MEMS/NEMS pp 1177-1190 | Cite as

Techniques in the Design of Thermomechanical Microactuators

  • Larry L. Howell
  • Timothy W. McLain
  • Michael S. Baker
  • Christian D. Lott


The purpose of this chapter is to provide fundamental background for the design of thermomechanical microactuators. Actuation has been a particularly challenging aspect of microsystem development. Many actuation approaches used at the macro level, such as hydraulics, pneumatics, electric motors, internal combustion engines and turbines, are either too difficult to fabricate at the micro level or do not work well at that scale. Electrostatic attraction is one approach that has been widely used for actuation of microsystems; however, electrostatic actuators tend to have high voltage requirements and low output force capabilities. While electrostatic actuation is suitable for many applications, some systems require either lower voltages to be compatible with on-chip electronics or higher output forces.


Output Force Polycrystalline Silicon Thermal Actuator Actuator Performance Actuation Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amemiya, Y., Ono, T., and Kato, K., Electrical Trimming of Heavily Doped Polycrystalline Silicon Resistors, IEEE Transaction on Electron Devices, 1979;26(11):1738–1742.Google Scholar
  2. 2.
    Barin, I., Thermochemical Data of Pure Substances, VCH, Weinheim, 1993.Google Scholar
  3. 3.
    Barth, P.W., Beatty, C.C., Field, L.A., Baker, J.W., and Gordon, G.B., A Robust Normally-Closed Silicon Microvalve, Solid-State Sensor and Actuator Workshop, 1994;248–250.Google Scholar
  4. 4.
    Butler, J.T. and Bright, V.M., Electrothermal and Fabrication Modeling of Polysilicon Thermal Actuators, ASME DSC-MEMS, 1998;66:571–576.Google Scholar
  5. 5.
    Butler, J.T., Bright, V.M., and Cowan, W.D., Average Power Control and Positioning of Polysilicon Thermal Actuators, Sensors and Actuators A, 1999;72:88–97.CrossRefGoogle Scholar
  6. 6.
    Comtois, J.H., Bright, V.M., and Phipps, M.W., Thermal Microactuators for Surface-micromachining Processes. SPIE, 1995;2642:10–21.CrossRefGoogle Scholar
  7. 7.
    Comtois, J.H., Michalicek, M.A., and Barron, C.C., Electrothermal Actuators Fabricated in Four-level Planarized Surface Micromachined Polycrystalline Silicon, Sensors and Actuators A, 1998;70:23–31.CrossRefGoogle Scholar
  8. 8.
    Cragun, R. and Howell, L.L., Linear Thermomechanical Microactuators, Microelectromechanical Systems (MEMS), at the 1999 ASME International Mechanical Engineering Congress and Exposition, November 1999, pp. 181–188.Google Scholar
  9. 9.
    Greve, D.W., Programming Mechanism of Polysilicon Resistor Fuses, IEEE Transaction on Electron Devices, 1982;29(4):719–724.Google Scholar
  10. 10.
    Harb, J.N., LaFollette, R.M., Selfridge, R.H., and Howell, L.L., Microbatteries for Self-Sustained Hybrid Micropower Supplies, Journal of Power Sources, 2002;104(1):46–51.CrossRefGoogle Scholar
  11. 11.
    Hickey, R., Sameoto, D., Hubbard, T., and Kujath, M., Time and Frequency Response of Two-arm Micromachined Thermal Actuators, Journal of Micromechanics and Microengineering, 2002;13:40–46.CrossRefGoogle Scholar
  12. 12.
    Holman, J.P., Heat Transfer, 8th Ed., McGraw-Hill, 1997.Google Scholar
  13. 13.
    Howell, L.L. and McLain, T.W., A Little Push, Mechanical Engineering, October 2002, pp. 58–59.Google Scholar
  14. 14.
    Howell, L.L. and Lyon, S.M., Thermomechanical In-Plane Microactuator (TIM), U.S. Patent No. 6,734,597, issued May 11, 2004.Google Scholar
  15. 15.
    Huang, Q.A. and Lee, N.K.S., Analysis and Design of Polysilicon Thermal Flexure Actuator, Journal of Micromechanics and Microengineering, 1999;9:64–70.CrossRefGoogle Scholar
  16. 16.
    Incropera, F.P. and DeWitt, D.P., Introduction to Heat Transfer, 3rd Ed., John Wiley, New York, 1996.Google Scholar
  17. 17.
    Kabei, N., Kosuda, M., Kagamibuchi, H., Tashiro, R., Mizuno, H., Ueda, Y., and Tsuchiya, K., Thermal-Expansion-Type Microatuator with Paraffin as the Expansive Material, JSME International Journal, 1997;40:736–742.Google Scholar
  18. 18.
    Lin, L. and Chiao, M., Electrothermal Responses of Lineshape Microstructures, Sensors and Actuators A, 1996;55:35–41.CrossRefGoogle Scholar
  19. 19.
    Lott, C.D., McLain, T.W., Harb, J.N., and Howell, L.L., Thermal Modeling of a Surface-micromachined Linear-displacement Thermomechanical Microactuator, Sensors & Actuators: A. Physical, 2002;101(1–2):239–250.CrossRefGoogle Scholar
  20. 20.
    Manginell, R.P., Polycrystalline-Silicon Microbridge Combustible Gas Sensor, Ph.D. Dissertation, University of New Mexico, 1997.Google Scholar
  21. 21.
    Mastrangelo, C.H., Thermal Applications of Microbridges, Ph.D. Dissertation, University of California at Berkley, 1991.Google Scholar
  22. 22.
    Messenger, R.K., Baker, M.S., McLain, T.W., Howell, L.L., and Harb, J.N., Modeling the Transient Response of Surface Micromachined Thermal Actuators, submitted for publication in Journal of Micromechanics and Microengineering.Google Scholar
  23. 23.
    Moore, H.G. and Yaqub, A., A First Course in Linear Algebra with Applications 3rd Ed., Academic Press, 1998.Google Scholar
  24. 24.
    Okada, Y. and Tokumaru, Y., Precise Determination of Lattice Parameter and Thermal Expansion Coefficient of Silicon between 300 and 1500 K, Journal of Applied Physics, 1984;56(2):314–320.CrossRefGoogle Scholar
  25. 25.
    Park, J.S., Chu, L.L., Siwapornsathain, E., and Oliver, A.D., Long Throw and Rotary Output Electro-Thermal Actuators Based on Bent-Beam Suspensions, Proceedings of the 13th IEEE International Conference on Micro Electro Mechanical Systems, 2000, pp. 680–685.Google Scholar
  26. 26.
    Przemieniecki, J.S., Theory of Matrix Structural Analysis, New York, Dover, 1985.Google Scholar
  27. 27.
    Que, L., Park, J.S., and Gianchandani, Y.B., Bent Beam Electro-Thermal Actuators for High Force Applications, Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems, 1999, pp. 31–36.Google Scholar
  28. 28.
    Reithmuller, W. and Benecke, W., Thermally Excited Silicon Microactuators, IEEE Transactions on Electrical Devices, 1998;35(6):758–762.CrossRefGoogle Scholar
  29. 29.
    Sharp, W.N., Turner, K.T., and Edwards, R.L., Tensile Testing of Polysilicon, Experimental Mechanics, 1999;39(3):162–170.CrossRefGoogle Scholar
  30. 30.
    Slack, G.A., Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond, Journal of Applied Physics, 1964;35:3460–3466.CrossRefGoogle Scholar
  31. 31.
    Sniegowski, J.J. and de Boer, M.P., IC-compatible Polysililcon Surface Micromachining, Annu. Rev. Mater. Sci., 2000;30:299–333.CrossRefGoogle Scholar
  32. 32.
    Tai, Y.C., Mastrangelo, C.H., and Muller, R.S., Thermal Conductivity of Heavily Doped Low-pressure Chemical Vapor Deposited Polycrystalline Silicon Films, Journal of Applied Physics, 1988;63(5):1442–1447.CrossRefGoogle Scholar
  33. 33.
    Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Klemens, P.G., Thermophysical Properties of Matter, IFI/Plenum, New York, 1970.Google Scholar
  34. 34.
    Wilcox, D.L. and Howell, L.L., The Stacked Amplified Thermomechanical In-plane Microactuator (StATIM), Microelectromechanical Systems (MEMS), at the 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE2004-59617.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Larry L. Howell
    • 1
  • Timothy W. McLain
    • 1
  • Michael S. Baker
    • 2
  • Christian D. Lott
    • 3
  1. 1.Department of Mechanical EngineeringBrigham Young UniversityUSA
  2. 2.Sandia National LaboratoriesUSA
  3. 3.L-3 CommunicationsUSA

Personalised recommendations