Skip to main content

Techniques in Electrostatics Analysis of MEMS and Their Applications

  • Chapter
Book cover MEMS/NEMS

Abstract

In the computational arena, researchers strive continuously to improve numerical simulations, both in terms of accuracy and efficiency. The needs for better performance in numerical simulations are forever in demands, as their roles in the design and development of new products become more important. This demand is further promoted by the rapid increases in the size of the problems people are solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Senturia, S.D., Aluru, N., and White, J., Simulating the Behavior of MEMS Devices: Computational Methods and Needs, IEEE Computational Science and Engineering, 1997;4(1): 30–43.

    Article  Google Scholar 

  2. Senturia, S.D., CAD Challenges for Microsensors, Microactuators, and Microsystems, Proceeding of the IEEE, Aug 1998;86(8):1611–1626.

    Article  Google Scholar 

  3. Senturia, S.D., Harris, R.M., Johnson, B.P., Kim, S., Nabors, K., Shulman, M.A., and White, J., A Computer-Aided Design System for Microelectromechanical System (MEMCAD), Journal of Microelectromechanical Systems, 1992;1(1):3–13.

    Article  Google Scholar 

  4. Maseeh, F., IntelliCAD: The CAD for MEMS, Proceedings of Western Electronic Show and Convection 1995 (WESCON’ 95), pp. 320–324.

    Google Scholar 

  5. Funk, J.M., Korvink, J.G., Buhler, J., Bachtold, M., and Baltes, H., SOLIDIS: A Tool for Microactuator Simulation in 3D, Journal of Microelectromechanical Systems, 1997;6(1):70–82.

    Article  CAS  Google Scholar 

  6. Gilbert, J.R., Legtenberg, R., and Senturia, S.D., 3D Coupled Electromechanics for MEMS: Applications of Cosolve-EM, IEEE Proceedings of Micro Electro Mechanical Systems 1995 (MEMS’ 95), pp. 122–127.

    Google Scholar 

  7. Aluru, N.R. and White, J., An Efficient Numerical Technique for Electromechanical Simulation of Complicated Microelectromechanical Structures, Sensors and Actuators A, 1997;58:1–11.

    Article  Google Scholar 

  8. Aluru, N.R. and White, J., A Multilevel Newton Method for Mixed-Energy Domain Simulation of MEMS, Journal of Microelectromechanical Systems, 1999;8(3):299–307.

    Article  Google Scholar 

  9. Jia, Z.H. and Shippy, D.J., On the Computation of Two-Dimensional Stress Intensity Using the Boundary Element Method, International Journal for Numerical Methods in Engineering, 1988;26:2739–2753.

    Article  Google Scholar 

  10. Jia, Z.H. and Shippy, D.J., Three-dimensional Crack Analysis Using Singular Boundary Elements, International Journal for Numerical Methods in Engineering, 1989;28:2257–2273.

    Article  Google Scholar 

  11. Aiza, M.P., Saez, A., and Dominguez, J., A Singular Element for Three-Dimensional Fracture Mechanics Analysis, Engineering Analysis with Boundary Elements, 1997;20:275–285.

    Article  Google Scholar 

  12. Wigley, N.M., An Efficient Method for Subtracting off Singularities at Corners for Laplace’s Equation, Journal of Computational Physics, 1988;78:369–377.

    Article  Google Scholar 

  13. Georgiou, G.C., Olson, L.G., and Smyrlis, Y.S., A Singular Function Boundary Integral Method for Laplace Equation, Communications in Numerical Methods in Engineering, 1996;12:127–134.

    Article  Google Scholar 

  14. Igarashi, H., Mizuyama, Y., and Homna, T., A Boundary Element Analysis of Transmission-Line Parameters Using Singular Elements, IEEE Transactions on Magnetics, 1996;32(3):686–689.

    Article  Google Scholar 

  15. Igarashi, H. and Honma, T., A Boundary Element Method for Potential Fields with Corner Singularities, Applied Mathematical Modelling, 1996;20:847–852.

    Article  Google Scholar 

  16. Saad, Y. and Schultz, M.H., GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific Statistical and Computing, 1986;7(3):856–869.

    Article  Google Scholar 

  17. Greengard, L. and Rokhlin, V., A Fast Algorithm for Particle Simulations, Journal of Computational Physics, 1987;73:325–348.

    Article  Google Scholar 

  18. Greengard, L. and Rokhlin, V., A New Version of the Fast multipole Method for the Laplace Equation in Three Dimensions, Acta Numerica, 1997;6:229–269.

    Article  Google Scholar 

  19. Nabors, K. and White, J., Fastcap: A Multipole Accelerated 3-D Capacitance Extraction Program, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1991;11:1447–1459.

    Article  Google Scholar 

  20. Nabors, K., Korsmeyer, F.T., Leighton, F.T., and White, J., Preconditioned, Adaptive, Multipole-Accelerated Iterative Methods for Three-Dimensional First-Kind Integral Equations of Potential Theory, SIAM Journal on Scientific Statistical and Computing, 1994;15:713–735.

    Article  Google Scholar 

  21. Phillips, J.R. and White, J., A Precorrected-FFT Method for Electrostatic Analysis of Complicated 3-D Structures, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1997;16:1059–1072.

    Article  Google Scholar 

  22. Ong, E.T., Lim, K.M., Lee, K.H., and Lee, H.P., A Fast Algorithm for Three-Dimensional Potential Fields Calculation: Fast Fourier Transform on Multipoles (FFTM), Journal of Computational Physics, 2003;192:244–261.

    Article  Google Scholar 

  23. Ong, E.T., Lee, H.P., and Lim, K.M., A Parallel Fast Fourier Transform on Multipoles (FFTM) Algorithm for Electrostatic Analysis of Three-Dimensional Structures, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2004;23:1063–1072.

    Article  Google Scholar 

  24. Brigham, E.O., The Fast Fourier Transform and its Applications. Prentice-Hall, Englewood Cliffs, 1988.

    Google Scholar 

  25. Lesnic, D., Elliott, L., and Ingham, D.B., Treatment of Singularities in Exterior Fluid Domains with Corners Using the Boundary Element Method, Computers Fluids, 1994;23:817–827.

    Article  Google Scholar 

  26. Charafi, A., Neves, A.C., and Wrobel, L.C., h-Hierarchical Adaptive Boundary Element Method Using Local Reanalysis, International Journal for Numerical Methods in Engineering, 1995;38:2185–2207.

    Article  Google Scholar 

  27. Alarcon, E. and Reverter, A., p-Adaptive Boundary Elements, International Journal for Numerical Methods in Engineering, 1987;23:801–829.

    Article  Google Scholar 

  28. Sun, W. and Zamani, N.G., Adaptive Mesh Redistribution for the Boundary Element in Elastostatics, Computers and Structures, 1990;36:1081–1088.

    Article  Google Scholar 

  29. Rank, E., Adaptive h-, p and hp- Versions for Boundary Integral Element Methods, International Journal for Numerical Methods in Engineering, 1989;28:1335–1349.

    Article  Google Scholar 

  30. Sun, W. and Zamani, N.G., Adaptive Mesh Refinement/Redistribution for the Equations of Linear Elasticity, Boundary Element Formulation, Computers and Structures, 1992;44:627–637.

    Article  Google Scholar 

  31. Kita, E. and N. Kamiya. Recent Studies on Adaptive Boundary Element Methods, Advances in Engineering Software, 1994;19:21–32.

    Article  Google Scholar 

  32. Abdi, R.El. and Valentin, G., Isoparametric Elements for a Crack Normal to the Interface between Two Bonded Layers, Computers & Structures, 1989;33:241–248.

    Article  Google Scholar 

  33. Nurse, A.D., New Superelements for Singular Derivative Problems of Arbitrary Order, International Journal for Numerical Methods in Engineering, 2001;50:135–146.

    Article  Google Scholar 

  34. Qian, J. and Hasebe, N., On the Technique of Shifting Side-Nodes in Isoparametric Elements to Impose Arbitrary Singularity, Computers & Structures, 1998;66:841–846.

    Article  Google Scholar 

  35. Su, Y., Ong, E.T., and Lee, K.H., Automatic Classification of Singular Elements for the Electrostatic Analysis of Micro-Electrostatic Systems, Journal of Micromechanics and Microengineering, 2002;12:307–315.

    Article  Google Scholar 

  36. Beagles, A.E. and Whiteman, J.R., General Conical Singularities in Three-Dimensional Poisson Problems, Mathematical Methods in the Applied Science, 1989;11:215–235.

    Article  Google Scholar 

  37. Fichera, G., Asymptotic Behavior of the Electric Field and Density of the Electric Charge in the Neighourhood of Singular Points of a Conducting Surface, Russian Mathematical Surveys, 1975;30:107–127.

    Article  Google Scholar 

  38. Bazant, Z.P., Three-Dimensional Harmonic Functions near Termination or Intersection of Gradient Singularity Lines: A General Numerical Method, International of Journal of Engineering Science, 1974;12:221–243.

    Article  Google Scholar 

  39. Stroud, A.H. and Secrest, D., Gaussian Quadrature Formulas, Englewood Cliffs, NJ: Prentice-Hall, New York.

    Google Scholar 

  40. Lachat, J.C. and Watson, J.O., Effective Numerical Treatment of Boundary Integral Equations: A Formulation for Three-Dimensional Elastostatics, International Journal for Numerical Methods in Engineering, 1976;10:991–1005.

    Article  Google Scholar 

  41. Tausch, J. and White, J., Mesh Refinement Strategies for Capacitance Extraction based on Residual Errors, IEEE 5th Topical Meeting on Electrical Performance of Electronic Packaging 96, 1996, pp. 236–237.

    Google Scholar 

  42. Tang, W.C., Lim, M.G., and Howe, R.T., Electrostatic Comb-Drive Levitation and Control Method, Journal of Microelectromechanical Systems, 1992;1:170–178.

    Article  Google Scholar 

  43. Brebbia, C.A. and Dominguez, J., Boundary Elements: An Introductory Course. Southhampton, Boston: Computational Mechanics Publications; New York: Co-published with McGraw-Hill, 1992.

    Google Scholar 

  44. Bonnet, Marc, Boundary Integral Equation Methods for Solids and Fluids. Chichester, West Sussex: John Wiley & Sons, 1995.

    Google Scholar 

  45. Cheng, H., Greengard, L., and Rokhlin, V., A Fast Adaptive Multipole Algorithm in Three Dimensions, Journal of Compuational. Phyics, 1999;155:468–498.

    Article  CAS  Google Scholar 

  46. Elliott, W.D. and Board, J.A. Jr., Fast Fourier Transform Accelerated Fast Multipole Algorithm, SIAM Journal on Scientific Computing, 1996;17:398–415.

    Article  Google Scholar 

  47. Appel, A.W., An Efficient Program for Many-Body Simulations, SIAM Journal Scientific and Statistical Computing, 1985;6:85–103.

    Article  Google Scholar 

  48. Barnes, J. and Hut, P., A Hierarchical O(Nlog N) Force Calculation Algorithm, Nature, 1986;324:446–449.

    Article  Google Scholar 

  49. Hockney, R.W. and Eastwood, J.W., Computer Simulation Using Particles. New York: Adam Hilger, 1988.

    Google Scholar 

  50. Luty, B.A. and van Gunsteren, W.F., Calculating Electrostatic Interactions Using Particle-Particle-Particle-Mesh Method with Nonperiodid Long-Range Interactions, Journal of Chemical Physic, 1996;100:2581–2587.

    Article  CAS  Google Scholar 

  51. Beckers, J.V.L., Lowe, C.P., and De Leeuw, S.W., An Iterative PPPM Method for Simulating Coulombic Systems on Distributed Memory Parallel Computers, Molecular Simulation, 1998;20:369–383.

    Article  CAS  Google Scholar 

  52. Shimada, J., Kaneko, H., and Takada, T., Efficient Calculations of Coulomic Interactions in Biomolecular Simulations with Periodic Boundary Conditions, Journal of Computational Chemistry, 1993;14:867–878.

    Article  CAS  Google Scholar 

  53. Shimada, J., Kaneko, H., and Takada, T., Performance of Fast Multipole Methods for Calculating Electrostatic Interactions in Biomacromolecular Simulations, Journal of Computational Chemistry, 1994;15:28–43.

    Article  CAS  Google Scholar 

  54. Kapur, S. and Long, D.E., IES3: Efficient Electrostatic and Electromagnetic Simulation, IEEE Computational Science and Engineering, 1998;5:60–67.

    Article  Google Scholar 

  55. Spasojevic, M., Schenider, R., and Levin, P.L., On the Creation of Sparse Boundary Element Mattrices for Two-Dimensional Electrostatics Problems Using the Orthogonal Haar Wavelet, IEEE Transaction on Dielectric and Electric Insulation, 1997;4:249–258.

    Article  Google Scholar 

  56. Levin, P. L., Spasojevic, M., and Schenider, R., Creation of Sparse Boundary Element Matrices for 2-D and Axi-Symmetric Electrostatics Problems Using the Bi-Orthogonal Haar Wavelet, IEEE Transactions on Dielectric and Electric Insulation, 1998;5:469–484.

    Article  Google Scholar 

  57. Brandt, A. and Lubrecht, A.A., Multilevel Matrix Multiplication and Fast Solution of Integral Equations, Journal of Computational Physics, 1990;90:348–370.

    Article  Google Scholar 

  58. Brandt, A. and Venner, C.H., Multilevel Evaluation of Integral Transforms with Asymptotically Smooth Kernels, SIAM Journal on Scientific Computing, 1998;19:468–492.

    Article  Google Scholar 

  59. Abramovitz, M. and Stegun, I., Handbook of Mathematical Functions. Wasington, DC: Applied Mathematics Series, National Bureau of Standard, 1964.

    Google Scholar 

  60. Frigo, M. and Johnson, S.G., FFTW, C subroutines library for computing Discrete Fourier Transform (DFT). Freeware can be downloaded from http://www.fftw.org.

    Google Scholar 

  61. Greengard, L. and Gropp, W., A Parallel Version of the Fast Multipole Method, Computers and Mathematics with Applications, 1990;20:63–71.

    Article  Google Scholar 

  62. Board, J.A., Causey, J.W., Leathrum, J.F., Windemuth, A., and Schulten, K., Accelerated Molecular-Dynamics Simulation with the Parallel Fast Multipole Algorithm, Chemical Physics Letter, 1992;198:89–94.

    Article  Google Scholar 

  63. Gropp, W., Lusk, E., and Skjellum, A., Using MPI: Portable Parallel Programming with the Message-Passing Interface. Cambridge, MA: MIT Press, 1999.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ong, E.T., Lim, K.M., Lee, H.P. (2006). Techniques in Electrostatics Analysis of MEMS and Their Applications. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_8

Download citation

Publish with us

Policies and ethics