Dispatching Automated Guided Vehicles in a Container Terminal

  • Yong-Leong Cheng
  • Hock-Chan Sen
  • Karthik Natarajan
  • Chung-Piaw Teo
  • Kok-Choon Tan
Part of the Applied Optimization book series (APOP, volume 98)


Sink Node Appointment Time Container Terminal Quay Crane Minimum Cost Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network Flows: Theory, Algorithms and Applications. Prentice Hall.Google Scholar
  2. Akturk, M.S., H. Yilmaz. 1996. Scheduling of automated guided vehicles in a decision making hierarchy. International Journal of Production Research. 34,2, 577–591.Google Scholar
  3. Banks, J., J.S. Carson, B.L. Nelson, D.M. Nicol. 2001. Discrete-Event System Simulation. 3rd Edition, Prentice Hall.Google Scholar
  4. Bish, E.K. 2003. A multiple-crane-constrained scheduling problem in a container terminal. European Journal of Operational Research. 1441, 83–107.MathSciNetGoogle Scholar
  5. Bose, J., T. Reiners, D. Steenken, S. Vos. 2002. Vehicle dispatching at seaport container terminals using evolutionary algorithms. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. R.H. Sprage (Ed), IEEE, Piscataway, 1–10.Google Scholar
  6. Chan, C.T., L.H. Huat. 2002. Containers, containerships and quay cranes: a practical guide. Singapore: Genesis Typesetting & Publication Services.Google Scholar
  7. Co, C.G., J.M.A. Tanchoco. 1991. A review of research on AGVS vehicle management. Engineering Costs and Production Economics. 32, 35–42.CrossRefGoogle Scholar
  8. Chen, F.Y., E.K. Bish, Y.T. Leong, Q. Liu, B.L. Nelson, J.W.C. Ng, D. Simchi-Levi. 1998. Dispatching vehicles in a mega container terminal. INFORMS, Montreal, Canada.Google Scholar
  9. Duinkerken, M.B., J.A. Ottjes. 2000. A simulation model for automated container terminals. Proceedings of the Business and Industry Simulation Symposium. Washington, ISBN 1-56555-199-0. ISCS.Google Scholar
  10. Egbelu, P.J., J.M.A. Tanchoco. 1984. Characterization of automatic guided vehicle dispatching rules. International Journal of Production Research. 22,3, 359–374.Google Scholar
  11. Evers, J.J.M., S.A.J. Koppers. 1996. Automated guided vehicle traffic control at a container terminal. Transportation Research A. 30,1, 21–34.Google Scholar
  12. Hyuenbo, C, T.K. Kumaran, R.A. Wysk. 1995. Graph theoretic deadlock detection and resolution for flexible manufacturing systems. IEEE Transactions on Robotics and Automation. 11,3, 413–421.CrossRefGoogle Scholar
  13. Kim, K.H., J.W. Bae. 2000. A dispatching method for automated guided vehicles to minimize delays of containership operations. International Journal of Management Science. 5,1, 1–25.Google Scholar
  14. Law, A.M., D.W. Kelton. 1991. Simulation Modeling and Analysis. 2nd Edition, McGraw-Hill.Google Scholar
  15. Lee, C.C., J.T. Lin. 1995. Deadlock prediction and avoidance based on Petri nets for zone control automated guided vehicle systems. International Journal of Production Research. 33,12, 2349–3265.Google Scholar
  16. Lobel, A. 2000. MCF-A network simplex implementation version 1.2. Scholar
  17. Meersmans, P.J.M., R. Dekker. 2001. Operations research support container handling. Econometric Institute Report EI 2001-22.Google Scholar
  18. Meersmans, P.J.M., A.P.M. Wagelmans. 2001a. Effective algorithms for integrated scheduling of handling equipment at automated container terminals. Econometric Institute Report EI 2001-19.Google Scholar
  19. Meersmans, P.J.M., A.P.M. Wagelmans. 2001b. Dynamic scheduling of handling equipment at automated container terminals. Econometric Institute Report EI 2001-33.Google Scholar
  20. Moorthy, R.L., H.G. Wee, W.C. Ng, C.P. Teo. 2003. Cyclic deadlock prediction and avoidance for zone controlled AGV system. International Journal of Production Economics. 83,3, 309–324.CrossRefGoogle Scholar
  21. Potvin, J.Y., G. Dufour, J.M. Rousseau. 1993. Learning vehicle dispatching with linear programming models. Computers and Operations Research. 20,4, 371–380.CrossRefGoogle Scholar
  22. Potvin, J.Y., Y. Shen, J.M. Rousseau. 1992. Neural networks for automated vehicle dispatching. Computers and Operations Research. 19,3/4, 267–276.CrossRefGoogle Scholar
  23. Vis, I.F.A., R. de Koster. 2003. Transshipment of containers at a container terminal: an overview. European Journal of Operational Research. 147, 1–16.CrossRefGoogle Scholar
  24. Vis, I.F.A., R. de Koster, K.J. Roodbergen, L.W.P. Peeters. 2001. Determination of the number of automated guided vehicles required at a semi-automated container terminal. Journal of the Operational Research Society. 52, 409–417.CrossRefGoogle Scholar
  25. Viswanadham, N., Y. Narahari, T.L. Johnson. 1990. Deadlock prevention and deadlock avoidance in flexible manufacturing systems using Petri net models. IEEE Transactions on Robotics and Automation. 6,6, 713–723.CrossRefGoogle Scholar
  26. Yeh, M.S., W.C. Yeh. 1998. Deadlock prediction and avoidance for zone control AGVs. International Journal of Production Research. 36,10, 2879–2889.CrossRefGoogle Scholar
  27. AutoMod V 9.0 Reference Manual.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yong-Leong Cheng
    • 1
  • Hock-Chan Sen
    • 1
  • Karthik Natarajan
    • 2
  • Chung-Piaw Teo
    • 3
    • 4
  • Kok-Choon Tan
    • 5
    • 6
  1. 1.Singapore MIT Alliance ProgramSingapore
  2. 2.Department of MathematicsNational University of SingaporeSingapore
  3. 3.SKK Graduate School of BusinessSungkyunkwan UniversitySingapore
  4. 4.Department of Decision SciencesNational University of SingaporeSingapore
  5. 5.PSA CorporationSingapore
  6. 6.Department of Industrial and Systems EngineeringNational University of SingaporeSingapore

Personalised recommendations