Skip to main content

Linear Control in Power Systems

  • Chapter
Robust Control in Power Systems

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 2725 Accesses

3.3 Summary

We have provided an overview of the various analytical tools and techniques of linear system theory that is used in power system control. These have been demonstrated in an example power system where these tools are applied. This was an attempt to provide a better understanding of these tools from the view point of power system engineers. Recently defined terms and definitions of stability, performance and robustness have been described. The requirements and specifications in power system control design have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1998). Matlab Users Guide. The Math Works Inc., USA.

    Google Scholar 

  2. Byerley, R.T., Bennon, R.J., and Sherman, D.E. (1982). Eigenvalue analysis of synchronising power flow oscillations in large electric power systems. IEEE Transactions on Power Apparatus and Systems, PAS-101:235–243.

    Google Scholar 

  3. Chaniotis, D. and Pai, M.A. (2005). Model reduction in power systems using krylov subspace methods. IEEE Transactions on Power Systems, accepted for publication.

    Google Scholar 

  4. Chow, J.H. (1983). Time-scale Modeling of Dynamic Networks with Applications to Power Systems. Springer-Verlag Publishers, New York.

    Google Scholar 

  5. EL-5798, EPRI Report. The Small Signal Stability Programme Package. EPRI.

    Google Scholar 

  6. Fernando, K.V. and Nicholson, H. (1982). Singular perturbational model reduction for balanced systems. IEEE Transactions on Automatic Control, 27(2):466–468.

    Article  MATH  Google Scholar 

  7. Fouad, A.A. and Vittal, V. (1992). Power System Transient Stability Analysis Using the Transient Energy Function Method. Prentice-Hall, USA.

    Google Scholar 

  8. Glover, K. (1984). All optimal hankel norm approximations of linear multivariable systems and their l∞ error bounds. International journal of control, 39(6): 1115–1193.

    MATH  MathSciNet  Google Scholar 

  9. Jaimoukha, I.M. and Kasenally, E.M. (1997). Implicitly restarted krylov subspace methods for stable partial realizations. SIAM J. Matrix Analysis and Applications, 18(3):633–652.

    Article  MATH  MathSciNet  Google Scholar 

  10. Kundur, P. (1994). Power System Stability and Control. McGraw Hill, USA.

    Google Scholar 

  11. Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C, Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C, and Vittal, T. Van Cutsemand V. (2004). Definition and classification of power system stability ieee/cigre joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 19(3):1387–1401.

    Article  Google Scholar 

  12. Kundur, P, Rogers, G.J, Wong, D.Y., Wang, L., and Lauby, M.G. (1990). A comprehensive computer program for small signal stability analysis of power systems. IEEE Transactions on Power Systems, 5(4):1076–1083.

    Article  Google Scholar 

  13. Larsen, E.V., Sanchez-Gasca, J.J., and Chow, J.H. (1995). Concepts for design of facts controllers to damp power swings. Power Systems, IEEE Transactions on, 10(2):948–956.

    Article  Google Scholar 

  14. Laub, A.J., Heath, M.T., Page, C.C., and Ward, R.C. (1987). Computation of balancing transformations and other applications of simultaneous diagoninalization algorithms. IEEE Transactions on Automatic Control, 32(2):115–122.

    Article  MATH  Google Scholar 

  15. Martins, N. (2000). Impact of interactions among power system controls. CIGRE Special Publication 38.02.16, Technical Brochure 166.

    Google Scholar 

  16. Martins, N. and Lima, L.T.G. (1990). Determination of suitable locations for power system stabilizers and static var compensators for damping electromechanical oscillations in large power systems. IEEE Transactions on Power Systems, 5(4): 1455–1469.

    Article  Google Scholar 

  17. Moore, B.C. (1981). Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Transactions on Automatic Control, 26(1): 17–32.

    Article  MATH  Google Scholar 

  18. Packard, A., Balas, G.J., Safonov, M., and R., Chiang (2002). Robust Control Toolbox for use with Matlab. The Math Works Inc., USA.

    Google Scholar 

  19. Pagola, F.L., Perez-Arriaga, I.J., and Verghese, G.C. (1989). On sensitivities, residues and participations: applications to oscillatory stability analysis and control. Power Systems, IEEE Transactions on, 4(1):278–285.

    Article  Google Scholar 

  20. Pai, M.A. (1989). Energy Function Analysis for Power System Stability. Kluwer Academic Publishers, USA.

    Google Scholar 

  21. Pal, B.C. (1999). Robust Damping Control of Inter-area Oscillations in Power System with Super-conducting Magnetic Energy Storage Devices. PhD thesis, Imperial College of Science Technology and Medicine, Department of Electrical and Electronic Engineering.

    Google Scholar 

  22. Pavella, M. and Murthy, P.G. (1994). Transient Stability of Power Systems: Theory and Practice. John Willey and Sons, Chichester.

    Google Scholar 

  23. Rouco, L. and Pagola, F.L. (1997). An eigenvalue sensitivity approach to location and controller design of controllable series capacitors for damping power system oscillations. IEEE Transactions on Power Systems, 12(4): 1660–1666.

    Article  Google Scholar 

  24. Safonov, M.G. and Chiang, R.Y. (1989). A schur method for balanced-truncation model reduction. Automatic Control, IEEE Transactions on, 34(7):729–733.

    Article  MATH  MathSciNet  Google Scholar 

  25. Sauer. P.W. and Pai, M.A. (1998). Power System Dynamics and Stability. Prentice Hall, USA.

    Google Scholar 

  26. Skogestad, S. and Postlethwaite, I. (2001). Multivariable Feedback Control. John Wiley and Sons, UK.

    Google Scholar 

  27. Smed, T. (1993). Feasible eigenvalue sensitivity for large power systems. IEEE Transactions on Power Systems, 8(2):555–563.

    Article  Google Scholar 

  28. Verghese, G.C., Perez-Arriaga, I.J., and Scheweppe, F.C. (1982). Selective modal analysis with applications to electric power systems, part i and part ii. IEEE Transactions on Power Apparatus and Systems, PAS-101:3117–3134.

    Google Scholar 

  29. Wang, H.F. (1999). Selection of robust installing locations and feedback signals of FACTS-based stabilizers in multi-machine power systems. IEEE Transactions on Power Systems, 14(2):569–574.

    Article  Google Scholar 

  30. Wang, L. and Semlyen, A. (1990). Application of sparse eigenvalues techniques to the small signal stability analysis of large power systems. IEEE Transactions on Power Systems, 5(2):635–642.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Linear Control in Power Systems. In: Robust Control in Power Systems. Power Electronics and Power Systems. Springer, Boston, MA. https://doi.org/10.1007/0-387-25950-3_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-25950-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25949-9

  • Online ISBN: 978-0-387-25950-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics