Skip to main content

Techniques in MEMS Microthermal Actuators and Their Applications

  • Chapter
MEMS/NEMS

Abstract

Micro machined transducers have been the focus of study for many groups over the past two decades and as such, a body of literature is dedicated to summarizing the field [57]. As the field has matured, a smaller group of micro transducers has been optimized to provide mechanical work into a micro system. Most notable to the authors are electrostatic, piezoelectric, electromagnetic, shape memory alloy, and thermal micro transducers. This introduction takes a brief look at these technologies and provides some metrics for evaluating a micro transducer technology, given some established requirements. The authors often find that for an application where the transducer is limited in size, powered electrically at limited voltage levels, confined to a limited micro fabrication process, and has relatively large desired mechanical output, the micro actuation technology of choice is electrothermal. These transducers convert electrical energy to mechanical work through localized Joule heating and thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, T. and Shono, K., Controlled Stepwise Motion in Polysilicon Microstructures, Journal of Microelectromechanical Systems, 1993;2(3):106–110.

    Article  CAS  Google Scholar 

  2. Arx, M.V., Paul, O., and Baltes, H., Process-dependent Thin-film Thermal Conductivities for Thermal CMOS MEMS, Journal of Microelectromechanical Systems, 2000;9(1):136–145.

    Article  Google Scholar 

  3. Atre, A. and Boedo, S., Effect of Thermophysical Property Variations on Surface Micromachined Polysilicon Beam Flexure Actuators, in Technical Proceedings of the 2004 Nanotechnology Conference and Trade Show, Boston, MA, NSTI, 2004, Vol. 2, pp. 263–266.

    Google Scholar 

  4. Bourouina, T., Lebrasseur, E., Reyne, G., Debray, A., Fujita, H., Ludwig, A., Quandt, E., Muro, H., Oki, T., and Asaoka, A., Integration of Two Degree-of-freedom Magnetostrictive Actuation and Piezoresistive Detection: Application of a Two-dimensional Optical Scanner, Journal of Microelectromechanical Systems, 2002;11(4):355–361.

    Article  Google Scholar 

  5. Brosnihan, T., Bustillo, J., Pisano, A., and Howe, R., Embedded Interconnect and Electrical Isolation for High-aspect-ratio, SOI Inertial Instruments, in Transducers’ 97, Chicago, IEEE, June 16–19, 1997, pp. 637–640.

    Google Scholar 

  6. Burns, D. and Bright, V., Design and Performance of a Double Hot Arm Polysilicon Thermal Actuator, in Proc. SPIE 3224, 1997, pp. 296–306.

    Google Scholar 

  7. Cao, A., Kim, J., Tsao, T., and Lin, L., A Bi-directional Electrothermal Electromagnetic Actuator, in MEMS2004 Technical Digest, Maastricht, Netherlands, IEEE, 2004, pp. 450–453.

    Google Scholar 

  8. Carlen, E. and Mastrangelo, C., Electrothermally Activated Paraffin Microactuators, Journal of Microelectromechanical Systems, 2002;11(3):165–174.

    Article  CAS  Google Scholar 

  9. Chang, C. and Chang, P. Innovative Micromachined Microwave Switch with very LowInsertion Loss, Sensors and Actuators A, 2000;79:71–75.

    Article  Google Scholar 

  10. Chen, K.-S., Materials Characterization and Structural Design of Ceramic Micro Turbomachinery, PhD thesis, Massachusetts Institute of Technology, 1999.

    Google Scholar 

  11. Chen, R., Kung, C., and Lee, G., Analysis of the Optimal Dimension on the Electrothermal Microactuator, J. Micromech. Microeng., 2002;12:291–263.

    Article  CAS  Google Scholar 

  12. Chen, R., Nguyen, H., and Wu, M., A High-speed Low-voltage Stress-induced Micromachined 2 × 2 Optical Switch, IEEE Photonics Technology Letters, 1999;11(11):1396–1398.

    Article  Google Scholar 

  13. Chen, W., Chu, C., Hsieh, J., and Fang, W., A Reliable Single-layer Out-of-plane Micromachined Thermal Actuator, Sensors and Actuators A, 2003;103:48–58.

    Article  Google Scholar 

  14. Chen, W.-C., Hsieh, J., and Fang, W., A Novel Single-layer Bi-directional Out-of-plane Electrothermal Microactuator, in MEMS2002, The 15th International Conference on Micro Electro Mechanical Systems, IEEE, 2002, pp. 693–697.

    Google Scholar 

  15. Chiou, J. and Lin, W., Variable Optical Attenuator Using a Thermal Actuator Array with Dual Shutters, Optics Communications, 2004;237:341–350.

    Article  CAS  Google Scholar 

  16. Chronis, N. and Lee, L., Polymer MEMS-based Microgripper for Single Cell Manipulation, in MEMS2004 Technical Digest, Maastricht, Netherlands, IEEE, 2004, pp. 17–20.

    Google Scholar 

  17. Chu, L. and Gianchandani, Y., A Micromachined 2d Positioner with Electrothermal Actuation and Subnanometer Capacitive Sensing, J. Micromech. Microeng., 2003;13:279–285.

    Article  Google Scholar 

  18. Chu, L., Hetrick, J., and Gianchandani, Y., High Amplification Compliant Microtransmissions for Rectilinear Electrothermal Actuators, Sensors and Actuators A, 2003;97–98:776–783.

    Google Scholar 

  19. Chu, W., Mehregany, M., and Mullen, R., Analysis of Tip Deflection and Force of a Bimetallic Cantilever Microactuator, J. Micromech. Microeng., 1993;3:4–7.

    Article  CAS  Google Scholar 

  20. Comtois, J.H. and Bright, V.M., Applications for Surface-micromachined Polysilicon Thermal Actuators and Arrays, Sensors and Actuators A, 1997;58:19–25.

    Article  Google Scholar 

  21. Zyvex Corporation. Zyvex Microgrippers, 2004.

    Google Scholar 

  22. Cowen, A., Dudley, B., Hill, E., Walters, M., Wood, R., Johnson, S., Wymands, H., and Hardy, B., Metal-MUMPs Design Handbook. MEMSCAP, 2002.

    Google Scholar 

  23. Finot, M. and Suresh, S., Small and Large Deformation of Thick and Thin-film Multi-layers: Effects of Layer Geometry, Plasticity and Compositional Gradients, Journal of the Mechanics and Physics of Solids, 1996;44(5):683–721.

    Article  CAS  Google Scholar 

  24. Fujita, H., Microactuators and Micromachines, Proceedings of the IEEE, 1998;86(8):1721–1732.

    Article  Google Scholar 

  25. Gall, K., Dunn, M., Zhang, Y., and Corff. B.A., Thermal Cycling Response of Layered Gold/Polysilicon MEMS Structures, Mechanics of Materials, 2004;36:45–55.

    Article  Google Scholar 

  26. Geisberger, A., Jungen, A., Sarkar, N., Ellis, M., and Skidmore, G., Modeling Electrothermal Plastic Deformation Self-assembly, in Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, San Francisco, CA, 2003, Vol. 1, pp. 482–485.

    Google Scholar 

  27. Geisberger, A., Sarkar, N., Ellis, M., and Skidmore, G., Electrothermal Properties and Modeling of Polysilicon Microthermal Actuators, Journal of Microelectromechanical Systems, 2003;12(4):513–523.

    Article  CAS  Google Scholar 

  28. Gianchandani, Y. and Najafi, K., Bent-beam Strain Sensors, Journal of Microelectromechanical Systems, 1996;5(1):52–58.

    Article  Google Scholar 

  29. Goldsmith, C., amd, T.-H.L., Powers, B., Wu, W.-R., and Norvell, B., Micromechanical Membrane Switches for Microwave Applications, in MTT-S International, IEEE, 1995, Vol. 1, pp. 91–94.

    Google Scholar 

  30. Grabhem, N., White, N., and Beeby, S., Thick-film Magnetostrictive Material for MEMS, Electronics Letters, 2000;36(4):332–334.

    Article  Google Scholar 

  31. Greitmann, G. and Buser, R., Tactile Microgripper for Automated Handling of Microparts, Sensors and Actuators A, 1996;53:410–415.

    Article  Google Scholar 

  32. Gridchin, V., Lubimsky, V., and Sarina, M., Piezoresistive Properties of Polysilicon Films, Sensors and Actuators A, 1995;49:67–72.

    Article  Google Scholar 

  33. Guckel, H., Klein, J., Cristenson, T., Skrobis, K., Laudon, M., and Lovell, E., Thermo-magnetic Metal flexure Actuators, in Tech. Dig. Solid-State Sen. Act. Workshop, Hilton Head, SC, 1992, pp. 73–75.

    Google Scholar 

  34. Harris, K. and King, A., Direct Observation of Diffusional Creep VIA TEM in Polycrystalline Thin Films of Gold, Acta Mater., 1998;46(17):6195–6203.

    Article  CAS  Google Scholar 

  35. Harsh, K., Su, B., Zhang, W., Bright, V., and Lee, Y., The Realization and Design Considerations of a Flip-chip Integrated MEMS Tunable Capacitor, Sensors and Actuators A, 2000;80:108–118.

    Article  Google Scholar 

  36. Henning, A., Fitch, J., Hopkins, D., Lilly, L., Faeth, R., Falsken, E., and Zdeblick, M., A Thermopneumatically Actuated Microvalve for Liquid Expansion and Proportional Control, in Solid-State Sensors and Actuators, TRANSDUCERS’ 97, IEEE, 1997, pp. 825–828.

    Google Scholar 

  37. Hickey, R., Kujath, M., and Hubbard, T., Heat Transfer Analysis and Optimization of Two-beam Microelectromechanical Thermal Actuators, Journal of Vacuum Science and Technology, A, 2002;20(3):971–974.

    Article  CAS  Google Scholar 

  38. Hickey, R., Sameoto, D., Hubbard, T., and Kujath, M., Time and Frequency Response of Two-arm Micromachined Thermal Actuators, J. Micromech. Microeng., 2003;13:40–46.

    Article  Google Scholar 

  39. Higuchi, T., Yamagata, Y., Furutani, K., and Kudoh, K., Precise Positioning Mechanism Utilizing Rapid Deformations of Piezoelectric Elements, in MEMS 1990, IEEE Micro Electro Mechanical Syst. Workshop, IEEE, 1990, pp. 222–226.

    Google Scholar 

  40. Hill, E. and Dhuler, V., Actuators Including Serpentine Arrangements of Alternating Actuating and Opposting Segments and Related Methods, US 6,327, 2001, 855.

    Google Scholar 

  41. Hisanaga, M., Koumura, T., and Hattori, T., Fabrication of 3-dimensionally Shaped si Diaphragm Dynamic Focusing Mirror, in MEMS 1993, International Conference on Micro Electro Mechanical Systems, IEEE, 1993, pp. 30–35.

    Google Scholar 

  42. Hou, M. and Chen, R., Effect ofWidth on the Stress-induced Bending of Micromachined Bilayer Cantilevers, J. Micromech. Microeng., 2003;13:141–148.

    Article  Google Scholar 

  43. Huang, Q.-A. and Lee, N.K.S., Analysis and Design of Polysilicon Thermal Flexure Actuator, J. Micromech. Microeng., 1999;9:64–70.

    Article  CAS  Google Scholar 

  44. Ikehara, T., Tanaki, M. Shimada, S., and Matsuda, H., Optically-driven Actuator Using Photo-induced Phasetransition Material, in MEMS 2001, International Conference on Micro Electro Mechanical Systems, IEEE, 2001, pp. 256–259.

    Google Scholar 

  45. Incropera, F.P. and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, Wiley and Sons Inc., New York, 1996.

    Google Scholar 

  46. Ishizuya, T., Suzuki, J., Ohuchi, Y., Konishi, H., Akagawa, K., and Suzuki, Y., New Concept and Fabrication of Surface Micro Machined Vertical Structure, in MEMS2004 Technical Digest, Maastricht, Netherlands, IEEE, 2004, pp. 229–232.

    Google Scholar 

  47. Jacobson, J., Goodwin-Johansson, S., Bobbio, S., Bartlett, C., and Yadon, L., Integrated Force Arrays: Theory and Modeling of Static Operation, Journal of Microelectromechanical Systems, 1995;4(3):139–150.

    Article  Google Scholar 

  48. Ji, J., Chaney, J., Kaviany, M., Bergstrom, P., and Wise, K., Microactuation Based on Thermally-driven Phase-change, in Solid-State Sensors and Actuators, TRANSDUCERS’ 91, IEEE, 1991, pp. 1037–1040.

    Google Scholar 

  49. Johnson, D., Vacuum-deposited TiNi Shape Memory Film: Characterization and Applications in Microdevices, J. Micromech. Microeng., 1991;1:34–41.

    Article  CAS  Google Scholar 

  50. Judy, J., Muller, R., and Zappe, H., Magnetic Microactuation of Polysilicon Flexure Structures, Journal of Microelectromechanical Systems, 1995;4(4):162–169.

    Article  Google Scholar 

  51. Kessel, P.V., Hornbeck, L., Meier, R., and Douglass, M., A Mems-based Projection Display, Proceedings of the IEEE, 1998;86(8):1687–1704.

    Article  Google Scholar 

  52. Kim, C., Lee, M., and Jun, C., Electrothermally Actuated Fabry-perot Tunable Filter with a High Tuning Efficiency, IEEE Photonics Technology Letters, 2004;16(8):1894–1896.

    Article  Google Scholar 

  53. Koester, D., Mahadevan, R., Hardy, B., and Markus, K., Mumps Design Handbook, Cronos Integrated Microsystems, Morrisville, NC., 2000.

    Google Scholar 

  54. Kolesar, E., Odom, W., Jayachadran, J., Ruff, M., Ko, S., Howard, J., Allen, P., Wilken, J., Boydston, N., Bosch, J., Wilks, R., and McAllister, J., Design and Performance of an Electrothermal MEMS Microengine Capable of Bi-directional Motion, Thin Solid Films, 2004;447–448:481–488.

    Article  CAS  Google Scholar 

  55. Kolesar, E., Ruff, M., Odom, W., Jayachadran, J., McAllister, J., Ko, S., Howard, J., Allen, P., Wilken, J., Boydston, N., Bosch, J., and Wilks, R., Single and Double-hot Arm Asymmetrical Polysilicon Surface Micromachined Electrothermal Microactuators Applied to Realize a Microengine, Thin Solid Films, 2002;420–421:530–538.

    Article  Google Scholar 

  56. Kotchetkov, D., Zou, J., Balandin, A.A., Florescu, D.I., and Pollak, F.H., Effects of Dislocations on Thermal Conductivity of GaN Layers, Applied Physics Letters, 2001;79(26):4316–4318.

    Article  CAS  Google Scholar 

  57. Kovacs, G.T.A., Micromachined Transducers Sourcebook, WCB/McGraw-Hill, New York, 1998.

    Google Scholar 

  58. Krulevitch, P., Lee, A., Ramsey, P., Trevino, J., Hamilton, J., and Northrup, A., Thin Film Shape Memory Alloy Microactuators, Journal of Microelectromechanical Systems, 1996;5(4):270–282.

    Article  CAS  Google Scholar 

  59. Lagorce, L., Brand, O., and Allen, M., Magnetic Microactuators Based on Polymer Magnets, Journal of Microelectromechanical Systems, 1999;8(1):2–9.

    Article  Google Scholar 

  60. Lammel, G., Schweizer, S., Schiesser, S., and Renaud, P., Tunable Optical Filter of Porous Silicon as Key Component for a MEMS Spectrometer, Journal of Microelectromechanical Systems, 2002;11(6):815–827.

    Article  CAS  Google Scholar 

  61. Lee, C., Lin, Y., Lai, Y., Tasi, M., Chen, C., and Wu, C., 3-v Driven Pop-up Micromirror for Reflecting Light Toward Out-of-plane Direction for VOA Applications, IEEE Photonics Technology Letters, 2004;14(4):1044–1046.

    Article  Google Scholar 

  62. Lerch, P., Silimane, C., Romanowicz, B., and Renaud, P., Modelization and Characterization of Asymmetrical Thermal Micro-actuators, J. Micromech. Microeng., 1996;6:134–137.

    Article  Google Scholar 

  63. Li, L., Zawadzka, J., and Uttamchandani, D. Integrated Self-assembling and Holding Technique Applied to a 3-d MEMS Variable Optical Attenuator, Journal of Microelectromechanical Systems, 2004;13(1):83–90.

    Article  Google Scholar 

  64. Lide, D.R., Handbook of Chemistry and Physics, CRC Press Inc., Ann Arbor, MI, 1994.

    Google Scholar 

  65. Liew, L., Tuantranont, A., and Bright, V., Modeling of Thermal Actuation in a Bulk-micromachined CMOS Micromirror, Microelectronics Journal, 2000;31:791–801.

    Article  CAS  Google Scholar 

  66. Lin, L. and Chiao, M., Electrothermal Responses of Lineshape Microstructures, Sensors and Actuators A, 1996;55:35–41.

    Article  Google Scholar 

  67. Linderman, R. and Bright, V., Nanometer Precision Positioning Robots Utilizing Optimized Scratch Drive Actuators, Sensors and Actuators A, 2001;91:292–300.

    Article  Google Scholar 

  68. Lott, C., McLain, T., Harb, J., and Howell, L., Modeling the Thermal Behavior of a Surface-micromachined Linear-displacement Thermomechanical Microactuator, Sensors and Actuators A, 2002;101:239–250.

    Article  Google Scholar 

  69. Lott, C.D., McLain, T.W., Harb, J., and Howell, L., Thermal Modeling of a Surface-micromachined Linear Thermomechanical Actuator, in Modeling and Simulation of Microsystems, 2001, pp. 370–373.

    Google Scholar 

  70. Lu, S., Dikin, D., Zhang, S., Fisher, T., Lee, J., and Ruoff, R., Realization of Nanoscale Resolution with a Micromachined Thermally Actuated Testing Stage, Review of Scientific Instruments, 2004;25(6):2154–2162.

    Article  CAS  Google Scholar 

  71. Lubecke, V., Barber, B., Chan, E., Lopez, D., Gross, M., and Gammel, P., Self-assembling MEMS Variable and Fixed RF Inductors, IEEE Transactions on Microwave Theory and Techniques, 2001;39(11):2093–2098.

    Article  Google Scholar 

  72. Maloney, J.M., DeVoe, D.L., and Schreiber, D.S., Analysis and Design of Electrothermal Actuators Fabricated from Single Crystal Silicon, Micro-Electro-Mechanical-Systems (MEMS)—ASME 2000, 2000;2:233–240.

    Google Scholar 

  73. Mamiya, H., Ishikawa, K., and Yu, Q., A Research of Actuators for Micromirror Control, in Proceedings of the International Electronic Packaging Technology Conference and Exhibition, Maui, HI, ASME, July 6–11, 2003.

    Google Scholar 

  74. Manginell, R.P., Physical Properties of Polysilicon, PhD thesis, University of New Mexico, 1997.

    Google Scholar 

  75. Mankame, N., and Ananthasuresh, G., The Effects of Thermal Boundary Conditions and Scaling on Electrothermal-compliant Micro Devices, Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, 2000, Vol. 3, pp. 609–612.

    Google Scholar 

  76. Mankame, N.D. and Ananthasuresh, G.K., Comprehensive Thermal Modelling and Characterization of an Electro-thermal-compliant Microactuator, J. of Micromech. and Microeng., 2001;11:452–462.

    Article  CAS  Google Scholar 

  77. McConnell, A.D., Srinivasan, U., Asheghi, M., and Goodson, K.E., Thermal Conductivity of Doped Polysilicon, Journal of Microelectromechanical Systems, 2001;10:360–369.

    Article  CAS  Google Scholar 

  78. McQuarrie, D.A., Statistical Thermodynamics, University Science Books, Mill Valley, CA, 1973.

    Google Scholar 

  79. Mermelstein, M., UMECH Manual, UMECH Technologies LLC, 2001.

    Google Scholar 

  80. A Micro Mobile Mechanism Using Thermal Expansion and its Theoretical Analysis. A Micro Mobile Mechanism Using Thermal Expansion and its Theoretical Analysis, in MEMS 1994, IEEE Micro Electro Mechanical Syst. Workshop, IEEE, 1994, pp. 142–147.

    Google Scholar 

  81. Miki, N. and Shimoyama, I., Dynamics of a Microflight Mechanism with Magnetic Rotational Wings in an Alternating Magnetic Field, Journal of Microelectromechanical Systems, 2002;11(5):584–591.

    Article  CAS  Google Scholar 

  82. Miller, D., Zhang, W., and Bright, V., Microrelay Packaging Technology using Flip-chip Assembly, in MEMS 2000 International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, IEEE, 2000, pp. 265–270.

    Google Scholar 

  83. Moulton, T. and Ananthasuresh, G., Micromechanical Devices with Embedded Electro-thermal-compliant Actuation, Sensors and Actuators A, 2001;90:38–48.

    Article  Google Scholar 

  84. Nadal-Guardia, R., Dehe, A., Aigner, R., and Castaner, L., Current Drive Methods to Extend the Range of Travel of Electrostatic Microactuator Beyond the Voltage Pull-in-point, Journal of Microelectromechanical Systems, 2002;11(3):255–263.

    Article  CAS  Google Scholar 

  85. Nathan, A. and Baltes, H., Microtransducer CAD, Physical and Computational Aspects. Vienna, Springer-Verlag, Vienna, 1999.

    Google Scholar 

  86. Nemirovsky, Y. and Bochobza-Degani, O., A Methodology and Model for the Pull-in Parameters of Electrostatic Actuators, Journal of Microelectromechanical Systems, 2001;10(4):601–615.

    Article  Google Scholar 

  87. Nguyen, N., Ho, S., and Low, C., A Polymeric Microgripper with Integrated Thermal Actuators, J. Micromech. Microeng., 2004;14:969–974.

    Article  CAS  Google Scholar 

  88. Niarchos, D., Magnetic MEMS: Key Issues and Some Applications, Sensors and Actuators A, 2003;106:255–262.

    Article  CAS  Google Scholar 

  89. Oh, Y., Lee, W., and Skidmore, G. Design, Optimization, and Experiments of Compliant Microgripper, in Proceedings of International Mechanical Engineering Congress, Washington, DC, ASME, 2003.

    Google Scholar 

  90. Ohmichi, O., Yamagata, Y., and Higuchi, T., Micro Impact Drive Mechanisms Using Optically Excited Thermal Expansion, Journal of Microelectromechanical Systems, 1997;6(3):200–207.

    Article  Google Scholar 

  91. Oliver, A., Vigil, S., and Gianchandani, Y., Photothermal Surface-micromachined Actuators, IEEE Transactions on Electron Devices, 2003;50(4):1156–1157.

    Article  Google Scholar 

  92. Ottosen, N. and Petersson, H., Introduction to the Finite Element Method, Prentice Hall International, New York, 1992.

    Google Scholar 

  93. Pan, C. and Hsu, W., An Electro-thermally and Laterally Driven Polysilicon Microactuator, J. Micromech. Microeng., 1997;7:7–13.

    Article  CAS  Google Scholar 

  94. Park, J.-S., Chu, L.L., Oliver, A.D., and Gianchandani, Y.B., Bent-beam Electrothermal Actuators-part II: Linear and Rotary Microengines, Journal of Microelectromechanical Systems, 2001;10(2):255–262.

    Article  CAS  Google Scholar 

  95. Paul, O.M., Korvink, J., and Baltes, H., Determination of the Thermal Conductivity of CMOS IC Polysilicon, Sensors and Actuators A, 1994;41–42:161–164.

    Article  Google Scholar 

  96. Pichonant-Gallois, E., Petrini, V., and de Labachelerie, M., Design and Fabrication of Thermal Actuators used for Micro-optical Bench: Application to a Tunable Fabry-perot Filter, Sensors and Actuators A, 2004;114:260–266.

    Article  CAS  Google Scholar 

  97. Que, L., Park, J., and Gianchandani, Y., Bent-beam Electro-thermal Actuators for High Force Applications, in MEMS’ 99, International Conference on Micro Electro Mechanical Systems, Orlando, Florida, IEEE, 1999, pp. 31–36.

    Google Scholar 

  98. Que, L., Park, J.-S., and Gianchandani, Y.B., Bent-beam Electrothermal Actuators—Part I: Single Beam and Cascaded Devices, Journal of Microelectromechanical Systems, 2001;10(2):247–254.

    Article  CAS  Google Scholar 

  99. Reid, J., Bright, V., and Comtois, J., A Surface Micromachined Rotating Micro-mirror Normal to the Substrate, in Advanced Applications of Lasers in Materials Processing, Summer Topical Meetings, IEEE/LEOS, 5–9 Aug. 1996, pp. 39–40.

    Google Scholar 

  100. Riethmuller, W. and Benecke, W., Thermally Excited Silicon Microactuators, IEEE Transactions on Electron Devices, 1988;35(6):758–763.

    Article  Google Scholar 

  101. Ruf, T., Henn, R.W., Asen-Palmer, M., Gmelin, E., Cardona, M., Pohl, H.J., Devyatych, G.G., and Sennikov, P.G., Thermal Conductivity of Isotopically Enriched Silicon, Solid State Communications, 2000;115:243–247.

    Article  CAS  Google Scholar 

  102. Saini, R., Geisberger, A., Tsui, K., Nistorica, C., Ellis, M., and Skidmore, G., Assembled MEMS VOA, in International Conference of Optical MEMS, Waikoloa, HI, IEEE/LEOS, 2003, pp. 139–140.

    Google Scholar 

  103. Sarkar, N., Geisberger, A., Rohani, A., Weimer, W., Ellis, M., Skidmore, G., and Chaudhuri, S., Electrothermal Plastic Deformation Self-assembly of 3-d Optical Microstructures, in 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, IEEE, 2002.

    Google Scholar 

  104. Savage, H., Clark, A., and Spano, M., Strain-field Relationships in Rare-earth Iron Alloys, IEEE Transactions on Magnetics, 1984;20(5):1449–450.

    Article  Google Scholar 

  105. Schweizer, S., Calmes, S., Laudon, M., and Renaud, P., Thermally Actuated Optical Microscanner with Large Angle and Low Consumption, Sensors and Actuators A, 1999;76:470–477.

    Article  Google Scholar 

  106. Sharma, M. and Udeshi, T., Extensions of Spring Model Approach for Continuum-based Topology Optimization of Compliant Mechanisms, in Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, San Francisco, CA, 2003, Vol. 1, pp. 440–443.

    Google Scholar 

  107. Shen, Y. and Suresh, S., Thermal Cycling and Stress Relaxation Response of si-al and si-al-SiO2 Layered Thin Films, Acta Metall. Mater., 1995;43(11):3915–3926.

    Article  CAS  Google Scholar 

  108. Shikida, M., Sato, K., and Harada, T., Fabrication of a s-shaped Microactuator, Journal of Microelectromechanical Systems, 1997;6(1):18–24.

    Article  CAS  Google Scholar 

  109. Sigmund, O., A 99 Line Topology Optimization Code Written in Matlab, Struct. Multidisc. Optim., 2001;21:120–127.

    Article  Google Scholar 

  110. Sinclair, M., A High Frequency Resonant Scanner Using Thermal Actuation, in MEMS2002, The 15th International Conference on Micro Electro Mechanical Systems, IEEE, 2002, pp. 698–701.

    Google Scholar 

  111. Sinclair, M.J., A High Force Low Area MEMS Thermal Actuator, in Inter Society Conference on Thermal Phenomena, IEEE, 2000, pp. 127–132.

    Google Scholar 

  112. Suarez, J.E., Johnson, B.E., and El-Kareh, B., Thermal Stability of Polysilicon Resistors, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992;15(3):386–392.

    Article  CAS  Google Scholar 

  113. Syms. R., Long-travel Electrothermally Driven Resonant Cantilever Microactuators, J. Micromech. Microeng., 2002;12:211–218.

    Article  CAS  Google Scholar 

  114. Syms, R., Zou, H., and Stagg, J., Robust Latching MEMS Translation Stages for Micro-optical Systems, J. Micromech. Microeng., 2004;14:667–674.

    Article  Google Scholar 

  115. Tang, W., Nguyen, T.-C.H., and Howe, R., Laterally Driven Polysilicon Resonant Microstructures, in An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, IEEE, 1989, pp. 53–59.

    Google Scholar 

  116. Tuantranont, A., Bright, V.M., Liew, L.-A., Zhang, W., and Lee, Y., Smart Phase-only Micromirror Array Fabricated by Standard CMOS Process, in Proceedings of The 13th Annual International Conference on Micro Electromechanical Systems (MEMS 2000), IEEE, 2000, pp. 455–460.

    Google Scholar 

  117. Tuck, K., Ellis, M., Geisberger, A., Skidmore, G., and Foster, P., FIB prepared TEM Lift-out Using MEMS Grippers, in Proceedings of Microscopy and Microanalysis 2004, Savannah, GA, Cambridge University Press, 2004, p. 1144CD.

    Google Scholar 

  118. Tuck, K., Jungen, A., Geisberger, A., Ellis, M., and Skidmore, G., A Study of Creep in Polysilicon MEMS, Journal of Engineering Materials and Technology, 2005;127(1):90–96.

    Article  CAS  Google Scholar 

  119. Callister, J.W.D., Material Science and Engineering, John Wiley and Sons, Inc., 1994.

    Google Scholar 

  120. Wang, K., Sinclair, M., and Bohringer, K., Low-voltage Large Angular Displacement Electrostatic Scanning Micromirror Using Floating Slider Mechanism, in MEMS2004 Technical Digest, Maastricht, Netherlands, IEEE, 2004, pp. 506–509.

    Google Scholar 

  121. Wood, R. and Dhuler, V., Patent no. 5,909,078—Thermal Arched Beam Microelectromechanical Actuators, Jun. 1, 1999.

    Google Scholar 

  122. Yamaguchi, M., Kawamura, S., Minami, K., and Esashi, M., Control of Distributed Electrostatic Microstructures, J. Micromech. Microeng., 1993;3:90–95.

    Article  Google Scholar 

  123. Yan, D., Khajepour, A., and Mansour, R., Modeling of Two-hot-arm Horizontal Thermal Actuator, J. Micromech. Microeng., 2003;13:312–322.

    Article  Google Scholar 

  124. Yan, D., Khajepour, A., and Mansour, R., Design and Modeling of a MEMS Bidirectional Vertical Thermal Actuator, J. Micromech. Microeng., 2004;14:841–850.

    Article  Google Scholar 

  125. Yang, E.-H. and Fujita, H., Reshaping of Single-crystal Silicon Microstructures, Japanese Journal of Applied Physics, 1999;38:1580–1583.

    Article  CAS  Google Scholar 

  126. Ye, W., Mukherjee, S., and MacDonald, N., Optimal Shape Design of an Electrostatic Comb Drive in Microelectromechanical Systems, Journal of Microelectromechanical Systems, 1998;7(1):16–26.

    Article  Google Scholar 

  127. Zhang, X., Mehra, A., Ayon, A.A., and Waitz, I.A., Development of Polysilicon Igniters and Temperature Sensors for a Micro Gas Turbine Engine, in MEMS’02 The 15th International Conference on Micro Electro Mechanical Systems, IEEE, 2002, pp. 280–283.

    Google Scholar 

  128. Zhang, Y. and Dunn, M., Stress Relaxation of Gold/Polysilicon Layered MEMS Microstructures Subject to Thermal Loading, in ASME International Mechanical Engineering Congress and Exposition, New York, NY, ASME, 2001.

    Google Scholar 

  129. Zhang, Y., Zhang, Y., and Marcus, R., Thermally Actuated Microprobes for a NewWafer Probe Card, Journal of Microelectromechanical Systems, 1999;8(1):43–49.

    Article  Google Scholar 

  130. Zine-El-Abidine, I., Okoniewski, M., and McRory, J., A MEMS Tunable Inductor, in NSTI-Nanotech 2004, Boston, MA, NSTI, 2004. Vol. 1, pp. 340–342.

    Google Scholar 

  131. Zubert, M., Napieralska, M., and Noullet, J., Effective Modelling and Simulation of Over-heated Actuators, in NSTI-Nanotech 2004, Boston, MA, NSTI, 2004, Vol. 2, pp. 359–362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Geisberger, A.A., Sarkar, N. (2006). Techniques in MEMS Microthermal Actuators and Their Applications. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_32

Download citation

Publish with us

Policies and ethics