Skip to main content

Microarray Image Analysis and Gene Expression Ratio Statistics

  • Chapter
Computational and Statistical Approaches to Genomics

4. Conclusions

Various image analysis issues have been addressed: target segmentation, background detection, target detection, and intensity measurement. Since microarray technology is still under development and image quality varies considerably, a robust and precise image analysis algorithm that reduces background interference and extracts precise signal intensity and expression ratios for each gene is critical to the success of further statistical analysis. The overall methodology discussed in this chapter has been developed and enhanced through five years of experience working with cDNA microarray images. It continues to be expanded and revised as new issues arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., and Yakhini, Z. (2000). “Tissue Classification with Gene Expression Profiles.” J Comput Biol 7:559–583.

    Article  PubMed  CAS  Google Scholar 

  • Bittner, M., Chen, Y., and Dougherty, E. R. (Eds.) (2001). Microarrays: Optical Technologies and Informatics, Proceedings of SPIE 4266:1–12.

    Google Scholar 

  • Bittner, M., Meltzer, P., Khan, J., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Dougherty, E., Wang, E., Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Gillanders, E., Leja, A., Dietrich, K., Beaudry, C., Berrens, M., Alberts, D., Sondak, V., Hayward, N., and Trent, J. (2000). “Molecular Classification of Cutaneous Malignant Melanoma by Gene Expression Profiling.” Nature 406:536–540.

    Article  PubMed  CAS  Google Scholar 

  • Bowtell, D. (1999). “Options Available — from Start to Finish — for Obtaining Expression Data by Microarray.” Nat Genet 21:25–32.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Dougherty, E. R., and Bittner, M. (1997). “Ratio-based Decisions and the Quantitative Analysis of cDNA Microarray Images.” Biomedical Optics 2:364–374.

    Article  CAS  Google Scholar 

  • Chen, Y., Kamat, V., Dougherty, E. R., Bittner, M. L., Meitzer, P. S., and Trent, J. M. “Ratio Statistics of Gene Expression Levels and Applications to Microarray Data Analysis.” (submitted to Bioinformatics).

    Google Scholar 

  • DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997). “Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale.” Science 278:680–686.

    Article  PubMed  CAS  Google Scholar 

  • DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A., and Trent, J. M. (1996). “Use of a cDNA Microarray to Analyze Gene Expression Patterns in Human Cancer.” Nat Genet 14:457–460.

    Article  PubMed  CAS  Google Scholar 

  • Duggan, D. J., Bittner, M. L., Chen, Y., Meltzer, P. S., and Trent, J. M. (1999). “Expression Profiling Using cDNA Microarrays.” Nat Genet 21:10–14.

    Article  PubMed  CAS  Google Scholar 

  • Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). “Cluster Analysis and Display of Genome-wide Expression Patterns.” Proc Natl Acad Sci USA 95:14863–14868.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, D. and Fox, M. (1991). Probability, the Mathematics of Uncertainty. New York: Marcel Dekker.

    Google Scholar 

  • Gibbons, J. D. and Chakraborti, S. (1996). Nonparametric Statistical Inference, 3rd ed. New York: Marcel Dekker.

    Google Scholar 

  • Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). “Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring.” Science 286:531–537.

    Article  PubMed  CAS  Google Scholar 

  • Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Raffeld, Yakhini, Z., Ben-Dor, A., Dougherty, E., Kononen, J., Bubendorf, L., Fehrle, W., Pittaluga, S., Gruvverger, S., Loman, N., Johannsson, O., Olsson, H., Wifond, B., Sauter, G., Kallioniemi, O. P., Borg, A., and Trent, J. (2001). “Gene Expression Profiles Distinguish Hereditary Breast Cancers.” N Engl J Med 34:539–548.

    Article  Google Scholar 

  • Khan, J., Simon, R., Bittner, M., Chen, Y., Leighton, S. B., Pohida, T., Smith, P. D., Jiang, Y., Gooden, G. C., Trent, J. M., and Meltzer, P. S. (1998). “Gene Expression Profiling of Alveolar Rhabdomyosarcoma with cDNA Microarrays.” Cancer Res 58:5009–5013.

    PubMed  CAS  Google Scholar 

  • Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C., and Meltzer, P. S. (2001). “Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks.” Nat Med 7:673–679.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. H., Kim, H. Y., and Lee, Y. S. (2001). “A Novel Method Using Edge Detection for Signal Extraction from cDNA Microarray Image Analysis.” Exp Mol Med 33:83–88.

    PubMed  CAS  Google Scholar 

  • Korhonen, P. J. and Narula, S. C. (1989). “The Probability Distribution of the Ratio of the Absolute Values of Two Normal Variables.” J Statistical Computation and Simulation 33:173–182.

    Article  Google Scholar 

  • Newton, M. A., Kendziorshi, C. M., Richmond, C. S., Blattner, F. R., Tsui, K. W. (2001). “On Differential Variability of Expression Ratios: Improving Statistical Inference about Gene Expression Changes from Microarray Data.” J Comput Biol 8:37–52.

    Article  PubMed  CAS  Google Scholar 

  • Otsu, N. (1979). “A Threshold Selection Method from Gray-level Histogram.” IEEE Trans Syst Man Cyber SMC-9:62–66.

    Google Scholar 

  • Schadt, E. E., Li, C., Su, C., and Wong, W. H. (2000). “Analyzing High-density Ologonucleotide Gene Expression Array Data.” J Cell Biochem 80:192–202.

    Article  PubMed  CAS  Google Scholar 

  • Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995). “Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray.” Science 270:467–470.

    Article  PubMed  CAS  Google Scholar 

  • Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., and Davis, R.W. (1996). “Parallel Human Genome Analysis: Microarray-based Expression Monitoring of 1000 Genes.” Proc Natl Acad Sci USA 93:10614–10619.

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger, H. and Fleischer, K. (1993). “The Distribution of the Ratio of Two Variables.” J Statistical Computation and Simulation 47:227–240.

    Article  Google Scholar 

  • Shanmugalingam, S. (1982). “On the Analysis of the Ratio of Two Correlated Normal Variables.” The Statistician 31:251–258.

    Article  Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. (1995). Biometry: The Principles and Practice of Statistics in Biological Research, 3rd Ed. W. H. Freeman and Co.

    Google Scholar 

  • Wang, X., Ghosh, S., and Guo, S.W. (2001). “Quantitative Quality Control in Microarray Image Processing and Data Acquisition.” Nucleic Acids Res 29:E75.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. F. and Herman, B. (Eds.) (1996). Fluorescence Imaging Spectroscopy and Microscopy. New York: John Wiley & Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Chen, Y., Dougherty, E.R., Bittner, M.L., Meltzer, P., Trent, J. (2006). Microarray Image Analysis and Gene Expression Ratio Statistics. In: Zhang, W., Shmulevich, I. (eds) Computational and Statistical Approaches to Genomics. Springer, Boston, MA. https://doi.org/10.1007/0-387-26288-1_1

Download citation

Publish with us

Policies and ethics