Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 567))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.D. Salmon Jr. and W.H. Daughaday, A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med, 49, 825–836 (1957).

    PubMed  CAS  Google Scholar 

  2. A.J. D’Ercole, G.T. Applewhite and L.E. Underwood, Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev Biol, 75, 315–328 (1980).

    Google Scholar 

  3. A.J. D’Ercole, A.D. Stiles and L.E. Underwood, Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci USA, 81, 935–939 (1984).

    Google Scholar 

  4. O.G. Isaksson, J.O. Jansson, & I.A. Gause, Growth hormone stimulates longitudinal bone growth directly. Science 216, 1237–1239 (1982).

    PubMed  CAS  Google Scholar 

  5. J. Isgaard, A. Nilsson, A. Lindahl, J.O. Jansson and O.G. Isaksson, Effects of local administration of GH and IGF-1 on longitudinal bone growth in rats. Am J Physiol, 250, E367–372 (1986).

    PubMed  CAS  Google Scholar 

  6. K. Sjogren, J.L. Liu, K. Blad, S. Skrtic, O. Vidal, V. Wallenius, D. LeRoith, J. Tornell, O.G. Isaksson, J.O. Jansson and C. Ohlsson, Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA, 96, 7088–7092 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. S. Yakar, J.L. Liu, B. Stannard, A. Butler, D. Accili, B. Sauer and D. LeRoith, Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA, 96, 7324–7329 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. S. Yakar, C.J. Rosen, W.G. Beamer, C.L. Ackert-Bicknell, Y. Wu, J.L. Liu, G.T. Ooi, J. Setser, J. Frystyk, Y.R. Boisclair and D. LeRoith, Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest, 110, 771–781 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. G. Goldspink, Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat, 194, 323–334 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. R. Bassel-Duby and E.N. Olson, Role of calcineurin in striated muscle: development, adaptation, and disease. Biochem Biophys Res Commun, 311, 1133–1141 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. D. LeRoith, H. Werner, D eitner-Johnson and C.T. Roberts Jr., Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev, 16, 143–163 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. T.M. DeChiara, A. Efstratiadis and E.J. Robertson, A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature, 345, 78–80 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. J.P. Liu, J. Baker, A.S. Perkins, E.J. Robertson and A. Efstratiadis, Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igflr). Cell, 75, 59–72 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. J.C. Engert, E.B. Berglund and N. Rosenthal, Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol, 135, 431–440 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. L.S. Quinn, B. Steinmetz, A. Maas, L. Ong and M. Kaleko, Type-1 insulin-like growth factor receptor overexpression produces dual effects on myoblast proliferation and differentiation. J Cell Physiol, 159, 387–398 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. A. Musaro and N. Rosenthal, Maturation of the myogenic program is induced by postmitotic expression of insulin-like growth factor I. Mol Cell Biol, 19, 3115–3124 (1999).

    PubMed  CAS  Google Scholar 

  17. W.L. Miller and N.L. Eberhardt, Structure and evolution of the growth hormone gene family. Endocr Rev, 4, 97–130 (1983).

    PubMed  CAS  Google Scholar 

  18. D. Cosman, S.D. Lyman, R.L. Idzerda, M.P. Beckmann, L.S. Park, R.G. Goodwin and C.J. March, A new cytokine receptor superfamily. Trends Biochem Sci, 15, 265–270 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. S.M. Pincus, E.F. Gevers, I.C. Robinson, G. van den Berg, F. Roelfsema, M.L. Hartman and J.D. Veldhuis. Females secrete growth hormone with more process irregularity than males in both humans and rats. Am J Physiol, 270, E107–115 (1996).

    PubMed  CAS  Google Scholar 

  20. J. Spiess, J. Rivier and W. Vale, Characterization of rat hypothalamic growth hormone-releasing factor. Nature, 303, 532–535 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. N. Ling, F. Esch, P. Bohlen, P. Brazeau, W.B. Wehrenberg and R. Guillemin, Isolation, primary structure, and synthesis of human hypothalamic somatocrinin: growth hormone-releasing factor. Proc Natl Acad Sci USA, 81, 4302–4306 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. P. Brazeau, W. Vale, R. Burgus, N. Ling, M. Butcher, J. Rivier and R. Guillemin. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science, 179, 77–79 (1973).

    PubMed  CAS  Google Scholar 

  23. T. Imaki, T. Shibasaki, K. Shizume, A. Masuda, M. Hotta, Y. Kiyosawa, K. Jibiki, H. Demura, T. Tsushima and N. Ling, The effect of free fatty acids on growth hormone (GH)-releasing hormone-mediated GH secretion in man. J Clin Endocrinol Metab, 60, 290–293 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. G.S. Tannenbaum, W. Gurd and M. Lapointe, Leptin is a potent stimulator of spontaneous pulsatile growth hormone (GH) secretion and the GH response to GH-releasing hormone. Endocrinology, 139, 3871–3875 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. B.A. Vuagnat, D.D. Pierroz, M. Lalaoui, P. Englaro, F.P. Pralong, W.F. Blum and M.L. Aubert, Evidence for a leptin-neuropeptide Y axis for the regulation of growth hormone secretion in the rat. Neuroendocrinology, 67, 291–300 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. Y.Y. Chan, R.A. Steiner and D.K. Clifton, Regulation of hypothalamic neuropeptide-Y neurons by growth hormone in the rat. Endocrinology, 137, 1319–1325 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. E. Ghigo, E. Arvat, L. Gianotti, B.P. Imbimbo, V. Lenaerts, R. Deghenghi and F. Camanni, Growth hormone-releasing activity of hexarelin, a new synthetic hexapeptide, after intravenous, subcutaneous, intranasal, and oral administration in man. J Clin Endocrinol Metab, 78, 693–698 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. R. Deghenghi, M.M. Cananzi, A. Torsello, C. Battisti, E.E. Muller and V. Locatelli, GH-releasing activity of Hexarelin, a new growth hormone releasing peptide, in infant and adult rats. Life Sci, 54, 1321–1328 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo and K. Kangawa, Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656–660 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. M.M. Hondo, A.B. Damholt, B.A. Cunningham, J.A. Wells, P. De Meyts and R.M. Shymko, Receptor dimerization determines the effects of growth hormone in primary rat adipocytes and cultured human IM-9 lymphocytes. Endocrinology, 134, 2397–2403 (1994).

    Article  Google Scholar 

  31. J.J. Kopchick, History and future of growth hormone research. Horm Res, 60Suppl 3, 103–112 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. D.W. Leung, S.A. Spencer, G. Cachianes, R.G. Hammonds, C. Collins, W.J. Henzel, R. Barnard, M.J. Waters and W.I. Wood, Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature, 330, 537–543 (1987).

    Article  PubMed  CAS  Google Scholar 

  33. A. Sotiropoulos, L. Goujon, G. Simonin, P.A. Kelly, M.C. Postel-Vinay and J. Finidori, Evidence for generation of the growth hormone-binding protein through proteolysis of the growth hormone membrane receptor. Endocrinology, 132, 1863–1865 (1993).

    Article  PubMed  CAS  Google Scholar 

  34. T.E. Adams, Differential expression of growth hormone receptor messenger RNA from a second promoter. Mol Cell Endocrinol, 108, 23–33 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. W.R Baumbach, D.L. Homer and J.S. Logan, The growth hormone-binding protein in rat serum is an alternatively spliced form of the rat growth hormone receptor. Genes Dev, 3, 1199–1205 (1989).

    PubMed  CAS  Google Scholar 

  36. W.C. Smith, J. Kuniyoshi and F. Talamantes, Mouse serum growth hormone (GH) binding protein has GH receptor extracellular and substituted transmembrane domains. Mol Endocrinol, 3, 984–990 (1989).

    PubMed  CAS  Google Scholar 

  37. R.J. Ross, Truncated growth hormone receptor isoforms. Acta Paediatr Suppl, 88, 164–166; discussion 167 (1999).

    PubMed  CAS  Google Scholar 

  38. C. Carter-Su and L.S. Smit, Signaling via JAK tyrosine kinases: growth hormone receptor as a model system. Recent Prog Horm Res, 53, 61–82; discussion 82–83 (1998).

    PubMed  CAS  Google Scholar 

  39. K. Takeda and S. Akira, STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev, 11, 199–207 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. W.J. Leonard and J.J. O’Shea, Jaks and STATs: biological implications. Anna Rev Immunol, 16, 293–322 (1998).

    Article  CAS  Google Scholar 

  41. Y.R. Boisclair, D. Seto, S. Hsieh, K.R. Hurst and G.T. Ooi, Organization and chromosomal localization of the gene encoding the mouse acid labile subunit of the insulin-like growth factor binding complex. Proc Natl Acad Sci USA, 93, 10028–10033 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. L.S. Argetsinger, G. Norstedt, N. Billestrup, M.F. White and C. Carter-Su, Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling. J Biol Chem, 271, 29415–29421 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. S.C. Souza, G.P. Frick, R. Yip, R.B. Lobo, L.R. Tai and H.M. Goodman, Growth hormone stimulates tyrosine phosphorylation of insulin receptor substrate-1. J Biol Chem, 269, 30085–30088 (1994).

    PubMed  CAS  Google Scholar 

  44. H.C. Mertani and G. Morel, In situ gene expression of growth hormone (GH) receptor and GH binding protein in adult male rat tissues. Mol Cell Endocrinol, 109, 47–61 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. J.F. Martini, S.M. Villares, M. Nagano, M.C. Delehaye-Zervas, B. Eymard, P.A. Kelly and M.C. Postel-Vinay Quantitative analysis by polymerase chain reaction of growth hormone receptor gene expression in human liver and muscle. Endocrinology, 136, 1355–1360 (1995).

    Article  PubMed  CAS  Google Scholar 

  46. J.R. Florini, D.Z. Ewton and S.A. Coolican, Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev, 17, 481–517 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. S.L. Pratt and R.V. Anthony, The growth hormone receptor messenger ribonucleic acid present in ovine fetal liver is a variant form. Endocrinology, 136, 2150–2155 (1995).

    Article  PubMed  CAS  Google Scholar 

  48. H. Kaji, S. Ohashi, H. Abe and K. Chihara, Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA. Proc Soc Exp Biol Med, 206, 257–262 (1994).

    PubMed  CAS  Google Scholar 

  49. M.J. Dauncey, K.A. Burton, P. White, A.P. Harrison, R.S. Gilmour, C. Duchamp and D. Cattaneo, Nutritional regulation of growth hormone receptor gene expression. FASEB J, 8, 81–88 (1994).

    PubMed  CAS  Google Scholar 

  50. D. Le Roith, C. Bondy, S. Yakar, J.L. Liu and A. Butler, The somatomedin hypothesis: 2001. Endocr Rev, 22, 53–74 (2001).

    Article  PubMed  Google Scholar 

  51. C.M. Ayling, B.H. Moreland, J.M. Zanelli and D. Schulster, Human growth hormone treatment of hypophysectomized rats increases the proportion of type-1 fibres in skeletal muscle. J Endocrinol, 123, 429–435 (1989).

    PubMed  CAS  Google Scholar 

  52. H.P. Guler, J. Zapf, E. Scheiwiller and E.R. Froesch, Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc Natl Acad Sci USA, 85, 4889–4893 (1988).

    Article  PubMed  CAS  Google Scholar 

  53. R.M. Palmer, N. Loveridge, B.M. Thomson, S.C. Mackie, E. Tonner and D.J. Flint, Effects of a polyclonal antiserum to rat growth hormone on circulating insulin-like growth factor (IGF)-I and IGF-binding protein concentrations and the growth of muscle and bone. J Endocrinol, 142, 85–91 (1994).

    PubMed  CAS  Google Scholar 

  54. R.C. Cuneo, F. Salomon, C.M. Wiles and P.H. Sonksen, Skeletal muscle performance in adults with growth hormone deficiency. Horm Res, 33Suppl 4, 55–60 (1990).

    PubMed  Google Scholar 

  55. A. Sartorio, M. Narici, A. Conti, M. Monzani and G. Faglia, Quadriceps and hand-grip strength in adults with childhood-onset growth hormone deficiency. Eur J Endocrinol, 132, 37–41 (1995).

    Article  PubMed  CAS  Google Scholar 

  56. R.C. Cuneo, F. Salomon, C.M. Wiles, R. Hesp and P.H. Sonksen, Growth hormone treatment in growth hormone-deficient adults. I. Effects on muscle mass and strength. J Appl Physiol, 70, 688–694 (1991).

    PubMed  CAS  Google Scholar 

  57. D. Rudman, A.G. Feller, H.S. Nagraj, G.A. Gergans, P.Y. Lalitha, A.F. Goldberg, R.A. Schlenker, L. Cohn, I.W. Rudman and D.E. Mattson, Effects of human growth hormone in men over 60 years old. N Engl J Med, 323, 1–6 (1990).

    Article  PubMed  CAS  Google Scholar 

  58. J.S. Christiansen, J.O. Jorgensen, S.A. Pedersen, J. Muller, J. Jorgensen, J. Moller, L. Heickendorf and N.E. Skakkebaek, GH-replacement therapy in adults. Horm Res, 36Suppl 1, 66–72 (1991).

    PubMed  Google Scholar 

  59. A. Sartorio and M.V. Narici, Growth hormone (GH) treatment in GH-deficient adults: effects on muscle size, strength and neural activation. Clin Physiol, 14, 527–537 (1994).

    PubMed  CAS  Google Scholar 

  60. S.A. Beshyah, C. Freemantle, M. Shahi, V. Anyaoku, S. Merson, S. Lynch, E. Skinner, P. Sharp, R. Foale and D.G. Johnston, Replacement treatment with biosynthetic human growth hormone in growth hormone-deficient hypopituitary adults. Clin Endocrinol (Oxf), 42, 73–84 (1995).

    CAS  Google Scholar 

  61. M.J. Waters, C.A. Shang, S.N. Behncken, S.P. Tarn, H. Li, B. Shen and P.E. Lobie, Growth hormone as a cytokine. Clin Exp Pharmacol Physiol, 26, 760–4 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. J.L. Kostyo, Rapid effects of growth hormone on amino acid transport and protein synthesis. Ann N Y Acad Sci, 148, 389–407 (1968).

    PubMed  CAS  Google Scholar 

  63. R.F. Wolf, M.J. Heslin, E. Newman, D.B. Pearlstone, A. Gonenne and M.F. Brennan, Growth hormone and insulin combine to improve whole-body and skeletal muscle protein kinetics. Surgery, 112, 2842–91; discussion 291–292 (1992).

    Google Scholar 

  64. D.L. Russell-Jones, A.J. Weissberger, S.B. Bowes, J.M. Kelly, M. Thomason, A.M. Umpleby, R.H. Jones and P.H. Sonksen, The effects of growth hormone on protein metabolism in adult growth hormone deficient patients. Clin Endocrinol (Oxf), 38, 427–431 (1993).

    CAS  Google Scholar 

  65. D.A. Fryburg, Insulin-like growth factor I exerts growth hormone-and insulin-like actions on human muscle protein metabolism. Am J Physiol, 267, E331–336 (1994).

    PubMed  CAS  Google Scholar 

  66. D.L. DeVol, P. Rotwein, J.L. Sadow, J. Novakofski and P.J. Bechtel, Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol, 259, E89–95 (1990).

    PubMed  CAS  Google Scholar 

  67. M. Ottosson, K. Vikman-Adolfsson, S. Enerback, A. Elander, P. Bjorntorp and S. Eden Growth hormone inhibits lipoprotein lipase activity in human adipose tissue. J Clin Endocrinol Metab, 80, 936–941 (1995).

    Article  PubMed  CAS  Google Scholar 

  68. H.M. Goodman, Biological activity of bacterial derived human growth hormone in adipose tissue of hypophysectomized rats. Endocrinology 114, 131–135 (1984).

    PubMed  CAS  Google Scholar 

  69. C. Carter-Su, A.P. King, L.S. Argetsinger, L.S. Smit, J. Vanderkuur and G.S. Campbell, Signalling pathway of GH. Endocr J, 43Suppl, S65–70 (1996).

    PubMed  CAS  Google Scholar 

  70. P.J. Randle, P.B. Garland, C.N. Hales and E.A. Newsholme, The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 1, 785–789 (1963).

    Article  PubMed  CAS  Google Scholar 

  71. P.D. Gluckman, M.M. Grumbach and S.L. Kaplan, The neuroendocrine regulation and function of growth hormone and prolactin in the mammalian fetus. Endocr Rev, 2, 363–395 (1981).

    PubMed  CAS  Google Scholar 

  72. J. Wang, J. Zhou and C.A. Bondy, Igfl promotes longitudinal bone growth by insulin-like actions augmenting chondrocyte hypertrophy. FASEB J, 13, 1985–1990 (1999).

    PubMed  CAS  Google Scholar 

  73. N.A. Adamafio, R.J. Towns and J.L. Kostyo, Growth hormone receptors and action in BC3H-1 myocytes. Growth Regul, 1, 17–22 (1991).

    PubMed  CAS  Google Scholar 

  74. D.A. Fryburg, R.A. Gelfand and E.J. Barrett, Growth hormone acutely stimulates forearm muscle protein synthesis in normal humans. Am J Physiol, 260, E499–504 (1991).

    PubMed  CAS  Google Scholar 

  75. Y. Fong, M. Rosenbaum, K.J. Tracey, G. Raman, D.G. Hesse, D.E. Matthews, R.L. Leibel, J.M. Gertner, D.A. Fischman and S.F. Lowry, Recombinant growth hormone enhances muscle myosin heavy-chain mRNA accumulation and amino acid accrual in humans. Proc Natl Acad Sci USA, 86, 3371–3374 (1989).

    Article  PubMed  CAS  Google Scholar 

  76. J.C. Chow, P.R. Ling, Z. Qu, L. Laviola, A. Ciccarone, B.R. Bistrian and R.J. Smith, Growth hormone stimulates tyrosine phosphorylation of JAK2 and STAT5, but not insulin receptor substrate-1 or SHC proteins in liver and skeletal muscle of normal rats in vivo. Endocrinology, 137, 2880–2886 (1996).

    Article  PubMed  CAS  Google Scholar 

  77. D.J. Hill, C.J. Crace, L. Fowler, A.T. Holder and R.D. Milner, Cultured fetal rat myoblasts release peptide growth factors which are immunologically and biologically similar to somatomedin. J Cell Physiol, 119, 349–358 (1984).

    Article  PubMed  CAS  Google Scholar 

  78. M. Tanaka, Y. Hayashida, K. Sakaguchi, T. Ohkubo, M. Wakita, S. Hoshino and K. Nakashima, Growth hormone-independent expression of insulin-like growth factor I messenger ribonucleic acid in extrahepatic tissues of the chicken. Endocrinology, 137, 30–34 (1996).

    Article  PubMed  CAS  Google Scholar 

  79. J.M. Pell, J.C. Saunders and R.S. Gilmour, Differential regulation of transcription initiation from insulin-like growth factor-I (IGF-I) leader exons and of tissue IGF-I expression in response to changed growth hormone and nutritional status in sheep. Endocrinology, 132, 17971–807 (1993).

    Article  Google Scholar 

  80. M.E. Coleman, L. Russell and T.D. Etherton, Porcine somatotropin (pST) increases IGF-I mRNA abundance in liver and subcutaneous adipose tissue but not in skeletal muscle of growing pigs. J Anim Sci, 72, 918–24 (1994).

    PubMed  CAS  Google Scholar 

  81. K. Hannon, A. Gronowski and A. Trenkle, Relationship of liver and skeletal muscle IGF-1 mRNA to plasma GH profile, production of IGF-1 by liver, plasma IGF-1 concentrations, and growth rates of cattle. Proc Soc Exp Biol Med, 196, 155–163 (1991).

    PubMed  CAS  Google Scholar 

  82. P.C. Bates, P.T. Loughna, J.M. Pell, D. Schulster and D.J. Millward, Interactions between growth hormone and nutrition in hypophysectomized rats: body composition and production of insulin-like growth factor-I. J Endocrinol, 139, 117–126 (1993).

    PubMed  CAS  Google Scholar 

  83. P.T. Loughna, P. Mason and P.C. Bates, Regulation of insulin-like growth factor 1 gene expression in skeletal muscle. Symp Soc Exp Biol, 46, 319–330 (1992).

    PubMed  CAS  Google Scholar 

  84. D.R. Clemmons, Structural and functional analysis of insulin-like growth factors. Br Med Bull, 45, 465–480 (1989).

    PubMed  CAS  Google Scholar 

  85. W.H. Daughaday and P. Rotwein, Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev, 10, 68–91 (1989).

    PubMed  CAS  Google Scholar 

  86. J.I. Jones and D.R. Clemmons, Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev, 16, 3–34 (1995).

    Article  PubMed  CAS  Google Scholar 

  87. A. Louvi, D. Accili and A. Efstratiadis, Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol, 189, 33–48 (1997).

    Article  PubMed  CAS  Google Scholar 

  88. F. Frasca, G. Pandini, P. Scalia, L. Sciacca, R. Mineo, A. Costantino, I.D. Goldfine, A. Belfiore and R. Vigneri, Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol, 19, 3278–3288 (1999).

    PubMed  CAS  Google Scholar 

  89. J. Baker, J.P. Liu, E.J. Robertson and A. Efstratiadis, Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75, 73–82 (1993).

    Article  PubMed  CAS  Google Scholar 

  90. A.A. Butler, S. Yakar, I.H. Gewolb, M. Karas, Y. Okubo and D. LeRoith, Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol, 121, 19–26 (1998).

    Article  PubMed  CAS  Google Scholar 

  91. M.F. White, The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Recent Prog Horm Res, 53, 119–138 (1998).

    PubMed  CAS  Google Scholar 

  92. A. Craparo, T.J. O’Neill and T.A. Gustafson, Non-SH2 domains within insulin receptor substrate-1 and SHC mediate their phosphotyrosine-dependent interaction with the NPEY motif of the insulin-like growth factor I receptor. J Biol Chem, 270, 15639–15643 (1995).

    Article  PubMed  CAS  Google Scholar 

  93. S. Tartare-Deckert, D. Sawka-Verhelle, J. Murdaca and E. Van Obberghen, Evidence for a differential interaction of SHC and the insulin receptor substrate-1 (IRS-1) with the insulin-like growth factor-I (IGF-I) receptor in the yeast two-hybrid system. J Biol Chem, 270, 23456–23460 (1995).

    Article  PubMed  CAS  Google Scholar 

  94. C.P. Moxham, V. Duronio and S. Jacobs, Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem, 264, 13238–13244 (1989).

    PubMed  CAS  Google Scholar 

  95. S.M. Twigg and R.C. Baxter, Insulin-like growth factor (IGF)-binding protein 5 forms an alternative ternary complex with IGFs and the acid-labile subunit. J Biol Chem, 273, 6074–6079 (1998).

    Article  PubMed  CAS  Google Scholar 

  96. S.M. Twigg, M.C. Kiefer, J. Zapf and R.C. Baxter, A central domain binding site in insulin-like growth factor binding protein-5 for the acid-labile subunit. Endocrinology, 141, 454–457 (2000).

    Article  PubMed  CAS  Google Scholar 

  97. D.Z. Ewton and J.R. Florini, IGF binding proteins-4,-5 and-6 may play specialized roles during L6 myoblast proliferation and differentiation. J Endocrinol, 144, 539–553 (1995).

    PubMed  CAS  Google Scholar 

  98. R.H. McCusker and D.R. Clemmons, Insulin-like growth factor binding protein secretion by muscle cells: effect of cellular differentiation and proliferation. J Cell Physiol, 137, 505–512 (1988).

    Article  PubMed  CAS  Google Scholar 

  99. R.H. McCusker, C. Camacho-Hubner and D.R. Clemmons, Identification of the types of insulin-like growth factor-binding proteins that are secreted by muscle cells in vitro. J Biol Chem, 264, 7795–800 (1989).

    PubMed  CAS  Google Scholar 

  100. D.D. Sarbassov, R. Stefanova, V.G. Grigoriev and C.A. Peterson, Role of insulin-like growth factors and myogenin in the altered program of proliferation and differentiation in the NFB4 mutant muscle cell line. Proc Natl Acad Sci USA, 92, 10874–10878 (1995).

    Article  PubMed  CAS  Google Scholar 

  101. P. Rotwein, P.L. James and K. Kou, Rapid activation of insulin-like growth factor binding protein-5 gene transcription during myoblast differentiation. Mol Endocrinol, 9, 913–923 (1995).

    Article  PubMed  CAS  Google Scholar 

  102. P.L. James, S.B. Jones, W.H. Busby Jr., D.R. Clemmons and P.A. Rotwein, highly conserved insulin-like growth factor-binding protein (IGFBP-5) is expressed during myoblast differentiation. J Biol Chem, 268, 22305–22312 (1993).

    PubMed  CAS  Google Scholar 

  103. B.N. Green, S.B. Jones, R.D. Streck, T.L. Wood, P. Rotwein and J.E. Pintar, Distinct expression patterns of insulin-like growth factor binding proteins 2 and 5 during fetal and postnatal development. Endocrinology, 134, 954–962 (1994).

    Article  PubMed  CAS  Google Scholar 

  104. M.A. Gosteli-Peter, K.H. Winterhalter, C. Schmid, E.R. Froesch and J. Zapf, Expression and regulation of insulin-like growth factor-I (IGF-I) and IGF-binding protein messenger ribonucleic acid levels in tissues of hypophysectomized rats infused with IGF-I and growth hormone. Endocrinology, 135, 2558–2567 (1994).

    Article  PubMed  CAS  Google Scholar 

  105. C.E. Stewart and P. Rotwein, Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev, 76, 1005–1026 (1996).

    PubMed  CAS  Google Scholar 

  106. M.L. Adamo, S. Neuenschwander, D. LeRoith and C.T. Roberts Jr., Structure, expression, and regulation of the IGF-I gene. Adv Exp Med Biol, 343, 1–11 (1993).

    PubMed  CAS  Google Scholar 

  107. G. McKoy, W. Ashley, J. Mander, S.Y. Yang, N. Williams, B. Russell and G. Goldspink, Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol, 516 (Pt 2), 583–592 (1999).

    Article  PubMed  CAS  Google Scholar 

  108. S. Yang, M. Alnaqeeb, H. Simpson and G. Goldspink, Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil, 17, 487–495 (1996).

    Article  PubMed  CAS  Google Scholar 

  109. C.T. Roberts Jr., S.R. Lasky, W.L. Lowe Jr., W.T. Seaman and D. LeRoith, Molecular cloning of rat insulin-like growth factor I complementary deoxyribonucleic acids: differential messenger ribonucleic acid processing and regulation by growth hormone in extrahepatic tissues. Mol Endocrinol, 1, 243–248 (1987).

    PubMed  CAS  Google Scholar 

  110. P. Rotwein, K.M. Pollock, D.K. Didier and G.G. Krivi, Organization and sequence of the human insulin-like growth factor I gene. Alternative RNA processing produces two insulin-like growth factor I precursor peptides. J Biol Chem, 261, 4828–4832 (1986).

    PubMed  CAS  Google Scholar 

  111. A. Shimatsu and P. Rotwein, Sequence of two rat insulin-like growth factor I mRNAs differing within the 5′ untranslated region. Nucleic Acids Res, 15, 7196 (1987).

    PubMed  CAS  Google Scholar 

  112. E.A. Wong, S.M. Ohlsen, J.A. Godfredson, D.M. Dean and J.E. Wheaton, Cloning of ovine insulin-like growth factor-I cDNAs: heterogeneity in the mRNA population. DNA, 8, 649–657 (1989).

    PubMed  CAS  Google Scholar 

  113. M.L. Adamo, H. Ben-Hur, C.T Roberts Jr. and D. LeRoith, Regulation of start site usage in the leader exons of the rat insulin-like growth factor-I gene by development, fasting, and diabetes. Mol Endocrinol, 5, 1677–1686 (1991).

    Article  PubMed  CAS  Google Scholar 

  114. E.C. Hoyt, J.J. Van Wyk and P.K. Lund, Tissue and development specific regulation of a complex family of rat insulin-like growth factor I messenger ribonucleic acids. Mol Endocrinol, 2, 1077–1086 (1988).

    PubMed  CAS  Google Scholar 

  115. K. Kikuchi, D.P. Bichell and P. Rotwein, Chromatin changes accompany the developmental activation of insulin-like growth factor I gene transcription. J Biol Chem, 267, 21505–21511 (1992).

    PubMed  CAS  Google Scholar 

  116. L.J. Hall, Y. Kajimoto, D. Bichell, S.W. Kim,.PL. James, D. Counts, L.J. Nixon, G. Tobin and P. Rotwein, Functional analysis of the rat insulin-like growth factor I gene and identification of an IGF-I gene promoter. DNA Cell Biol, 11, 301–313 (1992).

    Article  PubMed  CAS  Google Scholar 

  117. K.A. Woods, C. Camacho-Hubner, M.O. Savage and A.J. Clark, Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med, 335, 1363–1367 (1996).

    Article  PubMed  CAS  Google Scholar 

  118. M. Gourmelen, Y. Le Bouc, F. Girard and M. Binoux, Serum levels of insulin-like growth factor (IGF) and IGF binding protein in constitutionally tall children and adolescents. J Clin Endocrinol Metab, 59, 1197–1203 (1984).

    PubMed  CAS  Google Scholar 

  119. H.T. Blair, S.N. McCutcheon, D.D. Mackenzie, J.E. Ormsby, R.A. Siddiqui, B.H. Breier, P.D. Gluckman, Genetic selection for insulin-like growth factor-1 in growing mice is associated with altered growth. Endocrinology, 123, 1690–1692 (1988).

    PubMed  CAS  Google Scholar 

  120. T.L. Wood, Gene-targeting and transgenic approaches to IGF and IGF binding protein function. Am J Physiol, 269, E613–622 (1995).

    PubMed  CAS  Google Scholar 

  121. L. Powell-Braxton, P. Hollingshead, C. Warburton, M. Dowd, S. Pitts-Meek, D. Dalton, N. Gillett and T.A. Stewart. IGF-I is required for normal embryonic growth in mice. Genes Dev, 7, 2609–2617 (1993).

    PubMed  CAS  Google Scholar 

  122. L.S. Mathews, R.E. Hammer, R.R. Behringer, A.J. D’Ercole, G.I. Bell, R.L. Brinster and R.D. Palmiter, Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology, 123, 2827–2833 (1988).

    PubMed  CAS  Google Scholar 

  123. C.E. Rogler, D. Yang, L. Rossetti, J. Donohoe, E. Alt, C.J. Chang, R. Rosenfeld, K. Neely and R. Hintz, Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J Biol Chem, 269, 13779–13784 (1994).

    PubMed  CAS  Google Scholar 

  124. E.R. Barton-Davis, D.I. Shoturma, A. Musaro, N. Rosenthal and H.L. Sweeney, Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA, 95, 15603–15607 (1998).

    Article  PubMed  CAS  Google Scholar 

  125. M.E. Coleman, F. DeMayo, K.C. Yin, H.M. Lee, R. Geske, C. Montgomery and R.J. Schwartz, Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem, 270, 12109–12116 (1995).

    Article  PubMed  CAS  Google Scholar 

  126. A. Musaro, K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E.R. Barton, H.L. Sweeney and N. Rosenthal, Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet, 27, 195–200 (2001).

    Article  PubMed  CAS  Google Scholar 

  127. A.M. Fernandez, J. Dupont, R.P. Farrar, S. Lee, B. Stannard and D. Le Roith, Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest, 109, 347–355 (2002).

    Article  PubMed  CAS  Google Scholar 

  128. H.H. Arnold and T. Braun, Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review. Int J Dev Biol, 40, 345–353 (1996).

    PubMed  CAS  Google Scholar 

  129. A.B. Lassar, S.X. Skapek and B. Novitch, Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol, 6, 788–794 (1994).

    Article  PubMed  CAS  Google Scholar 

  130. H. Weintraub, The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell, 75, 1241–1244 (1993).

    Article  PubMed  CAS  Google Scholar 

  131. E.N. Olson and W.H. Klein, bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev, 8, 1–8 (1994).

    PubMed  CAS  Google Scholar 

  132. D.C. Ludolph and S.F. Konieczny, Transcription factor families: muscling in on the myogenic program. FASEB J, 9, 1595–1604 (1995).

    PubMed  CAS  Google Scholar 

  133. J.R. Florini, D.Z. Ewton and S.L. Roof, Insulin-like growth factor-I stimulates terminal myogenic differentiation by induction of myogenin gene expression. Mol Endocrinol, 5, 718–724 (1991).

    Article  PubMed  CAS  Google Scholar 

  134. L.S. Quinn, M. Ehsan, B. Steinmetz and M. Kaleko, Ligand-dependent inhibition of myoblast differentiation by overexpression of the type-1 insulin-like growth factor receptor. J Cell Physiol, 156, 453–461 (1993).

    Article  PubMed  CAS  Google Scholar 

  135. E.N. Olson, Signal transduction pathways that regulate skeletal muscle gene expression. Mol Endocrinol, 7, 1369–1378 (1993).

    Article  PubMed  CAS  Google Scholar 

  136. A. Rawls, J.H. Morris, M. Rudnicki, T. Braun, H.H. Arnold, W.H. Klein and E.N. Olson, Myogenin’s functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis. Dev Biol, 172, 37–50 (1995).

    Article  PubMed  CAS  Google Scholar 

  137. D.A Fryburg, L.A. Jahn, S.A. Hill, D.M. Oliveras and E.J. Barrett, Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. J Clin Invest, 96, 1722–1729 (1995).

    PubMed  CAS  Google Scholar 

  138. R. Jacob, E. Barrett, G. Plewe, K.D. Fagin and R.S. Sherwin, Acute effects of insulin-like growth factor I on glucose and amino acid metabolism in the awake fasted rat. Comparison with insulin. J Clin Invest, 83, 1717–1723 (1989).

    PubMed  CAS  Google Scholar 

  139. M. Federici, L. Zucaro, O. Porzio, R. Massoud, P. Borboni, D. Lauro and G. Sesti Increased expression of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of noninsulin-dependent diabetes mellitus subjects. J Clin Invest, 98, 2887–2893 (1996).

    PubMed  CAS  Google Scholar 

  140. M. Federici, O. Porzio, D. Lauro, P. Borboni, B. Giovannone, L. Zucaro, M.L. Hribal and G. Sesti, Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity. J Clin Endocrinol Metab, 83, 2911–2915 (1998).

    Article  PubMed  CAS  Google Scholar 

  141. A.M. Fernandez, J.K. Kim, S. Yakar, J. Dupont, C. Hernandez-Sanchez, A.L. Castle, J. Filmore, G.I. Shulman and D. LeRoith, Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev, 15, 1926–1934 (2001).

    Article  PubMed  CAS  Google Scholar 

  142. L.R. MacGorman, R.A. Rizza and J.E. Gerich, Physiological concentrations of growth hormone exert insulin-like and insulin antagonistic effects on both hepatic and extrahepatic tissues in man. J Clin Endocrinol Metab, 53, 556–559 (1981).

    PubMed  CAS  Google Scholar 

  143. R.G. Rosenfeld, D.M. Wilson, L.A. Dollar, A. Bennett and R.L. Hintz, Both human pituitary growth hormone and recombinant DNA-derived human growth hormone cause insulin resistance at a postreceptor site. J Clin Endocrinol Metab, 54, 1033–1038 (1982).

    Article  PubMed  CAS  Google Scholar 

  144. Z.Q. Cheng, S. Adi, N.Y. Wu, D. Hsiao, E.J. Woo, E.H. Filvaroff, T.A. Gustafson and S.M. Rosenthal, Functional inactivation of the IGF-I receptor delays differentiation of skeletal muscle cells. J Endocrinol, 167, 175–182 (2000).

    Article  PubMed  CAS  Google Scholar 

  145. S.A. Coolican, D.S. Samuel, D.Z. Ewton, F.J. McWade and J.R. Florini, The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem, 272, 6653–6662 (1997).

    Article  PubMed  CAS  Google Scholar 

  146. Y. Tamir and E. Bengal, Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiation. J Biol Chem, 275, 34424–34432 (2000).

    Article  PubMed  CAS  Google Scholar 

  147. N.C Jones, Y.V. Fedorov, R.S. Rosenthal and B.B. Olwin, ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol, 186, 104–115 (2001).

    Article  PubMed  CAS  Google Scholar 

  148. J.R. Singleton and E.L. Feldman, Insulin-like growth factor-I in muscle metabolism and myotherapies. Neurobiol Dis, 8, 541–554 (2001).

    Article  PubMed  CAS  Google Scholar 

  149. M.A. Lawlor and P. Rotwein, Coordinate control of muscle cell survival by distinct insulin-like growth factor activated signaling pathways. J Cell Biol, 151, 1131–1140 (2000).

    Article  PubMed  CAS  Google Scholar 

  150. M.A. Lawlor and P. Rotwein, Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21. Mol Cell Biol, 20, 8983–8995 (2000).

    Article  PubMed  CAS  Google Scholar 

  151. M.A. Lawlor, X. Feng, D.R. Everding, K. Sieger, C.E. Stewart and P. Rotwein, Dual control of muscle cell survival by distinct growth factor-regulated signaling pathways. Mol Cell Biol, 20, 3256–3265 (2000).

    Article  PubMed  CAS  Google Scholar 

  152. E. Gredinger, A.N. Gerber, Y. Tamir, S.J. Tapscott and E. Bengal, Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J Biol Chem, 273, 10436–10444 (1998).

    Article  PubMed  CAS  Google Scholar 

  153. Z. Wu, P.J. Woodring, K.S. Bhakta, K. Tamura, F. Wen, J.R. Feramisco, M. Karin, J.Y. Wang and P.L. Puri, p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol 20, 3951–3964 (2000).

    Article  PubMed  CAS  Google Scholar 

  154. A. Zetser, E. Gredinger and E. Bengal, p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem, 274, 5193–5200 (1999).

    Article  PubMed  CAS  Google Scholar 

  155. T.P. Garrington and G.L. Johnson, Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol, 11, 211–218 (1999).

    Article  PubMed  CAS  Google Scholar 

  156. D.S. Samuel, D.Z. Ewton, S.A. Coolican, T.D. Petley, F.J. McWade and J.R. Florini Raf-1 activation stimulates proliferation and inhibits IGF-stimulated differentiation in L6A1 myoblasts. Horm Metab Res, 31, 55–64 (1999).

    Article  PubMed  CAS  Google Scholar 

  157. M.R. Calera and P.F. Pilch, Induction of Akt-2 correlates with differentiation in Sol8 muscle cells. Biochem Biophys Res Commun, 251, 835–841 (1998).

    Article  PubMed  CAS  Google Scholar 

  158. S.C. Bodine, T.N. Stitt, M. Gonzalez, W.O. Kline, G.L. Stover, R. Bauerlein, E. Zlotchenko, A. Scrimgeour, J.C. Lawrence, D.J. Glass and G.D. Yancopoulos, Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol, 3, 1014–1019 (2001).

    Article  PubMed  CAS  Google Scholar 

  159. C. Rommel, B.A. Clarke, S. Zimmermann, L. Nunez, R. Rossman, K. Reid, K. Moelling, G.D. Yancopoulos and D.J. Glass, Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science, 286, 1738–1741 (1999).

    Article  PubMed  CAS  Google Scholar 

  160. S. Zimmermann and K. Moelling, Phosphorylation and regulation of Raf by Akt (protein kinase B). Science, 286, 1741–1744 (1999).

    Article  PubMed  CAS  Google Scholar 

  161. S. Yakar and C.J. Rosen, From mouse to man: redefining the role of insulin-like growth factor-I in the acquisition of bone mass. Exp Biol Med (Maywood), 228, 245–252 (2003).

    CAS  Google Scholar 

  162. J. Wang, J. Zhou, C.M. Cheng, J.J. Kopchick and C.A. Bondy, Evidence supporting dual, IGF-I-independent and IGF-I-dependent, roles for GH in promoting longitudinal bone growth. J Endocrinol, 180, 247–255 (2004).

    Article  PubMed  CAS  Google Scholar 

  163. M.A. Bach, E. Chin and C.A. Bondy, The effects of subcutaneous insulin-like growth factor-I infusion in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab, 79, 1040–1045 (1994).

    Article  PubMed  CAS  Google Scholar 

  164. K. Cusi and R. DeFronzo, Recombinant human insulin-like growth factor I treatment for 1 week improves metabolic control in type 2 diabetes by ameliorating hepatic and muscle insulin resistance. J Clin Endocrinol Metab, 85, 3077–3084 (2000).

    Article  PubMed  CAS  Google Scholar 

  165. T.P. Ciaraldi, L. Carter, N. Rehman, P. Mohideen, S. Mudaliar and R.R. Henry, Insulin and insulin-like growth factor-1 action on human skeletal muscle: preferential effects of insulin-like growth factor-1 in type 2 diabetic subjects. Metabolism, 51, 1171–1179 (2002).

    Article  PubMed  CAS  Google Scholar 

  166. T.D. Cheetham, J.M. Holly, K. Clayton, S. Cwyfan-Hughes and D.B. Dunger, The effects of repeated daily recombinant human insulin-like growth factor I administration in adolescents with type 1 diabetes. Diabet Med, 12, 885–892 (1995).

    Article  PubMed  CAS  Google Scholar 

  167. A.C. Moses, L.A. Morrow, M. O’Brien, D.E. Moller and J.S. Flier, Insulin-like growth factor I (rhIGF-I) as a therapeutic agent for hyperinsulinemic insulin-resistant diabetes mellitus. Diabetes Res Clin Pract, 28Suppl, S185–194 (1995).

    Article  PubMed  CAS  Google Scholar 

  168. A.C. Moses, S.C. Young, L.A. Morrow, M. O’Brien and D.R. Clemmons, Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes. Diabetes, 45, 91–100 (1996).

    PubMed  CAS  Google Scholar 

  169. D.S. Schalch, N.J. Turman, V.S. Marcsisin, M. Heffernan and H.P. Guler, Short-term effects of recombinant human insulin-like growth factor I on metabolic control of patients with type II diabetes mellitus. J Clin Endocrinol Metab, 77, 1563–1568 (1993).

    Article  PubMed  CAS  Google Scholar 

  170. P.D. Zenobi, S.E. Jaeggi-Groisman, W.F. Riesen, M.E. Roder and E.R. Froesch, Insulin-like growth factor-I improves glucose and lipid metabolism in type 2 diabetes mellitus. J Clin Invest, 90, 2234–2241 (1992).

    Article  PubMed  CAS  Google Scholar 

  171. P.Y. Chang, L.J. Goodyear, H. Benecke, J.S. Markuns and D.E. Moller, Impaired insulin signaling in skeletal muscles from transgenic mice expressing kinase-deficient insulin receptors. J Biol Chem, 270, 12593–12600 (1995).

    Article  PubMed  CAS  Google Scholar 

  172. J.C. Bruning, M.D. Michael, J.N. Winnay, T. Hayashi, D. Horsch, D. Accili, L.J. Goodyear and C.R. Kahn, A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell, 2, 559–69 (1998).

    Article  PubMed  CAS  Google Scholar 

  173. D. Le Roith, H. Kim, A.M. Fernandez and D. Accili, Inactivation of muscle insulin and IGF-I receptors and insulin responsiveness. Curr Opin Clin Nutr Metab Care, 5, 371–375 (2002).

    Article  PubMed  Google Scholar 

  174. A. Zisman, O.D. Peroni, E.D. Abel, M.D. Michael, F. Mauvais-Jarvis, B.B. Lowell, J.F. Wojtaszewski, M.F. Hirshman, A. Virkamaki, L.J. Goodyear, C.R. Kahn and B.B. Kahn, Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med, 6, 924–928 (2000).

    Article  PubMed  CAS  Google Scholar 

  175. P. Seale and M.A. Rudnicki, A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol, 218, 115–124 (2000).

    Article  PubMed  CAS  Google Scholar 

  176. G.R. Adams, F. Haddad and K.M. Baldwin, Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol, 87, 1705–1712 (1999).

    PubMed  CAS  Google Scholar 

  177. G.W. Glazner and D.N. Ishii, Insulin-like growth factor gene expression in rat muscle during reinnervation. Muscle Nerve, 18, 1433–1442 (1995).

    Article  PubMed  CAS  Google Scholar 

  178. H.L. Keller, B. St Pierre Schneider, L.A. Eppihimer and J.G. Cannon, Association of IGF-I and IGF-II with myofiber regeneration in vivo. Muscle Nerve, 22, 347–354 (1999).

    Article  PubMed  CAS  Google Scholar 

  179. G.R. Adams and S.A. McCue, Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol, 84, 1716–1722 (1998).

    PubMed  CAS  Google Scholar 

  180. G.S. Lynch, S.A. Cuffe, D.R. Plant and P. Gregorevic, IGF-I treatment improves the functional properties of fast-and slow-twitch skeletal muscles from dystrophic mice. Neuromuscul Disord, 11, 260–268 (2001).

    Article  PubMed  CAS  Google Scholar 

  181. A. Musaro, K.J. McCullagh, F.J. Naya, E.N. Olson and N. Rosenthal, IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATcl. Nature, 400, 581–585 (1999).

    Article  PubMed  CAS  Google Scholar 

  182. C. Semsarian, M.J. Wu, Y.K. Ju, T. Marciniec, T. Yeoh, D.G. Allen, R.P. Harvey and R.M. Graham, Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature, 400, 576–581 (1999).

    Article  PubMed  CAS  Google Scholar 

  183. A. Musaro, C. Giacinti, G. Borsellino, G. Dobrowolny, L. Pelosi, L. Cairns, S. Ottolenghi, G. Cossu, G. Bernardi, L. Battistini, M. Molinaro and N. Rosenthal, Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci USA, 101, 1206–1210 (2004).

    Article  PubMed  CAS  Google Scholar 

  184. D. Dardevet, C. Sornet, D. Attaix, V.E. Baracos and J. Grizard, Insulin-like growth factor-1 and insulin resistance in skeletal muscles of adult and old rats. Endocrinology, 134, 1475–1484 (1994).

    Article  PubMed  CAS  Google Scholar 

  185. P.E. Willis, S. Chadan, V. Baracos and W.S. Parkhouse, Acute exercise attenuates age-associated resistance to insulin-like growth factor I. Am J Physiol, 272, E397–404 (1997).

    PubMed  CAS  Google Scholar 

  186. P.E. Willis, S.G. Chadan, V. Baracos and W.S. Parkhouse, Restoration of insulin-like growth factor I action in skeletal muscle of old mice. Am J Physiol, 275, E525–530 (1998).

    PubMed  CAS  Google Scholar 

  187. K.E. Yarasheski, J.J. Zachweija, T.J. Angelopoulos and D.M. Bier, Short-term growth hormone treatment does not increase muscle protein synthesis in experienced weight lifters. J Appl Physiol, 74, 3073–3076 (1993).

    PubMed  CAS  Google Scholar 

  188. D.R. Taaffe, I.H. Jin, T.H. Vu, A.R. Hoffman and R. Marcus, Lack of effect of recombinant human growth hormone (GH) on muscle morphology and GH-insulin-like growth factor expression in resistance-trained elderly men. J Clin Endocrinol Metab, 81, 421–425 (1996).

    Article  PubMed  CAS  Google Scholar 

  189. D.P. Kiel, J. Puhl, C.J. Rosen, K. Berg, J.B. Murphy and D.B. MacLean, Lack of an association between insulin-like growth factor-I and body composition, muscle strength, physical performance or self-reported mobility among older persons with functional limitations. J Am Geriatr Soc, 46, 822–828 (1998).

    PubMed  CAS  Google Scholar 

  190. D.L. Russell-Jones, A.M. Umpleby, T.R. Hennessy, S.B. Bowes, F. Shojaee-Moradie, K.D. Hopkins, N.C. Jackson, J.M. Kelly, R.H. Jones and P.H. Sonksen, Use of a leucine clamp to demonstrate that IGF-I actively stimulates protein synthesis in normal humans. Am J Physiol, 267, E591–598 (1994).

    PubMed  CAS  Google Scholar 

  191. M. Renganathan, M.L. Messi and O. Delbono, Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors. J Biol Chem, 273, 28845–28851 (1998).

    Article  PubMed  CAS  Google Scholar 

  192. D.R. Clemmons, A.C. Moses, M.J. McKay, A. Sommer, D.M. Rosen and J. Ruckle, The combination of insulin-like growth factor I and insulin-like growth factor-binding protein-3 reduces insulin requirements in insulin-dependent type 1 diabetes: evidence for in vivo biological activity. J Clin Endocrinol Metab, 85, 1518–1524 (2000).

    Article  PubMed  CAS  Google Scholar 

  193. C.H. Fang, B.G. Li, J.J. Wang, J.E. Fischer and P.O. Hasselgren, Treatment of burned rats with insulin-like growth factor I inhibits the catabolic response in skeletal muscle. Am J Physiol, 275, R1091–1098 (1998).

    PubMed  CAS  Google Scholar 

  194. F. Kanda, K. Takatani, S. Okuda, T. Matsushita and K. Chihara, Preventive effects of insulinlike growth factor-I on steroid-induced muscle atrophy. Muscle Nerve, 22, 213–217 (1999).

    Article  PubMed  CAS  Google Scholar 

  195. M.M. Zdanowicz, J. Moyse, M.A. Wingertzahn, M. O’Connor, S. Teichberg and A.E. Slonim Effect of insulin-like growth factor I in murine muscular dystrophy. Endocrinology, 136, 4880–4886 (1995).

    Article  PubMed  CAS  Google Scholar 

  196. E.R. Barton, L. Morris, A. Musaro, N. Rosenthal and H.L. Sweeney, Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol, 157, 137–148 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Fernandez, A.M., LeRoith, D. (2005). Skeletal Muscle. In: Varela-Nieto, I., Chowen, J.A. (eds) The Growth Hormone/Insulin-Like Growth Factor Axis During Development. Advances in Experimental Medicine and Biology, vol 567. Springer, Boston, MA. https://doi.org/10.1007/0-387-26274-1_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-26274-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25119-6

  • Online ISBN: 978-0-387-26274-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics