  477. Myatt, L., Brockman, D.E., Eis, A.L.W. and Pollock, J.S.: Immunohistochemical localization of nitric oxide synthase in the human placenta. Placenta 14:487–495, 1993.PubMedCrossRefGoogle Scholar
  478. Myatt, L., Eis, A.L., Brockman, D.E., Kossenjans, W., Greer, I.A. and Lyall, F.: Differential localization of superoxide dismutase isoforms in placental villous of normotensive, pre-eclamptic, and intrauterine growth-restricted pregnancies. J. Histochem. Cytochem. 45:1433–1438, 1997.PubMedGoogle Scholar
  479. Myers, R.E. and Fujikura, T.: Placental changes after experimental abruptio placentae and fetal vessel ligation of rhesus monkey placenta. Am. J. Obstet. Gynecol. 100:846–851, 1968.Google Scholar
  480. Nagy, T., Boros, B. and Benkoe, K.: Elektronenmikroskopische Untersuchungen junger und reifer menschlicher Plazenten. Arch. Gynäkol. 200:428–440, 1965.PubMedCrossRefGoogle Scholar
  481. Naito, M., Yamamura, F., Nishikawa, S. and Takahashi, K.: Development, differentiation, and maturation of fetal mouse yolk sac macrophages in cultures. J. Leukocyte Biol. 46:1–10, 1989.PubMedGoogle Scholar
  482. Nakamura, Y. and Ohta, Y.: Immunohistochemical study of human placental stromal cells. Hum. Pathol. 21:936–940, 1990.PubMedCrossRefGoogle Scholar
  483. Nanaev, A.K., Rukosuev, V.S., Shirinsky, V.P., Milovanov, A.P., Domogatsky, S.P., Duance, V.C., Bradbury, F.M., Yarrow, P., Gardiner, L., D’Lacey, C. and Ockleford, C.D.: Confocal and conventional immunofluorescent and immunogold electron microscopic localization of collagen types III and IV in human placenta. Placenta 12:573–595, 1991.PubMedGoogle Scholar
  484. Nanaev, A.K., Kohnen, G., Milovanov, A.P., Domogatsky, S.P. and Kaufmann, P.: Stromal differentiation and architecture of the human umbilical cord. Placenta 18:53–64, 1997.PubMedCrossRefGoogle Scholar
  485. Nelson, D.M.: Apoptotic changes occur in syncytiotrophoblast of human placental villi where fibrin type fibrinoid is deposited at discontinuities in the villous trophoblast. Placenta 17:387–391, 1996.PubMedCrossRefGoogle Scholar
  486. Nelson, D.M., Smith, C.H., Enders, A.C. and Donohue, T.M.: The non-uniform distribution of acidic components on the human placental syncytial trophoblast surface membrane: a cytochemical and analytical study. Anat. Rec. 184:159–182, 1976.PubMedCrossRefGoogle Scholar
  487. Nelson, D.M., Enders, A.C. and King, B.F.: Galactosyltransferase activity of the microvillous surface of human placental syncytial trophoblast. Gynecol. Invest. 8:267–281, 1977.PubMedGoogle Scholar
  488. Nelson, D.M., Smith, R.M. and Jarett, L.: Nonuniform distribution and grouping of insulin receptors on the surface of human placental syncytial trophoblast. Diabetes 27:530–538, 1978.PubMedGoogle Scholar
  489. Nelson, D.M., Meister, R.K., Ortman-Nabi, J., Sparks, S. and Stevens, V.C.: Differentiation and secretory activities of cultured human placental cytotrophoblast. Placenta 7:1–16, 1986.PubMedCrossRefGoogle Scholar
  490. Nelson, D.M., Crouch, E.C., Curran, E.M. and Farmer, D.R.: Trophoblast interaction with fibrin matrix. Epithelialization of perivillous fibrin deposits as a mechanism for villous repair in the human placenta. Am. J. Pathol. 136:855–865, 1990.PubMedGoogle Scholar
  491. Nessmann, C., Huten, Y. and Uzan, M.: Placental correlates of abnormal umbilical Doppler index. Trophoblast Res. 3:309–323, 1988.Google Scholar
  492. Neumann, J.: Beitrag zur Kenntnis der Blasenmolen und des malignen Deciduoms. Monatsschr. Geburtshilfe Gynäkol. 6:17–36, 1897.Google Scholar
  493. Nikolov, S.D. and Schiebler, T.H.: Über das fetale Gefäßsystem der reifen menschlichen Placenta. Z. Zellforsch. 139:333–350, 1973.PubMedCrossRefGoogle Scholar
  494. Nikolov, S.D. and Schiebler, T.H.: Über Endothelzellen in Zottengefäßen der reifen menschlichen Placenta. Acta Anat. (Basel) 110:338–344, 1981.PubMedGoogle Scholar
  495. Nishihira, M. and Yagihashi, S.: Immunohistochemical demonstration of somatostatin-containing cells in the human placenta. Tohoku J. Exp. Med. 126:397, 1978.PubMedCrossRefGoogle Scholar
  496. Nishihira, M. and Yagihashi, S.: Simultaneous detection of immunoreactive hCG-and somatostatin-containing cells and their gestational changes in the human placental villi and decidua. Acta Histochem. Cytochem. 12:434–442, 1979.Google Scholar
  497. Nishino, E., Matsuzaki, N., Masuhiro, K., Kameda, T., Taniguchi, T., Tagagi, T., Saji, F. and Tanizawa, O.: Trophoblast-derived interleukin-6 (IL-6) regulates human chorionic gonadotropin release through IL-6 receptor on human trophoblasts. J. Clin. Endocrinol. Metab. 71:436–441, 1990.PubMedGoogle Scholar
  498. Nissley, P., Kiess, W. and Sklar, M.: Developmental expression of the IGF-II/mannose 6-phosphate receptor. Mol. Reprod. Dev. 35:408–413, 1993.PubMedCrossRefGoogle Scholar
  499. Ockleford, C.D.: A three dimensional reconstruction of the polygonal pattern on placental coated vesicle membranes. J. Cell Sci. 21:83–91, 1976.PubMedGoogle Scholar
  500. Ockleford, C.D. and Menon, G.: Differentiated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: a new organelle and the binding of iron. J. Cell Sci. 25:279–291, 1977.PubMedGoogle Scholar
  501. Ockleford, C.D., Wakely, J. and Badley, R.A.: The human placental chorionic villous tree. International SEM Symposium, Nijmegen, The Netherlands, 1981a.Google Scholar
  502. Ockleford, C.D., Wakely, J. and Badley, R.A.: Morphogenesis of human placental chorionic villi: cytoskeletal, syncytioskeletal and extracellular matrix proteins. Proc. R. Soc. Lond. Biol. 212:305–316, 1981b.PubMedCrossRefGoogle Scholar
  503. Ockleford, C.D., Wakely, J., Badley, R.A. and Virtanen, I.: Intermediate filament proteins in human placenta. Cell Biol. Int. Rep. 5:762, 1981c.CrossRefGoogle Scholar
  504. Ockleford, C.D., Nevard, C.H.F., Indans, I. and Jones, C.J.P.: Structure and function of the nematosome. J. Cell Sci. 87:27–44, 1987.PubMedGoogle Scholar
  505. Ohashi, K., Burkart, V., Flohe, S. and Kolb, H.: Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164:558–561, 2000.PubMedGoogle Scholar
  506. Ohlsson, R.: Growth factors, protooncogenes and human placental development. Cell Differ. Dev. 28:1–16, 1989.PubMedCrossRefGoogle Scholar
  507. Ohlsson, R., Holmgren, L., Glaser, A., Szpecht, A. and Pfeifer-Ohlsson, S.: Insulin-like growth factor 2 and short-range stimulatory loops in control of human placental growth. EMBO J. 8:1993–1999, 1989.PubMedGoogle Scholar
  508. Ohno, M., Martinez-Hernandez, A., Ohno, N. and Kefalides, N.A.: Laminin M is found in placental basement membranes, but not in basement membranes of neoplastic origin. Connect. Tissue Res. 15:199–207, 1986.PubMedGoogle Scholar
  509. Okamura, Y., Watari, M., Jerud, E.S., Young, D.W., Ishizaka, S.T., Rose, J., Chow, J.C. and Strauss, J.F. 3rd: The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276:10229–10233, 2001.PubMedCrossRefGoogle Scholar
  510. Okudaira, Y. and Hayakawa, K.: Electron microscopic study on the surface coat of the human placental trophoblast. J. Electron Microsc. 24:279–2281, 1975.Google Scholar
  511. Oliveira, L.H.S., Leandro, S.V., Fonseca, M.E.F. and Dias, L. M.S.: A new technique for the isolation of placental phagocyte cells and a description of their macrophage properties after in vitro culture. Braz. J. Med. Biol. Res. 19:249–255, 1986.PubMedGoogle Scholar
  512. Ong, P.J. and Burton, G.J.: Thinning of the placental villous membrane during maintenance in hypoxic organ culture: structural adaptation or syncytial degeneration? Eur. J. Obstet. Gynäkol. Reprod. Biol. 39:103–110, 1991.CrossRefGoogle Scholar
  513. O’Reilly, L.A., Harris, A.W., Tarlinton, D.M., Corcoran, L.M. and Strasser, A.: Expression of a bcl-2 transgene reduces proliferation and slows turnover of developing B lymphocytes in vivo. J. Immunol. 159:2301–2311, 1997.PubMedGoogle Scholar
  514. Orgnero de Gaisan, E., Aoki, A., Heinrich, D. and Metz, J.: Permeability studies of the guinea pig placental labyrinth II. Tracer permeation and freeze fracture of fetal endothelium. Anat. Embryol. 171:297–304, 1985.PubMedCrossRefGoogle Scholar
  515. Ortmann, R.: Zur Frage der Zottenanastomosen in der menschlichen Placenta. Z. Anat. Entwicklungsgesch. 111:173–185, 1941.CrossRefGoogle Scholar
  516. Ortmann, R.: Untersuchungen an einer in situ fixierten menschlichen Placenta vom 4.-5. Schwangerschaftsmonat. Arch. Gynäkol. 172:161–172, 1942.CrossRefGoogle Scholar
  517. Oswald, B. and Gerl, D.: Die Mikrofibrinoidablagerungen in der menschlichen Placenta. Acta Histochem. (Jena) 42:356–359, 1972.PubMedGoogle Scholar
  518. Owens, G.P., Hahn, W.E. and Cohen, J.J.: Identification of mRNAs associated with programmed cell death in immature thymocytes. Mol. Cell Biol. 11:4177–4188, 1991.PubMedGoogle Scholar
  519. Owens, J.A., Kind, K.L., Carbone, F., Robinson, J.S. and Owens, P.C.: Circulating insulin-like growth factors-I and-II and substrates in fetal sheep following restriction of placental growth. J. Endocrinol. 140:5–13, 1994.PubMedGoogle Scholar
  520. Panigel, M.: Comparative physiological and pharmacological aspects of placental permeability and hemodynamics in the non-human primate placenta and in the isolated perfused human placenta. Excerpta Med. 170:13, 1968.Google Scholar
  521. Panigel, M. and Anh, J.N.H.: Ultrastructure des villosites placentaires humains. Pathol. Biol. (Paris) 12:927–949, 1964.PubMedGoogle Scholar
  522. Panigel, M. and Myers, R.E.: Histological and ultrastructural changes in rhesus monkey placenta following interruption of fetal placental circulation by fetectomy or interplacental umbilical vessels ligation. Acta Anat. (Basel) 81:481–506, 1972.PubMedCrossRefGoogle Scholar
  523. Parmley, R.T., Takagi, M. and Denys, F.R.: Ultrastructural localization of glycoaminoglycans in human term placenta. Anat. Rec. 210:477–484, 1984.PubMedCrossRefGoogle Scholar
  524. Parmley, R.T., Barton, J.C. and Conrad, M.C.: Ultrastructural localization of transferrin, transferrin receptor, and iron-binding sites on human placental and duodenal microvilli. Br. J. Haematol. 60:81–89, 1985.PubMedGoogle Scholar
  525. Patel, B., Khaliq, A., Jarvisevans, J., Mcleod, D., Mackness, M. and Boulton, M.: Oxygen regulation of TGF-beta 1 mRNA in human hepatoma (HEP G2) cells. Biochem. Mol. Biol. Int. 34:639–644, 1994.PubMedGoogle Scholar
  526. Pavia, J., Munoz, M., Jimenez, E., Martos, F., Gonzalez-Correa, J.A., De la Cruz, J.P., Garcia, V. and Sanchez de la Cuesta, F.: Pharmacological characterization and distribution of muscarinic receptors in human placental syncytiotrophoblast brush-border and basal plasma membranes. Eur. J. Pharmacol. 320:209–214, 1997.PubMedCrossRefGoogle Scholar
  527. Pescetto, G.: Sulla presenza di elementi granulosi basofili metacromatici nella placenta fetale umana. Biol. Lat. (Milan) 2: 744–757, 1950.Google Scholar
  528. Pescetto, G.: Osservazioni istologiche e istochimiche sulle cellule di Hofbauer del villo coriale umano. Riv. Biol. 44:231–241, 1952.PubMedGoogle Scholar
  529. Peter, K.: Placenta-Studien. 1. Zotten und Zwischen-Zottenräume zweier Placenten aus den letzten Monaten der Schwangerschaft. Z. Mikrosk. Anat. Forsch. 53:142–174, 1943.Google Scholar
  530. Peter, K.: Placenta-Studien. 2. Verlauf, Verzweigung und Verankerung der Chorionzottenstämme und ihrer Äste in geborenen Placenten. Z. Mikrosk. Anat. Forsch. 56:129–172, 1951.Google Scholar
  531. Petraglia, F.: Placental neurohormones: secretion and physiological implications. Mol. Cell. Endocrinol. 78:C109–C112, 1991.PubMedCrossRefGoogle Scholar
  532. Petraglia, F., Sawchenko, P., Lim, A.T.W., Rivier, J. and Vale, W.: Localization, secretion, and action of inhibin in human placenta. Science 237:187–189, 1987.PubMedCrossRefGoogle Scholar
  533. Petraglia, F., Calza, L., Giardino, L., Sutton, S., Marrama, P., Rivier, J., Genazzani, A.R. and Vale, W.: Identification of immunoreactive neuropeptide-y in human placenta: localization, secretion, and binding sites. Endocrinology 124:2016–2022, 1989.PubMedGoogle Scholar
  534. Petraglia, F., Volpe, A., Genazzani, A.R., Rivier, J., Sawchenko, P.E. and Vale, W.: Neuroendocrinology of the human placenta. Front. Neuroendocrinol. 11:6–37, 1990.Google Scholar
  535. Petraglia, F., Garuti, G., Calza, L., Roberts, V., Giardino, L., Genazzani, A.R. and Vale, W.: Inhibin subunits in human placenta: localization and messenger ribonucleic acid levels during pregnancy. Amer. J. Obstet. Gynecol. 165:750–758, 1991.Google Scholar
  536. Petraglia, F., Woodruff, T.K., Botticelli, G., Botticelli, A., Genazzani, A.R., Mayo, K.E. and Vale, W.: Gonadotropin-releasing hormone, inhibin, and activin in human placenta: evidence for a common cellular localization. J. Clin. Endocrinol. Metab. 74:1184–1188, 1992.PubMedCrossRefGoogle Scholar
  537. Pfister, C., Scheuner, G., Bahn, H. and Stiller. D.: Immunhistochemischer Nachweis von Fibronectin in der menschlichen Placenta. Acta Histochem. 84:83–91, 1988.PubMedGoogle Scholar
  538. Pfister, C., Scheuner, G. and Städtler, N.: Fluorescenz-und polarisationsoptische Untersuchungen zur qualitativen und quantitativen Erfassung neutraler Carbohydrate in Basalmembranen menschlicher Placenta-Zotten. Acta Histochem. 85:29–37, 1989.PubMedGoogle Scholar
  539. Pierce, G.B. and Midgley, A.R.: The origin and function of human syncytiotrophoblast giant cells. Amer. J. Pathol. 43: 153–173, 1963.Google Scholar
  540. Pinto, A., Sorrentino, R., Sorrentino, P., Guerritore, T., Miranda, L., Biondi, A. and Martinelli, P.: Endothelial-derived relaxing factor released by endothelial cells of human umbilical vessels and its impairment in pregnancy-induced hypertension. Amer. J. Obstet. Gynecol. 164:507–513, 1991.Google Scholar
  541. Piotrowicz, B., Niebroj, T.K. and Sieron, G.: The morphology and histochemistry of the full term placenta in anaemic patients. Folia Histochem. Cytochem. 7:435–444, 1969.Google Scholar
  542. Piotrowicz, R.S., Orchekowski, D.J., Nugent, D.J., Yamada, K.Y. and Kunicki, T.J.: Glycoprotein lc-lla functions as an activation-independent fibronectin receptor on human platelets. J. Cell Biol. 106:1359–1364, 1988.PubMedCrossRefGoogle Scholar
  543. Polin, R.A., Fox, W.W. and Abman, S.H., eds.: Fetal and Neonatal Physiology, 3rd Ed., Vol. I, II. Saunders, Philadelphia, 2004.Google Scholar
  544. Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B. and Beutler, B.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088, 1998.PubMedCrossRefGoogle Scholar
  545. Ponferrada, V.G., Mauck, B.S. and Wooley, D.P.: The envelope glycoprotein of human endogenous retrovirus HERV-W induces cellular resistance to spleen necrosis virus. Arch. Virol. 148:659–675, 2003.PubMedCrossRefGoogle Scholar
  546. Popovici, R.M., Lu, M., Bhatia, S., Faessen, G.H., Giaccia, A.J. and Giudice, L.C.: Hypoxia regulates insulin-like growth factor-binding protein 1 in human fetal hepatocytes in primary culture: suggestive molecular mechanisms for in utero fetal growth restriction caused by uteroplacental insufficiency. J. Clin. Endocrinol. Metab. 86:2653–2659, 2001.PubMedCrossRefGoogle Scholar
  547. Pötgens, A.J.G., Schmitz, U., Bose, P., Versmold, A., Kaufmann, P. and Frank, H.-G.: Mechanisms of syncytial fusion: a review. Placenta 23,Suppl.A. pp.107–113, 2002.CrossRefGoogle Scholar
  548. Pötgens, A.J.G., Kataoka, H., Ferstl, S., Frank, H.G. and Kaufmann, P.: A positive immunoselection method to isolate villous cytotrophoblast cells from first trimester and term placenta to high purity. Placenta 24:412–423, 2003.PubMedCrossRefGoogle Scholar
  549. Pötgens, A.J.G., Drewlo, S., Kokozidou, M. and Kaufmann, P.: Syncytin: the major regulator of trophoblast fusion? Recent developments and hypotheses on its action. Human Reprod. Update 10:487–496, 2004.CrossRefGoogle Scholar
  550. Prosdocimi, O.: Richerche istochimiche per la localizzazione delle sostanze gonadotrope nel tessuto coriale normale, nella mola vescicolare e corioepitelioma. Riv. Ostet. Ginecol. 35:133, 1953.Google Scholar
  551. Rao, C.V., Carman, F.R., Chegini, N. and Schultz, G.S.: Binding sites for epidermal growth factor in human fetal membranes. J. Clin. Endocrinol. Metab. 58:1034–1042, 1984.PubMedGoogle Scholar
  552. Rao, C.V., Ramani, N., Chegini, N., Stadig, B.K., Carman, F.R. Jr., Woost, P.G., Schultz, G.S. and Cook, C.L.: Topography of human placental receptors for epidermal growth factor. J. Biol. Chem. 260:1705–1710, 1985.PubMedGoogle Scholar
  553. Rasko, J.E., Battini, J.-L., Gottschalk, R.J., Mazo, I. and Miller, D.: The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc. Natl. Acad. Sci. USA 96:2129–2134, 1999.PubMedCrossRefGoogle Scholar
  554. Reale, E. Wang, T., Zaccheo, D., Maganza, C. and Pescetto, G.: Junctions on the maternal blood surface of the human placental syncytium. Placenta 1:245–258, 1980.PubMedCrossRefGoogle Scholar
  555. Rhodin, J. and Terzakis, J.: The ultrastructure of the human full-term placenta. J. Ultrastruct. Res. 6:88–106, 1962.PubMedCrossRefGoogle Scholar
  556. Richart, R.: Studies of placental morphogenesis. I. Radioautographic studies of human placenta utilizing tritiated thymidine. Proc. Soc. Exp. Biol. Med. 106:829–831, 1961.PubMedGoogle Scholar
  557. Roberts, L., Sebire, N.J., Fowler, D. and Nicolaides, K.H.: Histomorphological features of chorionic villi at 10–14 weeks of gestation in trisomic and chromosomally normal pregnancies. Placenta 21:678–683, 2000.PubMedCrossRefGoogle Scholar
  558. Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A., Bazan, J.F.: A family of human receptors structurally related to Drosophila Toll. Proc. Nat. Acad. Sci. USA 95:588–593, 1998.PubMedCrossRefGoogle Scholar
  559. Röckelein, G. and Hey, A.: Ultrastrukturelle Untersuchungen der Vakuolenbildung in arteriellen Choriongefäben der reifen menschlichen Plazenta. Z. Geburtshilfe Perinatol. 189:65–68, 1985.PubMedGoogle Scholar
  560. Rodway, H.E. and Marsh, F.: A study of Hofbauer’s cells in human placenta. J. Obstet. Gynaecol. Br. Emp. 63:111–115, 1956.PubMedGoogle Scholar
  561. Rote, N.S., Vogt, E., Devere, G., Obringer, A.R. and Ng, A.K.: The role of placental trophoblast in the pathophysiology of the antiphospholipid antibody syndrome. Amer. J. Reprod. Immunol. 39:125–136, 1998.Google Scholar
  562. Rote, N.S., Chakrabarti, S. and Stetser, B.P.: The role of human endogenous retroviruses in trophoblast differentiation and placental development. Placenta 25:673–683, 2004.PubMedCrossRefGoogle Scholar
  563. Rovasio, R.A. and Monis, B.: Cytochemical changes of a glycocalix of human placenta with maturation. Experientia (Basel) 29:1115–1118, 1973.PubMedCrossRefGoogle Scholar
  564. Rukosuev, V.S.: Immunofluorescent localization of collagen types I, III, IV, V, fibronectin, laminin, entactin, and heparan sulphate proteoglycan in human immature placenta. Experientia (Basel) 48:285–287, 1992.PubMedCrossRefGoogle Scholar
  565. Runic, R., Lockwood, C.J., Ma, Y., Dipasquale, B. and Guller, S.: Expression of Fas ligand by human cytotrophoblasts: implications in placentation and fetal survival. J. Clin. Endocrinol. Metab. 81:3119–3122, 1996.PubMedCrossRefGoogle Scholar
  566. Russel, S.W. and Pace, J.L.: The effects of interferons on macrophages and their precursors. Vet. Immunol. Immunopathol. 15:129–165, 1987.CrossRefGoogle Scholar
  567. Ruzycky, A.L., Jansson, T. and Illsley, N.P.: Differential expression of protein kinase C isoforms in the human placenta. Placenta 17:461–469, 1996.PubMedCrossRefGoogle Scholar
  568. Saijonmaa, O., Laatikainen, T. and Wahlström, T.: Corticotrophin-releasing factor in human placenta: localization, concentration and release in vitro. Placenta 9:373–385, 1988.PubMedGoogle Scholar
  569. Sakakibara, R., Yokoo, Y., Yoshikoshi, K., Tominaga, N., Eida, K. and Ishiguro, M.: Subcellular localization of intracellular form of human chorionic gonadotropin in first trimester placenta. J. Biochem. 102:993–1001, 1987.PubMedGoogle Scholar
  570. Sakata, M.: The study on the fetal placental circulation. Shikoku Acta Med. 16:796–812, 1960.Google Scholar
  571. Sakbun, V., Koay, E.S.C. and Bryant-Greenwood, G.D.: Immunocytochemical localization of prolactin and relaxin Cpeptide in human decidua and placenta. J. Clin. Endocrinol. Metab. 65:339–343, 1987.PubMedGoogle Scholar
  572. Sakuragi, N., Matsuo, H., Coukos, G., Furth, E.E., Bronner, M.P., VanArsdale, C.M., Krajewsky, S., Reed, J.C. and Strauss, J.F. III: Differentiation-dependent expression of the Bcl-2 protooncogene in the human trophoblast lineage. J. Soc. Gynecol. Invest. 1:164–172, 1994.Google Scholar
  573. Sala, M.A., Matheus, M. and Valeri, V.: Regional variation in the frequency of fibrinoid degeneration in the human term placenta. Z. Geburtshilfe Perinatol. 186:80–81, 1982.PubMedGoogle Scholar
  574. Salas, S.P., Power, R.F., Singleton, A., Wharton, J., Polak, J.M. and Brown, J.: Heterogeneous binding sites for a-atrial natriuretic peptide in human umbilical cord and placenta. Am. J. Physiol. 261:R633–R638, 1991.PubMedGoogle Scholar
  575. Salvaggio, A.T., Nigogosyan, G. and Mack, H.C.: Detection of trophoblast in cord blood and fetal circulation. Amer. J. Obstet. Gynecol. 80:1013–1021, 1960.Google Scholar
  576. Santiago-Schwarz, F. and Fleit, H.B.: Identification of nonadherent mononuclear cells in human cord blood that differentiate into macrophages. J. Leukocyte Biol. 43:51–59, 1988.PubMedGoogle Scholar
  577. Scheuner, G.: Über die Verankerung der Nabelschnur an der Plazenta. Morphol. Jahrb. 106:73–89, 1972.Google Scholar
  578. Scheuner, G.: Zur Morphologie der materno-fetalen Stoffwechselschranke in der menschlichen Plazenta. Zentralbl. Gynäkol. 97:288–300, 1975.PubMedGoogle Scholar
  579. Scheuner, G. and Hutschenreiter, J.: Strukturanalysen an Basalmembranen. Gefäbwand Blutplasma IV:217–218, 1972.Google Scholar
  580. Scheuner, G. and Hutschenreiter, J.: Ergebnisse histophysikalischer Untersuchungen zur submikroskopischen Struktur von Basalmembranen. Anat. Anz. Verh. Anat. Ges. 71:1213–1216, 1977.Google Scholar
  581. Scheuner, G., Ruckhäberle, K.-E., Flemming, G. and Reissig, D.: Submikroskopischer Nachweis orientierter Proteinfilamente im Plasmoditrophoblasten der menschlichen Plazenta. Anat. Anz. 147:145–151, 1980.PubMedGoogle Scholar
  582. Schiebler, T.H. and Kaufmann, P.: Über die Gliederung der menschlichen Placenta. Z. Zellforsch. 102:242–265, 1969.PubMedCrossRefGoogle Scholar
  583. Schiebler, T.H. and Kaufmann, P.: Reife Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and F. Kubli, eds., pp. 51–100. Georg Thieme, Stuttgart, 1981.Google Scholar
  584. Schmidt, W.: Der Feinbau der reifen menschlichen Eihäute. Z. Anat. Entwicklungsgesch. 119:203–222, 1956.PubMedCrossRefGoogle Scholar
  585. Schmorl, G.: Pathologisch-anatomische Untersuchungen über puerperale Eklampsie. Vogel-Verlag, Leipzig, 1893.Google Scholar
  586. Schönfelder, G., Graf, R. and Schmidt, H.H.H.W.: A possible regulation of the extravascular contractile system in human placenta by nitric oxide synthase immunoreactive cells. Placenta 14:A69, 1993.CrossRefGoogle Scholar
  587. Schröder, H., Nelson, P. and Power, B.: Fluid shift across the placenta. I. The effect of dextran T40 in the isolated guinea pig placenta. Placenta 3:327–338, 1982.PubMedCrossRefGoogle Scholar
  588. Schroeder van der Kolk, J.L.C.: Waarnemigen over het maaksel van de menschlijke Placenta. Sulpke, Amsterdam, 1851.Google Scholar
  589. Schuhmann, R.: Plazenton: Begriff, Entstehung, funktionelle Anatomie. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and F. Kubli, eds. Thieme Verlag, Stuttgart, pp. 199–207, 1981.Google Scholar
  590. Schweikhart, G. and Kaufmann, P.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. I. Ultrastruktur des Syncytiotrophoblasten. Arch. Gynäkol. 222:213–230, 1977.PubMedCrossRefGoogle Scholar
  591. Scott, S.M., Buenaflor, G.G. and Orth, D.N.: Immunoreactive human epidermal growth factor concentrations in amniotic fluid, umbilical artery and vein serum, and placenta in full-term and preterm infants. Biol. Neonate 56:246–251, 1989.PubMedCrossRefGoogle Scholar
  592. Sedmak, D.D., Davis, D.H., Singh, U., van de Winkel, J.G.J. and Anderson, C.L.: Expression of IgG Fc receptor antigens in placenta and on endothelial cells in humans. An immunohistochemical study. Amer. J. Pathol. 138:175–181, 1991.Google Scholar
  593. Seligman, S.P., Nishiwaki, T., Kadner, S.S., Dancis, J. and Finlay, T.H.: Hypoxia stimulates ecNOS mrna expression by differentiated human trophoblasts. Ann. N.Y. Acad. Sci. 828:180–187, 1997.PubMedGoogle Scholar
  594. Sen, D.K., Kaufmann, P. and Schweikhart, G.: Classification of human placental villi. II. Morphometry. Cell Tissue Res. 200: 425–434, 1979.PubMedCrossRefGoogle Scholar
  595. Senaris, R, Garcia-Caballero, T., Casabiell, X., Gallero, R., Castro, R., Considine R.V., Dieguez, C. and Casanueva F.F.: Synthesis of leptin in human placenta. Endocrinology 138:4501–4504, 1997.PubMedCrossRefGoogle Scholar
  596. Sgambati, E., Biagiotti, R., Marini, M. and Brizzi, E.: Lectin histochemistry in the human placenta of pregnancies complicated by intrauterine growth retardation based on absent or reversed diastolic flow. Placenta 23:503–515, 2002.PubMedCrossRefGoogle Scholar
  597. Siddall, R.S. and Hartman, F.W.: Infarcts of the placenta; study of seven hundred consecutive placentas. Amer. J. Obstet. Gynecol. 12:683–699, 1926.Google Scholar
  598. Sideri, M., de Virgiliis, G., Rainoldi, R. and Remotti, G.: The ultrastructural basis of the nutritional transfer: evidence of different patterns in the plasma membranes of the multilayered placental barrier. Trophoblast Res. 1:15–26, 1983.Google Scholar
  599. Simpson, R.A., Mayhew, T.M. and Barnes, P.R.: From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the dissector. Placenta 13:501–512, 1992.PubMedGoogle Scholar
  600. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A. and McGuire, R.L.: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/Neu oncogene. Science 235:177–182, 1987.PubMedCrossRefGoogle Scholar
  601. Smallwood, A., Papageorghiou, A., Nicolaides, K., Alley, M.K., Alice, J., Nargund, G., Ojha, K., Campbell, S. and Banerjee, S.: Temporal regulation of the expression of syncytin (HERVW), maternally imprinted PEG10, and SGCE in human placenta. Biol. Reprod. 69:286–93; 2003.PubMedCrossRefGoogle Scholar
  602. Smith, C.H., Nelson, D.M., King, B.F., Donohue, T.M., Ruzycki, S.M. and Kelley, L.K.: Characterization of a microvillous membrane preparation from human placental syncytiotrophoblast: a morphologic, biochemical and physiologic study. Amer. J. Obstet. Gynecol. 128:190–196, 1977.Google Scholar
  603. Smith, S.C., Baker, P.N. and Symonds, E.M.: Placental apoptosis in normal human pregnancy. Amer. J. Obstet. Gynecol. 177: 57–65, 1997a.CrossRefGoogle Scholar
  604. Smith, S.C., Baker, P.N. and Symonds, E.M.: Increased placental apoptosis in intrauterine growth restriction. Amer. J. Obstet. Gynecol. 177:1395–1401, 1997b.CrossRefGoogle Scholar
  605. Snoeck, J.: Le Placenta Humain. Masson, Paris, 1958.Google Scholar
  606. Sonnenberg, A., Modderman, P.W. and Hogervorst, F.: Laminin receptor on platelets is the integrin VLA-6. Nature (Lond.) 336:487–489, 1988.PubMedCrossRefGoogle Scholar
  607. Sorokin, S.P. and Hoyt, R.F. Jr.: Pure population of nonmonocyte derived macrophages arising in organ cultures of embryonic rat lungs. Anat. Rec. 217:35–52, 1987.PubMedCrossRefGoogle Scholar
  608. Sorokin, S.P. and Hoyt, R.F. Jr.: Macrophage development: I. Rationale for using Griffonia simplicifolia isolectin B4 as a marker for the line. Anat. Rec. 232:520–526, 1992.PubMedCrossRefGoogle Scholar
  609. Sorokin, S.P., Hoyt, R.F. Jr., Blunt, D.G. and McNelly, N.A.: Macrophage development: II. Early ontogeny of macrophage populations in brain, liver, and lungs of rat embryos as revealed by a lectin marker. Anat. Rec. 232:527–550, 1992a.PubMedCrossRefGoogle Scholar
  610. Sorokin, S.P., McNelly, N.A., Blunt, D.G. and Hoyt, R.F. Jr.: Macrophage development: III. Transformation of pulmonary macrophages from precursors in fetal lungs and their later maturation in organ culture. Anat. Rec. 232:551–571, 1992b.PubMedCrossRefGoogle Scholar
  611. Spanner, R.: Mütterlicher und kindlicher Kreislauf der menschlichen Placenta und seine Strombahnen. Z. Anat, Entwicklungsgesch. 105:163–242, 1935.CrossRefGoogle Scholar
  612. Spanner, R.: Zellinseln und Zottenepithel in der zweiten Hälfte der Schwangerschaft. Morphol. Jahrb. 86:407–461, 1941.Google Scholar
  613. Sporn, M. and Roberts, A.: The transforming growth factorbetas: past, present and future. Ann. N.Y. Acad. Sci. 593:1–6, 1990.PubMedGoogle Scholar
  614. Stark, J. and Kaufmann, P.: Protoplasmatische Trophoblastabschnürungen in den mütterlichen Kreislauf bei normaler und pathologischer Schwangerschaft. Arch. Gynäkol. 210:375–385, 1971.PubMedCrossRefGoogle Scholar
  615. Stark, J. and Kaufmann, P.: Trophoblastische Plasmapolypen und regressive Veränderungen am Zottentrophoblasten der menschlichen Placenta. Arch. Gynäkol. 212:51–67, 1972.PubMedCrossRefGoogle Scholar
  616. Stark, J. and Kaufmann, P.: Infarktgenese in der Placenta. Arch. Gynäkol. 217:189–208, 1974.PubMedGoogle Scholar
  617. Stengelin, S., Stamenkovic, I. and Seed, B.: Isolation of cDNAs for two distinct human Fc receptors by ligand affinity cloning. EMBO J. 7:1053–1059, 1988.PubMedGoogle Scholar
  618. Stewart, J.L., Jr., Sano, M.E. and Montgomery, T.L.: Hormone secretion by human placenta grown in tissue culture. J. Clin. Endocrinol. 8:175–188, 1948.CrossRefGoogle Scholar
  619. Stieve, H.: Neue Untersuchungen über die Placenta, besonders über die Entstehung der Placentasepten. Arch. Gynäkol. 161:160–167, 1936.CrossRefGoogle Scholar
  620. Stieve, H.: Das Zottenraumgitter der reifen menschlichen Plazenta. Z. Geburtshilfe Gynäkol. 122:289–316, 1941.Google Scholar
  621. Strauss, L., Goldenberg, N., Hiroto, K. and Okudaira, Y.: Structure of the human placenta; with observations on ultrastructure of the terminal chorionic villus. Birth Defects 1:13–26, 1965.Google Scholar
  622. Stulc, J.: Extracellular transport pathways in the haemochorial placenta. Placenta 10:113–119, 1989.PubMedGoogle Scholar
  623. Stulc, J., Friederich, R. and Jiricka, Z.: Estimation of the equivalent pore dimensions in the rabbit placenta. Life Sci. 8:167–180, 1969.PubMedCrossRefGoogle Scholar
  624. Sutton, L., Gadd, M., Mason, D.Y. and Redman, C.W.G.: Cells bearing class II MHC antigens in the human placenta and amniochorion. Immunology 58:23–29, 1986.PubMedGoogle Scholar
  625. Sutton, L.N., Mason, D.Y. and Redman, C.W.G.: Isolation and characterization of human fetal macrophages from placenta. Clin. Exp. Immunol. 78:437–443, 1989.PubMedGoogle Scholar
  626. Tailor, C.S., Nouri, A., Zhao, Y., Takeuchi, Y. and Kabat, D.: A sodium-dependent neutral amino acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retrovirus. J. Virol. 73:4470–4474, 1999.PubMedGoogle Scholar
  627. Taylor-Papadimitriou, J. and Rozengurt, E.A.: Interferons as regulators of cell growth and differentiation. In, Interferons. Their Impact in Biology and Medicine. J. Taylor-Papadimitriou, ed., pp. 81–98. Oxford University Press, Oxford, 1985.Google Scholar
  628. Teasdale, F. and Jean-Jacques, G.: Morphometry of the microvillous membrane of the human placenta in maternal diabetes mellitus. Placenta 7:81–88, 1986.PubMedCrossRefGoogle Scholar
  629. Tedde, G.: Ultrastruttura del villo placentare umano nella seconda meta della gravidanza. Arch. Ital. Anat. Embriol. 75:101–131, 1970.PubMedGoogle Scholar
  630. Tedde, G. and Tedde-Piras, A.: Mitotic index of the Langhans’ cells in the normal human placenta from the early stages of pregnancy to the term. Acta Anat. (Basel) 100:114–119, 1978.PubMedCrossRefGoogle Scholar
  631. Tedde, G., Tedde-Piras, A. and Berta, R.: A new structural pattern of the human trophoblast: the syncytial units (abstract 117). In, 11th Rochester Trophoblast Conference, Abstract Booklet, 1988a.Google Scholar
  632. Tedde, G., Tedde-Piras, A. and Fenu, G.: Demonstration of an intercellular pathway of transport in the human trophoblast (abstract 77). In, 11th Rochester Trophoblast Conference, Abstract Booklet, 1988b.Google Scholar
  633. Telfer, J.F., Thomson, A.J., Cameron, I.T., Greer, I.A. and Norman, J.E.: Expression of superoxide dismutase and xanthine oxidase in myometrium, fetal membranes and placenta during normal human pregnancy and parturition. Hum. Reprod. (Oxf.) 12:2306–2312, 1997.PubMedCrossRefGoogle Scholar
  634. ten Berge, B.S.: Merkwaardige cellen in chorionvlokken. Med. Thesis, University of Utrecht, 1922.Google Scholar
  635. Tenney, B. and Parker, F.: The placenta in toxemia of pregnancy. Am. J. Obstet. Gynecol. 39:1000–1005, 1940.Google Scholar
  636. Thomsen, K.: Zur Morphologie und Genese der sogenannten Plazentarinfarkte. Arch. Gynäkol. 185:221–247, 1954.PubMedCrossRefGoogle Scholar
  637. Thomsen, K. and Berle, P.: Placentarbefunde bei Rh-Inkompatibilität. Arch. Gynäkol. 192:628–643, 1960.PubMedCrossRefGoogle Scholar
  638. Thorn, W., Kaufmann, P. and Müldener, B.: Kohlenhydratumsatz, Energiedefizit und Plasmapolypenbildung in der Placenta nach Vergiftung mit Monojodacetat und NaF. Arch. Gynäkol. 216:175–183, 1974.PubMedCrossRefGoogle Scholar
  639. Thorn, W., Kaufmann, P., Müldener, B. and Freese, U.: Einfluß von 2,4-Dinitrophenol, Monojodacetat, Natrium-fluorid und Hypoxie auf Plasmapolypenbildung in der Placenta von Meerschweinchen. Arch. Gynäkol. 221:203–210, 1976.PubMedCrossRefGoogle Scholar
  640. Thornburg, K. and Faber, J.J.: Transfer of hydrophilic molecules by placenta and yolk sac of the guinea pig. Am. J. Physiol. 233: C111–C124, 1977.PubMedGoogle Scholar
  641. Thorsby, E.: The role of HLA in T cell activation. Hum. Immunol. 9:1–7, 1984.PubMedCrossRefGoogle Scholar
  642. Tominaga, R. and Page, E.W.: Accommodation of the human placenta to hypoxia. Am. J. Obstet. Gynecol. 94:679–685, 1966.PubMedGoogle Scholar
  643. Toth, F., Paal, M., Nemeth, J. and Doemoetoeri, J.: Histochemical studies of fibrinoid, mucopolysaccharides and chorionic gonadotrophin in the normal and pathologic human placenta. Acta Morphol. Acad. Sci. Hung. 21:89–104, 1973.PubMedGoogle Scholar
  644. Toth, F.D., Juhl, C., Norskov-Lauritsen, N., Mosborg-Petersen, P. and Ebbesen, P.: Interferon production by cultured human trophoblast induced with double stranded polyribonucleotide. J. Reprod. Immunol. 17:217–227, 1990.PubMedCrossRefGoogle Scholar
  645. Toth, F.D., Norskov-Lauritsen, N., Juhl, C. and Ebbesen, P.: Human trophoblast interferon: pattern of response to priming and superinduction of purified term trophoblast and choriocarcinoma cells. J. Reprod. Immunol. 19:55–67, 1991.PubMedCrossRefGoogle Scholar
  646. Trudinger, B.J., Giles, W.B., Cook, C.M., Bombardieri, J. and Collins, L.: Uteroplacental blood flow velocity-time waveforms in normal and complicated pregnancy. Br. J. Obstetr. Gynaecol. 92:23–30, 1985.Google Scholar
  647. Truman, P. and Ford, H.C.: The brush border of the human term placenta. Biochem. Biophys. Acta 779:139–160, 1984.PubMedGoogle Scholar
  648. Truman, P., Wakerfield, J.St.J. and Ford, H.C.: Microvilli of the human term placenta. Biochem. J. 196:121–132, 1981.PubMedGoogle Scholar
  649. Tse, W.K., Whitley, G.S. and Cartwright, J.E.: Transforming growth factor-beta1 regulates hepatocyte growth factor-induced trophoblast motility and invasion. Placenta 23:699–705, 2002.PubMedGoogle Scholar
  650. Uckan, D., Steele, A., Cherry, Wang B.-Y., Chamizo, W., Koutsonikolis, A., Gilbert-Barness, E. and Good, R.A.: Trophoblasts express Fas ligand: a proposed mechanism for immune privilege in placenta and maternal invasion. Mol. Hum. Reprod. 3:655–662, 1997.PubMedCrossRefGoogle Scholar
  651. Ulesko-Stroganova, K.: Beitraege zur Lehre vom mikroskopischen Bau der Placenta. Monatsschr. Geburt. Gynäkol. 3:207, 1896.Google Scholar
  652. Unnikumar, K.R., Wegmann, R. and Panigel, M.: Immunohistochemical profile of the human placenta. Studies on localization of prolactin, human chorionic gonadotropin, human placental lactogen, renin and oxytocin. Cell. Mol. Biol. 34: 697–710, 1988.PubMedGoogle Scholar
  653. Uren, S. and Boyle, W.: Isolation of macrophages from human placenta. J. Immunol. Methods 78:25–34, 1985.PubMedCrossRefGoogle Scholar
  654. Uren, S.J. and Boyle, W.: Class II MCH antigen-positive macrophages from human placentae suppress strong MLR and CML reactions. Cell. Immunol. 125:235–246, 1990.PubMedCrossRefGoogle Scholar
  655. Vacek, Z.: Electron microscopic observations on the filaments in the trophoblast of the human placenta. Folia Morphol. (Praha) 17:382–388, 1969.Google Scholar
  656. Vacek, Z.: Derivation and ultrastructure of the stroma cells of the human chorionic villus. Folia Morphol. (Praha) 18:1–13, 1970.Google Scholar
  657. Vairo, G., Inner, K.M. and Adams, J.M.: Bcl-2 has a cell cycle inhibitory function separable from its enhancement of cell survival. Oncogene 13:1511–1519, 1996.PubMedGoogle Scholar
  658. Van Furth, R.: Current view on the mononuclear phagocyte system. Immunobiology 161:178–185, 1982.PubMedGoogle Scholar
  659. Vanderpuye, O. and Smith, C.H.: Proteins of the apical and basal plasma membranes of the human placental syncytiotrophoblast: immunochemical and electrophoretic studies. Placenta 8:591–608, 1987.PubMedGoogle Scholar
  660. Velardo, J.T. and Rosa, C.: Female genital system. In, Handbuch der Histochemie, Bd. VII/3. W. Graumann and K. Neumann, eds. Fischer, Stuttgart, 1963.Google Scholar
  661. Verhaeghe, J., Billen, J. and Giudice, L.C.: Insulin-like growth factor-binding protein-1 in umbilical artery and vein of term fetuses with signs suggestive of distress during labor. J. Endocrinol. 170:585–590, 2001.PubMedCrossRefGoogle Scholar
  662. Verrijt, C.E., Kroos, M.J., van Noort, W.L., van Eijk, H.G. and van Dijk, J.P.: Binding of human isotransferrin variants to microvillous and basal membrane vesicles from human term placenta. Placenta 18:71–77, 1997.PubMedCrossRefGoogle Scholar
  663. Villee, C.A., ed.: The Placenta and Fetal Membranes. Williams & Wilkins, Baltimore, 1960.Google Scholar
  664. Vince, G.S. and Johnson, P.M.: Immunobiology of human uteroplacental macrophages-friend and foe? Placenta 17:191–199, 1996.PubMedCrossRefGoogle Scholar
  665. Virchow, R.: Die krankhaften Geschwülste, Vol. I. Hirschwald, Berlin, 1863.Google Scholar
  666. Virchow, R.: Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. 4th Ed. Hirschwald, Berlin, 1871.Google Scholar
  667. Virtanen, I., Laitinen, L. and Vartio, T.: Differential expression of the extra domain-containing form of cellular fibronectin in human placentas at different stages of maturation. Histochemistry 90:25–30, 1988.PubMedCrossRefGoogle Scholar
  668. Voigt, S., Kaufmann, P. and Schweikhart, G.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. II. Morphometrische Untersuchungen zum Einfluß des Fixationsmodus. Arch. Gynäkol. 226:347–362, 1978.Google Scholar
  669. Wachstein, M., Meagher, J.G. and Ortiz, J.: Enzymatic histochemistry of the term human placenta. Am. J. Obstet. Gynecol. 87:13–26, 1963.PubMedGoogle Scholar
  670. Wada, H.G., Gornicki, S.Z. and Sussman, H.H.: The sialogycoprotein subunits of human placental brush border membranes characterized by two-dimensional electrophoresis. J. Supramol. Struct. 6:473–484, 1977.PubMedCrossRefGoogle Scholar
  671. Wada, H.G., Hass, P.E. and Sussman, H.H.: Characterization of antigenic sialoglycoprotein subunits of the placental brush border membranes: comparison with liver and kidney membrane subunits by two-dimensional electrophoresis. J. Supramol. Struct. 10:287–305, 1979.PubMedCrossRefGoogle Scholar
  672. Wagner, D.: Trophoblastic cells in the blood stream in normal and abnormal pregnancy. Acta Cytol. 12:137–139, 1968.PubMedGoogle Scholar
  673. Wagner, D., Schunck, R. and Isebarth, H.: Der Nachweis von Trophoblastzellen im strömenden Blut der Frau bei normaler und gestörter Gravidität. Gynaecologia 158:175–192, 1964.PubMedGoogle Scholar
  674. Wainwright, S.D. and Holmes, G.H.: Distribution of Fo-g receptors on trophoblast during human placental development: an immunohistochemical and immunoblotting study. Immunology 80:343–351, 1993.PubMedGoogle Scholar
  675. Wainwright, S.D. and Wainwright, L.K.: Preparation of human placental villous surface membrane. Nature (Lond.) 252:302–303, 1974.PubMedCrossRefGoogle Scholar
  676. Wang, T. and Schneider, J.: Cellular junctions on the free surface of human placental syncytium. Arch. Gynecol. 240:211–216, 1987.PubMedCrossRefGoogle Scholar
  677. Wang, E., Pfeffer, L.M. and Tamm, I.: Interferon increases the abundance of submembranous microfilaments in HeLa-S3 cells in suspension culture. Proc. Natl. Acad. Sci. U.S.A. 78:6281–8285, 1981.PubMedCrossRefGoogle Scholar
  678. Warren, W.B. and Silverman, A.J.: Cellular localization of corticotrophin releasing hormone in the human placenta, fetal membranes and decidua. Placenta 16:147–156, 1995.PubMedCrossRefGoogle Scholar
  679. Wasserman, L., Abramovici, A., Shlesinger, H., Goldman, J.A. and Allalouf, D.: Histochemical localization of acidic glycosaminoglycans in normal human placentae. Placenta 4:101–108, 1983a.PubMedCrossRefGoogle Scholar
  680. Wasserman, L., Shlesinger, H., Goldman, J.A. and Allalouf, D.: Pattern of glycosaminoglycan distribution in tissue and blood vessels of human placenta. Gynecol. Obstet. Invest. 15:242–250, 1983b.PubMedCrossRefGoogle Scholar
  681. Watson, A.L., Palmer, M.E., Jauniaux, E. and Burton, G.J.: Variations in expression of copper/zinc superoxide dismutase in villous trophoblast of the human placenta with gestational age. Placenta 18:295–299, 1997.PubMedCrossRefGoogle Scholar
  682. Weinberg, P.C., Cameron, I.L., Parmley, T., Jeter, J.R. and Pauerstein, C.J.: Gestational age and placental cellular replication. Obstet. Gynecol. 36:692–696, 1970.PubMedGoogle Scholar
  683. Werner, C. and Bender, H.G.: Phasenkontrastmikroskopie der Plazenta. In, Neue Erkenntnisse über die Orthologie und Pathologie der Plazenta. H.J. Födisch, ed., pp. 63–71. Enke, Stuttgart, 1977.Google Scholar
  684. Whyte, A.: Lectin binding by microvillous membranes and coated-pit regions of human syncytial trophoblast. Histochem. J. 12:599–607, 1980.PubMedCrossRefGoogle Scholar
  685. Wielenga, G. and Willighagen, R.G.J.: The histochemistry of the syncytiotrophoblast and the stroma in the normal full-term placenta. Amer. J. Obstet. Gynecol. 84:1059–1064, 1962.Google Scholar
  686. Wigglesworth, J.S.: The gross and microscopic pathology of the prematurely delivered placenta. J. Obstet. Gynaecol. Br. Commonw. 69:934–943, 1962.Google Scholar
  687. Wigglesworth, J.S.: Morphological variations in the insufficient placenta. J. Obstet. Gynaecol. Br. Commonw. 71:871–884, 1964.PubMedGoogle Scholar
  688. Wilkes, B.M., Mento, P.F., Hollander, A.H., Maita, M.E., Sung, S.Y. and Girardi, E.P.: Endothelin receptors in human placenta: relationship to vascular resistance and thromboxane release. Amer. J. Physiol. 258:E864–E870, 1990.PubMedGoogle Scholar
  689. Wilkin, P.: Pathologie du Placenta. Masson, Paris, 1965.Google Scholar
  690. Wilson, C.B., Haas, J.E. and Weaver, W.M.: Isolation, purification and characteristics of mononuclear phagocytes from human placentas. J. Immunol. Methods 56:305–317, 1983.PubMedCrossRefGoogle Scholar
  691. Winterhager, E.: Dynamik der Zellmembran: Modellstudien während der Implantationsreaktion beim Kaninchen. Med. Thesis, Tech. University of Aachen, 1985.Google Scholar
  692. Wislocki, G.B. and Bennett, H.S.: Histology and cytology of the human and monkey placenta, with special reference to the trophoblast. Am. J. Anat. 73:335–449, 1943.CrossRefGoogle Scholar
  693. Wolfsberg, T.G. and White, J.M.: ADAMs in fertilization and development. Dev. Biol. 180:389–401, 1996.PubMedCrossRefGoogle Scholar
  694. Wood, G. and King, G.R., Jr.: Trapping antigen-antibody complexes within the human placenta. Cell Immunol. 69:347–362, 1982.PubMedCrossRefGoogle Scholar
  695. Wood, G., Reynard, J., Krishnan, E. and Racela, L.: Immunobiology of the human placenta. I. IgGFc receptors in trophoblastic villi. Cell. Immunol. 35:191–204, 1978a.PubMedCrossRefGoogle Scholar
  696. Wood, G., Reynard, J., Krishnan, E. and Racela, L.: Immunobiology of the human placenta. II. Localization of macrophages, in vivo bound IgG and C3. Cell Immunol. 35:205–216, 1978b.PubMedCrossRefGoogle Scholar
  697. Wood, G.S., Warner, N.L. and Warnke, R.A.: Anti-Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J. Immunol. 131:212–216, 1983.PubMedGoogle Scholar
  698. Wood, G.S., Turner, R.R., Shiurba, R.A., Eng, L. and Warnke, R.A.: Human dendritic cells and macrophages: in situ immunophenotypic definition of subsets that exhibit specific morphologic and microenvironmental characteristics. Am. J. Pathol. 119:73–82, 1985.PubMedGoogle Scholar
  699. Wood, G.W.: Mononuclear phagocytes in the human placenta. Placenta 1:113–123, 1980.PubMedCrossRefGoogle Scholar
  700. Wright, C., Angus, B., Nicholson, S., Sainsbury, J.R., Cairns, J.C., Gullick, W.J., Kelley, P., Harris, A.L. and Horne, C.H.W.: Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res. 49:2087–2090, 1989.PubMedGoogle Scholar
  701. Wright, S.D., Ramos, R.A., Tobias, P.S. and Ulevitch, R.J.: CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433, 1990.PubMedCrossRefGoogle Scholar
  702. Wynn, R.M.: Derivation and ultrastructure of the so-called Hofbauer cell. Amer. J. Obstet. Gynecol. 97:235–248, 1967a.Google Scholar
  703. Wynn, R.M.: Fetomaternal cellular relations in the human basal plate: an ultrastructural study of the placenta. Amer. J. Obstet. Gynecol. 97:832–850, 1967b.Google Scholar
  704. Wynn, R.M.: Fine structure of the placenta. In, Handbook of Physiology, Section 7, Endocrinology. R.O. Greep and E.B. Astwood, eds., pp. 261–276. American Physiological Society, Washington D.C., 1973.Google Scholar
  705. Wynn, R.M.: Fine structure of the placenta. In, The Placenta and its Maternal Supply Line. P. Gruenwald, ed. Medical and Technical Publishing, Lancaster, pp. 56–79, 1975.Google Scholar
  706. Yagami-Hiromasa, T., Sato, T., Kurisaki, T., Kamijo, K., Nabeshima, Y. and Fujisawa-Sehara, A.: A metalloproteinase-disintegrin participating in myoblast fusion. Nature 377:652–656, 1995.PubMedCrossRefGoogle Scholar
  707. Yagel, S., Hurwitz, A., Rosenn, B. and Keizer, N.: Progesterone enhancement of prostaglandin E2 production by fetal placental macrophages. Amer. J. Reprod. Immunol. 14:45–48, 1987.Google Scholar
  708. Yallampalli, C. and Garfield, R.E.: Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Amer. J. Obstet. Gynecol. 169:1316–1320, 1993.Google Scholar
  709. Yamada, T., Isemura, M., Yamaguchi, Y., Munakata, H., Hayashi, N. and Kyogoku, M.: Immunohistochemical localization of fibronectin in the human placentas at their different stages of maturation. Histochemistry 86:579–584, 1987.PubMedCrossRefGoogle Scholar
  710. Yamaguchi, Y., Mann, D.M. and Ruoslahti, E.: Negative regulation of transforming growth factor-b by the proteoglycan decorin. Nature (Lond.) 346:281–284, 1990.PubMedCrossRefGoogle Scholar
  711. Yang K.: Placental 11 beta-hydroxysteroid dehydrogenase: barrier to maternal glucocorticoids. Rev. Reprod. 2:129–132, 1997.PubMedCrossRefGoogle Scholar
  712. Yasuda, M., Umemura, S., Osamura, Y.R., Kenjo, T. and Tsutsumi, Y.: Apoptotic cells in the human endometrium and placental villi: pitfalls in applying the TUNEL method. Arch. Histol. Cytol. 58:185–190, 1995.PubMedGoogle Scholar
  713. Yeh, C.-J., Mühlhauser, J., Hsi, B.-I., Castellucci, M. and Kaufmann, P.: The expression of receptors for epidermal growth factor and transferrin on human trophoblast. Placenta 10:459, 1989.Google Scholar
  714. Yoshiki, N., Kubota, T. and Aso, T.: Expression and localization of heme oxygenase in human placental villi. Biochem. Biophys. Res. Commun. 276:1136–1142, 2000.PubMedCrossRefGoogle Scholar
  715. Yu, C., Shen, K., Lin, M., Chen, P., Lin, C., Chang, G.-D. and Chen, H.: GCMa regulates the syncytin-mediated trophoblast fusion. J. Biol. Chem. 277:50062–50068, 2002.PubMedCrossRefGoogle Scholar
  716. Yui, J., Garcia-Lloret, M.I., Wegmann, T.G. and Guilbert, L.J.: Cytotoxicity of tumor necrosis factor: alpha-and gamma-interferon against primary human placental trophoblasts. Placenta 5:819–835, 1994.CrossRefGoogle Scholar
  717. Yui, J., Hemmings, D., Garcia-Lloret, M.I. and Guilbert, L.: Expression of the human p55 and p75 tumor necrosis factor receptors in primary villous trophoblasts and their role in cytotoxic signal transduction. Biol. Reprod. 55:400–409, 1996.PubMedCrossRefGoogle Scholar
  718. Zaccheo, D., Zicca, A., Cadoni, A., Leprini, A., Castellucci, M. and Kaufmann, P.: Preliminary observations on Hofbauer cells in short-term culture. Bibl. Anat. 22:63–68, 1982.PubMedGoogle Scholar
  719. Zaccheo, D., Pistoia, V., Castellucci, M. and Martinoli, C.: Isolation and characterization of Hofbauer cells from human placental villi. Arch. Gynecol. 246:189–200, 1989.CrossRefGoogle Scholar
  720. Zhou, G.Q., Baranov, V., Zimmermann, W., Grunert, F., Erhard, B., Minchevanilsson, L., Hammarstrom, S. and Thompson, J. Highly specific monoclonal antibody demonstrates that pregnancy-specific glycoprotein (PSG) is limited to syncytiotrophoblast in human early and term placenta. Placenta. 18:491–501, 1997.PubMedCrossRefGoogle Scholar
  721. Ziegler-Heitbrock, H.-W.L.: The biology of the monocyte system. Eur. J. Cell Biol. 49:1–12, 1989.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Castellucci
  • P. Kaufmann

There are no affiliations available

Personalised recommendations