Skip to main content

Techniques in MEMS Devices for Micro Humidity Sensors and Their Applications

  • Chapter
MEMS/NEMS

Abstract

As microfabrication technologies mature, the use of microsensors to detect acceleration, pressure, fluid flow and angular rate variation is becoming increasingly common. These sensors find widespread application in the chemical, electronic, automobile, and biomedical fields, and throughout the scientific community in general. Recent market studies have predicted an enormous surge in demand for these sensors in the coming years. In fact, estimates of microsensor market volumes predict worldwide sales of US$50 billion in 2008 (Intechno Consulting, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fraden, J., AIP Handbook of Modern Sensors, New York: American Institute of Physics, 1993, p. 419.

    Google Scholar 

  2. Norton, H.N., Handbook of Transducers, New Jersey: Prentice Hall PTR, 1989, p. 256.

    Google Scholar 

  3. Visscher, G.J.W., Standard Psychrometers: A Matter of (P)references, Meas. Sci. Technol., 1995;6:1451–1461.

    Article  CAS  Google Scholar 

  4. Simões-Moreira, J.R., A Thermodynamic Formulation of the Psychrometer Constant, Meas. Sci. Technol., 1999;10:302–311.

    Article  Google Scholar 

  5. Rittersma, Z.M., Recent Achievements in Miniaturised Humidity Sensors—a Review of Transduction Techniques, Sens. Actuators A, 2002, Vol. 96, pp. 196–210.

    Article  Google Scholar 

  6. Sakai, Y., Sadaoka, Y., Okumura, S., and Ikeuchi, K., A Humidity Sensor Composed of Porous Polymer Film Impregnated with a Hydrophilic Polymer, Kobunshi Ronbunshu, 1984, Vol. 41, pp. 209–214.

    CAS  Google Scholar 

  7. Sakai, Y. and Sadaoka, Y., Humidity Sensors Using Sulfonated Microporous Polyethylene Films, Denki Kagaku, 1985, Vol. 53, pp. 150–151.

    CAS  Google Scholar 

  8. Sakai, Y., Rao, V.L., Sadaoka, Y., and Matsuguchi, M., Humidity Sensor Composed of a Microporous Film of Polyethylene-graft-poly-(2-acrylamido-2-methylpopane Sulfonate), Polymer Bull, 1987, Vol. 18, pp. 501–506.

    CAS  Google Scholar 

  9. Sakai, Y., Sadaoka, Y., Matsuguchi, M., and Rao, V.L., Humidity Sensor Using Microporous Film of Polyethylene-graft-poly-(2-hydroxy-3-methacryloxypropyl trimethyl-ammonium Chloride), J. Mater. Sci., 1989;24:101–104.

    Article  CAS  Google Scholar 

  10. Kinjo, N., Ohara, O., Sugawara, T., and Tsuchitani, T., Changes in Electrical Resistance of Ionic Copolymers Caused by Moisture Sorption and Desorption, J. Polymer, 1983;15:621–623.

    Article  CAS  Google Scholar 

  11. Noguchi, H. and Uchida, Y., A Highly Reliable Humidity Sensor Suing Ionene Polymer, J. Mater. Sci, Lett., 1989;8:1278–1280.

    Article  CAS  Google Scholar 

  12. Huang, H., Dasgupta, P.K., and Ronchinsky, S., Perfluorosulfonate Ionomer-phosphorus Pentoxide Composite Thin Films as Amperomertic Sensor for Water, Anal. Chem., 1991;63:1570–1573.

    Article  CAS  Google Scholar 

  13. Xin, Y. and Wang, S., An Investigation of Sulfonated Polysulfone Humidity-sensitive Materials, Sensors Actuators A, 1994;40:147–149.

    Article  CAS  Google Scholar 

  14. Sakai, Y., Sadaoka, Y., and Ikeuchi, K., Humidity Sensors Composed of Grafted Copolymers, Sensors Actuators, 1986;9:125–131.

    Article  CAS  Google Scholar 

  15. Sakai, Y., Sadaoka, Y., and Fukumoto, H., Humidity-sensitive and Water Resistive Polymetric Materials, Sensors Actuators, 1988;13:243–250.

    Article  Google Scholar 

  16. Sakai, Y., Sadaoka, Y., Matsuguchi, M., Kanakura, Y., and Tamura, M., A Humidity Sensor Using Polytetrafluoroethylene-graft-quaternized-polyvinylpyrdine, J. Electrochem. Soc., 1991;138:2474–2478.

    Article  CAS  Google Scholar 

  17. Sakai, Y., Sadaoka, Y., and Matsuguchi, M., Humidity Sensors Based on Polymer Thin Films, Sensors Actuators B, 1996;35–36:85–90.

    Article  Google Scholar 

  18. Hsu, H.C., Lee, C.F., and Chiu, W.Y., Study on the Synthesis of Poly(methylmethacrylate)-Poly(methacrylicacid) Composite Latex and Their Humidity Sensitive Properties, Journal of AppliedPolymer Science, 1999;71:47–57.

    Article  CAS  Google Scholar 

  19. Dabhade, R.V., Bodas, D.S., and Gangal, S.A., Plasma-treated Polymer as Humidity Sensing Material—a Feasibility Study, Sensors Actuators B, 2004;98:37–40.

    Article  CAS  Google Scholar 

  20. Ralston, A.R.K., Tobin, J.A., Bajikar, S.S., and Denton, D.D., Comparative Performance of Linear, Crosslined, and Plasma-deposited PMMA Capacitive Humidity Sensors, Sensors Actuators B, 1994;22:139–147.

    Article  Google Scholar 

  21. Matsuguchi, M., Sadaoka, Y., Nuwa, Y., Shinmoto, M., Sakai, Y., and Kuroiwa, T., Capacitive-type Humidity Sensors Using Polymerized Vinyl Carboxylate, J. Electrochem. Soc., 1994;141:614–618.

    Article  CAS  Google Scholar 

  22. Matsuguchi, M., Shinmoto, M., Sadaoka, Y., Kuroiwa, T., and Sakai, Y., Effect of Cross-linking Degree of PVCA Film on the Characteristics of Capacitive-type Humidity Sensors, Sensors Actuators B, 1996;34:349–355.

    Article  Google Scholar 

  23. Bedoya, M., Orellana, G., and Moreno-Bondi, M.C., Fluorescent Optosensor for Humidity Measurements in Air, Helvetica Cheimica Acta, 2001;84:2628–2639.

    Article  CAS  Google Scholar 

  24. Sundaram, R. and Nagaraja, K.S., Electrical and Humidity Sensing Properties of Lead(II) Tungstate—Tungsten(VI) Oxide and Zinc(II) Tungstate-Tungsten(VI) Oxide Composites, Materials Research Bulletin, 2004;39:581–590.

    Article  CAS  Google Scholar 

  25. Pokhrel, S. and Nagaraja, K.S., Electrical and Humidity Sensing Pproperties of Molybdenum(VI) Oxide and Tungsten(VI) Oxide Composites, Phys. Stat. Sol. A, 2003;198:343–349.

    Article  CAS  Google Scholar 

  26. Cosentino, I.C., Muccillo, E.N.S., and Muccillo, R., Development of Zirconia-titania Porous Ceramics for Humidity Sensors, Sensors Actuators B, 2003;96:677–683.

    Article  CAS  Google Scholar 

  27. Wang, J., Wu, F.Q., Shi K.H., Wang, X.H., and Suna, P.P., Humidity Sensitivity of Composite Material of Lanthanum Ferrite/polymer Quaternary Acrylic Resin, Sensors Actuators B, 2004;99:586–591.

    Article  CAS  Google Scholar 

  28. Faia, P.M., Furtado, C.S., and Ferreira, A.J., Humidity Sensing Properties of a Thick-film Titania Prepared by a Slow Spinning Process, Sensors Actuators B, 2004;101:183–190.

    Article  CAS  Google Scholar 

  29. Raj, A.M.E.S., Magdalane, C.M., and Nagaraja K.S., Zinc(II) Oxide-Yttrium(III) Oxide Composite Humidity Sensor, Phys. Stat. Sol. A, 2002;191:230–234.

    Article  CAS  Google Scholar 

  30. Yeh, Y.C. and Tseng, T.Y., Electrical Properties of K2O-doped Ba0.5Sr0.5TiO3 Ceramic Humidity Sensor, IEEE Trans. on Components, Packaging, and Manufacturing Technology, 1989;12(2):259–266.

    CAS  Google Scholar 

  31. Chakraborty, S., Nemoto, K., Hara, K., and Lai, P.T., Moisture Sensitive Field Effect Transistors Using SiO2/Si3N4/Al2O3 Gate Structure, Smart Mater. Struct., 1999;8:274–277.

    Article  CAS  Google Scholar 

  32. O’Halloran, G.M., Sarro, P.M., Groeneweg, J., Trimp, P.J., and French, P.J., A Bulk Micromachined Humidity Sensor Based on Porous Silicon, Proc. Transducers’ 97, 1997, Vol. 1, pp. 563–566.

    CAS  Google Scholar 

  33. Das, J., Dey, S., Hossain, S.M., Rittersma Z.M.C., and Saha H., A Hygrometer Comprising a Porous Silicon Humidity Sensor with Phase-detection Electronics, IEEE Sensors Journal, 2003;3:414–420.

    Article  CAS  Google Scholar 

  34. Björkqvist, M., Salonen, J., Paski, J., and Laine, E., Characterization of Thermally Carbonized Porous Silicon Humidity Sensor, Sensors Actuators A, 2004;112:244–247.

    Article  CAS  Google Scholar 

  35. Bruzzi, M., Miglio, S., Scaringella, M., Bongiorno, G., Piseri, P., Podest, A., and Milani P., First Study of Humidity Sensors Based on Nanostructured Carbon Films Produced by Supersonic Cluster Beam Deposition, Sensors Actuators B, 2004;100:173–176.

    Article  CAS  Google Scholar 

  36. Valentini, L., Armentano, I., Kenny, J.M., Cantalini, C., Lozzi, L., and Santucci S., Sensors for Sub-ppm NO2 Gas Detection Based on Carbon Nanotube Thin Films, Appl. Phys. Lett., 2003;82:961–963.

    Article  CAS  Google Scholar 

  37. Gale, B.K., Caldwell, K.D., and Frazier, A.B., A Micromachined Electrical Field-flow Fractionation (μ-EFFF) System, IEEE Transactions on Biomedical Engineering, 1998;45:1459–1469.

    Article  CAS  Google Scholar 

  38. Schroth, A., Sager, K., Gerlach, G., Haberli, A., Boltshauser, T., and Baltes, H., A Resonant Polyimide-based Humidity Sensor, Proc. Transducers’ 95, 1995, pp. 740–742.

    Google Scholar 

  39. Gerlach, G., Schroth, A., Sager, K., and Haberli, A., Simulation of a Humidity-sensitive Double-layer System, Sensors Actuators B, 1994;18–19:303–307.

    Article  Google Scholar 

  40. Boltzhauser, T., Chandran, L., Baltes, H., Bose, F., and Steiner, D., Humidity Sensing Properties and Electrical Permittivity of New Photosensitive Polyimides, Sensors Actuators B, 1991;5:161–164.

    Article  Google Scholar 

  41. Dokmeci, M. and Najafi, K., A High-Sensitivity Polyimide Capacitive Relative Humidity Sensor for Monitoring Anodically Bonded Hermetic Micropackages, J. Microelectromechanical Systems, 2001;10(2):197–204.

    Article  CAS  Google Scholar 

  42. Denton, D.D., Ho, C.N., and He, S.G., A Solid-state Relative Humidity Measurement System, Proc. IEEE Transactions on Instrumentation and Measurement, 1990, Vol. 39, pp. 508–511.

    Article  Google Scholar 

  43. Shibata, H., Ito, M., Asakura, M., and Watanabe, K., A Digital Hygrometer Using a Capacitance-to-frequency Converter, Proc. IEEE Instrumentation and Measurement Technology Conference, 1995, pp. 100–106.

    Google Scholar 

  44. Laconte, J., Wilmart, V., Flandre, D., and Raskin, J.P., High-sensitivity Capacitive Humidity Sensor Using 3-layer Patterned Polyimide Sensing Film, Proc. IEEE Sensors 2003, 2003, Vol. 1 pp. 372–377.

    CAS  Google Scholar 

  45. Sager, K., Gerlach, G., and Schroth, A., Design, Simulation and Metrological Characteristics of Piezoresistive Humidity Sensors, Sensors Materials, 1994;6(6):333–342.

    CAS  Google Scholar 

  46. Yang, Y.L., Lo, L.H., Huang, I.Y., Chen, H.J.H., Huang, W.S., and Huang, S.R.S., Improvement of Polyimide Capacitive Humidity Sensor by Reactive Ion Etching and Novel Electrode Design, Proc. IEEE Sensors 2002, 2002, Vol. 1, pp. 511–514.

    CAS  Google Scholar 

  47. Lee, C.Y. and Lee, G.B., Micromachine-based Humidity Sensor with Integrated Temperature Sensors for Signal Drift Compensation, J. Micromech. Microeng., 2003;13:620–627.

    Article  Google Scholar 

  48. Sakai, Y., Matsuguchi, M., and Hurukawa, T., Humidity Sensor Using Cross-linked Poly(Chloromethyl Styrene), Sensors Actuators B, 2000;66:135–138.

    Article  Google Scholar 

  49. Gong, M.S., Park, J.S., Lee, M.H., and Rhee, H.W., Humidity Sensor Using Cross-linked Polyelectrolyte Prepared from Mutually Reactive Copolymers Containing Phosphonium Salt, Sensors Actuators B, 2002;86:160–167.

    Article  Google Scholar 

  50. Ogura, K., Shiigi, H., Nakayama, M., and Ogawa, A., Thermal Properties of Poly(Anthranilic Acid) (PANA) and Humidity-Sensitive Composites Derived from Heat-Treated PANA and Poly(vinyl alcohol), J. Polymer Science A, 1999;37:4458–4465.

    Article  CAS  Google Scholar 

  51. Lee, C.W., Rhee, H.W., and Gong, M.S., Humidity Sensor Using Epoxy Resin Containing Quaternary Ammonium Salts, Sensors Actuators B, 2001;73:124–129.

    Article  Google Scholar 

  52. Lee, C.W., Kim, Y., Joo, S.W., and Gong, M.S., Resistive Humidity Sensor Using Polyelectrolytes Based on New-type Mutually Cross-linkable Copolymers, Sensors Actuators B, 2003;88:21–29.

    Article  Google Scholar 

  53. Lee, C.W., Kim, O., and Gong, M.S., Humidity-Sensitive Properties of New Polyelectrolytes Based on the Copolymers Containing Phosphonium Salt and Phosphine Function, J. Applied Polymer Science, 2003;89:1062–1070.

    Article  CAS  Google Scholar 

  54. Yang, M., Li, Y., Zhan, X., and Ling, M., A Novel Resistive-Type Humidity Sensor Based on Poly(pdiethynylbenzene), J. Applied Polymer Science, 1999;74:2010–2015.

    Article  CAS  Google Scholar 

  55. Li, N., Li, X., Geng, W., Zhang, T., Zuo, Y., and Qiu, S., Synthesis and Humidity Sensitivity of Conducting Polyaniline in SBA-15, J. Applied Polymer Science, 2004;93:1597–1601.

    Article  CAS  Google Scholar 

  56. Feng, C.D., Sun, S.L., Wang, H., Segre, C.U., and Stetter, J.R., Humidity Sensing Properties of Nafion and sol-gel Derived SiO2/Nafion Composite Thin Films, Sensors Actuators B, 1997;40:217–222.

    Article  Google Scholar 

  57. Feng, C.D., Wang, H., Sun, S.L., Segre, C.U., and Stetter, J.R., Comparison of Conductometric Humiditysensing Polymers, Sensors Actuators B, 1997;40:211–216.

    Article  Google Scholar 

  58. Liu, C.J., Resistance-Based Switching Humidity Property of Crosslinked Acrylic Acid-Acrylamide Copolymers and Their Ionization Effect Against the Critical Humidity, J. Applied Polymer Science, 2002;85:1057–1060.

    Article  CAS  Google Scholar 

  59. Queiroz, A.A.A., Soares, D.A.W., Trzesniak, P., and Abraham, G.A., Resistive-Type Humidity Sensors Based on PVP-Co and PVP-I2 Complexes, J. Polymer Science B, 2001, Vol. 39, 459–469.

    Article  Google Scholar 

  60. Sundaram, R., Raj Edwin, S., and Nagaraja, K.S., Microwave Assisted Synthesis, Characterization and Humidity Dependent Electrical Conductivity Studies of Perovskite Oxides, Sm 1−x SrxCrO3(0 ≤ x ≤ 0.1), Sensors Actuators B, 2004, Vol. 99, pp. 350–354

    Article  CAS  Google Scholar 

  61. Lu, Y.D., Zhang, J.L., Li, B.R., and Pan, W.Y., New Kind of Humidity Sensitive Ceramic with Linear Property, Proc. Electronic Components and Technology Conference 1991, 1991, pp. 261–263.

    Google Scholar 

  62. Sundaram, R. and Nagaraja, K.S., Solid State Electrical Conductivity and Humidity Sensing Studies on Metal Molybdate-molybdenum Trioxide Composites (M = Ni 2+,Cu 2+ and Pb 2+), Sensors Actuators B, 2004;101:353–360.

    Article  CAS  Google Scholar 

  63. Choi, M.M.F. and Shuang S., Fluorescent Optode Membrane Based on Organogel for Humidity Sensing, The Analyst, 2000;125:301–305.

    Article  CAS  Google Scholar 

  64. Odlyha, M., Foster, G.M., Cohen, N.S., Sitwellb, C., and Bullock, L., Microclimate Monitoring of Indoor Environments Using Piezoelectric Quartz Crystal Humidity Sensors, J. Environ. Monit., 2000;2:127–131.

    Article  CAS  Google Scholar 

  65. Rezlescu, N., Rezlescu, E., Sava, C.L., Tudorache, F., and Popa, P.D., On the Effects of Ga3+ and La3+ Ions in MgCu Ferrite: Humidity-sensitive Electrical Conduction, Cryst. Res. Technol., 2004;39(6):548–557.

    Article  CAS  Google Scholar 

  66. Braga, E.R., Nakano, A.Y., and Cunha, M.P., A SAW Resonator Sensor System Employed in Humidity Measurements, Proc. SBMO/IEEE MTT-S IMOC’ 99, 1999, pp. 342–345.

    Google Scholar 

  67. Sundaram, R. and Nagaraja, K.S., Solid State Electrical Conductivity and Humidity Sensing Properties of WO3-Y2O3 Composites, Phys. Stat. Sol. A, 2004;201(3):529–535.

    Article  CAS  Google Scholar 

  68. Kang, U. and Wise, K.D., A High-Speed Capacitive Humidity Sensor with On-chip Thermal Reset, IEEE Transactions on Electron Devices, 2000;47(4):702–710.

    Article  CAS  Google Scholar 

  69. Denton, D.D., Day, D.R., Priore, D.F., and Senturia, S.D., Moisture Diffusion in Polyimide Films in Integrated Circuits, J. Electron. Mater., 1985;14:119–136.

    Article  CAS  Google Scholar 

  70. Berger, R., Gerber, Ch., Lang, H.P., and Gimzewski, J.K., Micromechanics: A Toolbox for Femtoscale Science: Towards a Laboratory on a Tip, Microelectronic Engineering, 1997;35:373–379.

    Article  CAS  Google Scholar 

  71. Gimzewski, J.K., Gerber, Ch., Meyer, E., and Schlittler, R.R., Observation of a Chemical Reaction Using a Micromechanical Sensor, Chem. Phys. Lett., 1994;217:589–594.

    Article  CAS  Google Scholar 

  72. Bashir, R., Gupta, A., Neudeck, G.W., McEflresh, M., and Gomez R., On the Design of Piezoresistive Silicon Cantilevers with Stress Concentration Regions for Scanning Probe Microscopy Applications, J. Micromech. Microeng., 2000;10:483–491.

    Article  Google Scholar 

  73. Moulin, A.M., O’Shea, S.J., and Welland, M.E., Mocroacntilever-based Biosensors, Ultramicroscopy, 2000;82:23–31.

    Article  CAS  Google Scholar 

  74. Boisen, A., Thaysen, J., Jensenius, H., and Hansen, O., Environmental Sensors Based on Micromachined Cantilevers with Integrated Read-out, Ultramicroscopy, 2000;82:11–16.

    Article  CAS  Google Scholar 

  75. Lang, H.P. et al., The Nanomechanical Nose, Proc. IEEE MEMS 1999, 1999, pp. 9–13.

    Google Scholar 

  76. Berger, R. and Lang, H.P. et al., Micromechanical Thermogravimetry, Chem. Phys. Lett., 1998;294:363–369.

    Article  CAS  Google Scholar 

  77. Johnstone, R.W. and Parameswaran, M., Theoretical Limits on the Freestanding Length of Cantilevers Produced by Surface Micromachining Technology, J. Micromech. Microeng., 2002;12:855–861.

    Article  Google Scholar 

  78. Su, Y., Evans, A.G.R., Brunnschweiler, A., and Ensell, G., Chracterization of a Highly Sensitive Ultra-thin Piezoresistive Silicon Cantilever Probe and Its Application in Gas Flow Velocity Sensing, J. Micromech. Microeng., 2002;12:780–785.

    Article  Google Scholar 

  79. Hou, M.T. and Chen, R., Effect of Width on the Stress-induced Bending of Micromachined Bilayer Cantilevers, J. Micromech. Microeng., 2003;13:141–148.

    Article  Google Scholar 

  80. Buchhold, R., Nakladal, A., Gerlach, G., and Neumann, P., Design Studies on Piezoresistive Humidity Sensors, Sensors Actuators B, 1998;53:1–7.

    Article  Google Scholar 

  81. Saegr, K., Gerlach, G., Nakladal, A., and Schroth, A., Ambient Humidity and Moisture—a Decisive Failure Source in Piezoresistive Sensors, Sensors Actuators A, 1995;46–47:171–175.

    Article  Google Scholar 

  82. Saegr, K., Schroth, A., Nakladal, A., and Gerlach, G., Humidity-dependent Mechanical Properties of Polyimide Films and Their Use for IC-compatible Humidity Sensors, Sensors Actuators A, 1996;53:330–334.

    Article  Google Scholar 

  83. Kharaz, A. and Jones, B.E., A Distributed Optical-fibre Sensing System for Multi-point Humidity Measurement, Sensors Actuators A, 1995;46–47:491–493.

    Article  Google Scholar 

  84. Bariáin, C., Matías, I.R., Arregui, F.J., and López-Amo, M., Optical Fiber Humidity Sensor Based on a Tapered Fiber Coated with Agarose Gel, Sensors Actuators B, 2000;69:127–13

    Article  Google Scholar 

  85. Ha, N.T.T., An, D.K., Phong, P.V., Hoa, P.T.M., and Mai, L.H., Study and Performance of Humidity Sensor Based on the Mechanical-optoelectronic Principle for the Measurement and Control of Humidity in Storehouses, Sensors Actuators B, 2000;66:200–202.

    Article  Google Scholar 

  86. Wohltjen, H., Mechanism of Operation and Design Considerations for Surface AcousticWave DeviceVapour Sensors, Sensors Actuators, 1984;5:307–325.

    Article  CAS  Google Scholar 

  87. Vetelino, K.A., Story, P.R., Mileham, R.D., and Galipeau, D.W., Improved Dew Point Measurements Based on a SAW Sensor, Sensors Actuators B, 1996;35–36:91–98.

    Article  Google Scholar 

  88. Caliendo, C., Verona, E., and Anisimkin, V.I., Surface Acoustic Wave Humidity Sensors: a Comparison Between Different Types of Sensitive Membrane, Smart Mater. Struct., 1997;6:707–715.

    Article  CAS  Google Scholar 

  89. Galipeau, D.W., Story, P.R., Vetelino, K.A., and Mileham R.D., Surface Acoustic Wave Microsensors and Applications, Smart Mater. Struct., 1997;6:658–667.

    Article  CAS  Google Scholar 

  90. Jain, M.K., Schmidt, S., Ong, K.G., Mungle, C., and Grimes, C.A., Magnetoacoustic Remote Query Temperature and Humidity Sensors, Smart Mater. Struct., 2000;9:502–510.

    Article  Google Scholar 

  91. Penza, M. and Cassano, G., Relative Humidity Sensing by PVA-coated Dual Resonator SAW Oscillator, Sensors Actuators B, 2000;68:300–306.

    Article  Google Scholar 

  92. Story, P.R., Galipeau, D.W., and Mileham, R.D., A Study of Low-cost Sensors for Measuring Low Relative Humidity, Sensors Actuators B, 1995;24–25:681–685.

    Article  Google Scholar 

  93. Radeva, E., Georgiev, V., Spassov, L., Koprinarov, N., and Kanev, St., Humidity Adsorptive Properties of Thin Fullerene layers Studied by Means of Quartz Micro-balance, Sensors Actuators B, 1997;42:11–13.

    Article  Google Scholar 

  94. Glück, A., Halder, W., Lindner, G., Müller, H., and Weindler, P., PVDF-excited Resonance Sensors for Gas Flow and Humidity Measurements, Sensors Actuators B, 1994;18–19:554–557

    Article  Google Scholar 

  95. Qu, W. and Meyer, J.U., Thick-film Humidity Sensor Based on PorousMnWO4 Material, Meas. Sci. Technol., 1997;8:593–600.

    Article  CAS  Google Scholar 

  96. Chou, K.S., Lee, T.K., and Liu, F.J., Sensing Mechanism of a Porous Ceramic as Humidity Sensor, Sensors Actuators B, 1999;56:106–111.

    Article  Google Scholar 

  97. Qu, W., Wlodarski, Q., and Meyer, J.U., Comparative Study on Micromorphology and Humidity Sensitive Properties of Thin-fim Humidity Sensors Based on Semiconducting MnWO4, Sensors Actuators B, 2000;64:76–82.

    Article  Google Scholar 

  98. Ying, J., Wan, C., and He, P., Sol-gel Processed TiO2-K2O-LiZnVO4 Ceramic Thin Films as Innovative Humidity Sensors, Sensors Actuators B, 2000;62:165–170.

    Article  Google Scholar 

  99. Arshak K.I. and Twomey, K., Investigation into a Novel Humidity Sensor Operating at Room Temperature, Microelectronics Journal, 2002;33:213–220.

    Article  CAS  Google Scholar 

  100. Barkauskas, J., Investigation of Conductometric Humidity Sensors, Talanta, 1997;44:1107–1112.

    Article  CAS  Google Scholar 

  101. Su, P.G., Chen, I.C., and Wu, R.J., Use of Poly(2-acrylamido-2-methylpropane Sulfonate) Modified with Tetraethyl Orthosilicate as Sensing Material for Measuerment of Humidity, Analytica Chimica Acta, 2001;449:103–109.

    Article  CAS  Google Scholar 

  102. Wang, J., Xu, B.K., Ruan, S.P., and Wang, S.P., Preparation and Electrical Properties of Humidity Sensing Films of BaTiO3/Polystrene Sulfonic Sodium, Materials Chemistry and Physics, 2003;78:746–750.

    Article  CAS  Google Scholar 

  103. Sakai, Y., Sadaoka, Y., Matsuguchi, M., and Sakai, H., Humidity Sensor Durable at High Humidity Using Simultaneously Crosslinked and Quaternized Poly(Chloromethyl Styrene), Sensors Actuators B, 1995;24–25:689–691.

    Article  Google Scholar 

  104. Golonka, L.J., Licznerski, B.W., Nitsch, K., and Teterycz, H., Thick-film Humidity Sensors, Meas. Sci. Technol., 1997;8:92–98.

    Article  CAS  Google Scholar 

  105. Nahar, R.K. and Khanna, V.K., Ionic Doping and Inversion of the Characteristics of Thin Film Porous Al2O3 Humidity Sensor, Sensors Actuators B, 1998;46:35–41.

    Article  Google Scholar 

  106. Nahar, R.K., Study of the Performance Degradation of Thin Film Aluminum Oxide Sensors at High Humidity, Sensors Actuators B, 2000;63:49–54.

    Article  Google Scholar 

  107. Laville, C. and Pellet, C., Interdigitated Humidity Sensors for a Portable Clinical Microsystem, IEEE Transactions on Biomedical Engineering, 2002;49(10):1162.

    Article  Google Scholar 

  108. Erson, R.C., Muller, R.S., and Tobias, C.W., Investigations of Porous Silicon for Vapor Sensing, Sensors Actuators A, 1990;23:835–839.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lee, CY., Lin, CH., Fu, LM. (2006). Techniques in MEMS Devices for Micro Humidity Sensors and Their Applications. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_27

Download citation

Publish with us

Policies and ethics