Skip to main content

Introduction

  • Chapter
  • 1045 Accesses

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 30))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ismail and T. Fiez, eds., Analog VLSI: Signal and Information Processing, McGraw-Hill Publishing Company, Inc., New York, 1994.

    Google Scholar 

  2. B. Koenemann, “Creature from the deep submicron lagoon”, Invited Lecture, 10th Workshop Test Methods and Reliability of Circuits and Systems, March 1998.

    Google Scholar 

  3. A.N. Airapetian and J.F. McDonald, “Improved test set generation algorithm for combinational logic control”, Digest of Papers, 9th Annual International Symposium on Fault-Tolerant Computing, pp. 133–136, June 1979.

    Google Scholar 

  4. E.B. Eichelberger and T.W. Williams, “A logic design structure for LSI testing”, Proceedings, IEEE/ACM 14th Design Automation Conference (DAC 1977), pp. 462–468, June 1977.

    Google Scholar 

  5. IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Standard 1149.1-1990 (includes IEEE Standard 1149.1a-1993), The IEEE, Inc., New York, October 1993.

    Google Scholar 

  6. B. Koenemann, J. Mucha and G. Zwiehoff, “Built-in logic block observation techniques”, Proceedings, 1979 IEEE International Test Conference, pp. 37–41, October 1979.

    Google Scholar 

  7. “A D&T roundtable mixed-signal design and test”, IEEE Design & Test of Computers, Vol. 10, pp. 80–86, September 1993.

    Google Scholar 

  8. J.P. Roth, “Diagnosis of automata failures: a calculus and a method”, IBM Journal of Research and Development, Vol. 10, pp. 278–291, July 1966.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Goel, “An implicit enumeration algorithm to generate tests for combinational circuits”, IEEE Transactions on Computers, Vol. C-30, pp. 215–222, March 1981.

    Google Scholar 

  10. D.M.W. Leenaerts, “TOPICS: a new hierarchical design tool using an expert system and interval analysis”, Proceedings, 17th European Solid State Circuits Conference (ESSIRC 1991), pp. 37–40, September 1991.

    Google Scholar 

  11. G. Debyser and G. Gielen, “Efficient analog circuit synthesis with simultaneous yield and robustness optimisation”, Digest of Papers, IEEE/ACM International Conference on Computer-Aided Design (ICCAD-98), pp. 308–311, November 1998.

    Google Scholar 

  12. M. Krasnicki, R. Phelps, R.A. Rutenbar and L.R. Carley, “MAELSTROM: efficient simulation-based synthesis for custom analog cells”, Proceedings, IEEE/ACM 36th Design Automation Conference (DAC 1999), pp. 945–950, June 1999.

    Google Scholar 

  13. S. Ohr, “Synthesis proves to be holly grail for analog EDA”, EE Times at http://www.eetimes.com, June 1999.

    Google Scholar 

  14. T.W. Williams, “Design for testability”, Computer Design Aids for VLSI Circuits (P. Antogneti, D. O. Peterson, and H de Man, eds.), NATO AIS Series, Martinus Nijhoff Publishers, The Netherlands, pp. 359–415, 1986.

    Google Scholar 

  15. IEEE Standard for a Mixed-Signal Test Bus (Draft 18), The Proposed IEEE Standard P1149.4, The IEEE, Inc., New York, June 1997.

    Google Scholar 

  16. W. Maly, H.T. Heineken, J. Khare and P.K. Nag, “Design-manufacturing interface: part I-vision”, Proceedings, Design Automation and Test in Europe Conference and Exhibition (DATE 1998), pp. 550–556, February 1998.

    Google Scholar 

  17. L.S. Milor, “A tutorial introduction to research on analog and mixed-signal circuit testing”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 45, pp. 1389–1407, October 1998.

    Google Scholar 

  18. P. Duhamel and J.C. Rault, “Automatic test generation techniques for analog circuits and systems: A review”, IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp. 441–440, July 1979.

    MathSciNet  Google Scholar 

  19. J.W. Bandler and A.E. Salama, “Fault diagnosis of analog circuits”, Proceedings of the IEEE, Vol. 73, pp. 1279–1325, August 1985.

    Google Scholar 

  20. B. Vinnakota, Analog and Mixed-Signal Test, Prentice-Hall, Inc., New Jersey, 1998.

    Google Scholar 

  21. M. Burns and G.W. Roberts, An Introduction to Mixed-Signal IC Test and Measurements, Oxford University Press, New York, 2001.

    Google Scholar 

  22. R.S. Berkowitz, “Conditions for network-element-value solvability”, IRE Transactions on Circuit Theory, Vol. CT-9, pp. 24–29, March 1962.

    MathSciNet  Google Scholar 

  23. R. Saeks, S.P. Singh and R-W. Liu, “Fault isolation via component simulation”, IEEE Transactions on Circuit Theory, Vol. CT-19, pp. 634–640, November 1972.

    Google Scholar 

  24. R.M. Biernacki and J.W. Bandler, “Postproduction parameter identification of analog circuits”, Proceedings, IEEE International Symposium on Circuits and Systems, pp. 1082–1086, April 1980.

    Google Scholar 

  25. R.M. Biernacki and J.A. Starzyk, “Sufficient test conditions for parameter identification of analog circuits based on voltage measurement”, Proceedings, European Conference on Circuit Theory and Design, Vol. 2, pp. 233–241, September 1980.

    Google Scholar 

  26. T.N. Trick, W. Mayeda and A.A. Sakla, “Calculation of parameter values from node voltage measurement”, IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp. 466–474, July 1979.

    MathSciNet  Google Scholar 

  27. N. Navid and A.N. Willson, Jr., “A theory and an algorithm for analog circuit fault diagnosis”, IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp. 440–456, July 1979.

    MathSciNet  Google Scholar 

  28. T. Ozawa and Y. Kajitani, “Diagnosability of linear active network”, IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp 485–489, July 1979.

    MathSciNet  Google Scholar 

  29. J.A. Starzyk, R.M. Biernacki and J.W. Bandler, “Evaluation of faulty elements within linear subnetworks”, International Journal of Circuit Theory and Applications, Vol. 12, pp. 23–27, January 1984.

    MathSciNet  MATH  Google Scholar 

  30. T. Ozawa, S. Shinoda and M. Yamada, “An equivalent-circuit transformation and its application to network-element-value calculation”, IEEE Transactions on Circuits and Systems, Vol. CAS-30, pp. 432–441, July 1983.

    Google Scholar 

  31. V. Visvanathan and A. Sangiovanni-Vincentalli, “Diagnosability of nonlinear circuits and systems-part I: the dc case”, IEEE Transactions on Circuits and Systems, Vol. CAS-28, pp. 1093–1102, November 1981.

    Google Scholar 

  32. N. Sen and R. Saeks, “A measure of testability and its applications to test point selection theory”, Proceedings, 20th Midwest Symposium on Circuits and Systems, pp. 576–583, August 1977.

    Google Scholar 

  33. N. Sen and R. Saeks, “Fault diagnosis for linear systems via multifrequency measurements”, IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp. 457–465, July 1979.

    MathSciNet  Google Scholar 

  34. H.M.S. Chen and R. Saeks, “A search algorithm for the solution of multifrequency fault diagnosis equations”, IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp. 589–594, July 1979.

    Google Scholar 

  35. R.W. Priester and J.B. Clary, “New Measures of testability and test complexity for linear analog failure analysis”, IEEE Transactions on Circuits and Systems, Vol. CAS-28, pp. 1088–1092, November 1981.

    Google Scholar 

  36. L. Rapisarda and R. DeCarlo, “Analog multifrequency fault diagnosis”, IEEE Transactions on Circuits and Systems, Vol. CAS-30, pp. 223–234, April 1983.

    Google Scholar 

  37. A. Abderrahman, E. Cerny and B. Kaminska, “Optimization-based multifrequency test generation for analog circuits”, Journal of Electronic Testing: Theory and Applications, Vol. 9, pp. 59–73, August/October 1996.

    Google Scholar 

  38. H-T. Sheu and Y-H. Chang, “The relaxation pseudocircuit method for analog fault diagnosis”, International Journal of Circuit Theory and Application, Vol. 24, pp. 201–221, March/April 1996.

    MATH  Google Scholar 

  39. R. Saeks, A. Sangiovanni-Vincentalli and V. Visvanathan, “Diagnosability of nonlinear circuits and systems-part II: dynamical systems”, IEEE Transactions on Circuits and Systems, Vol. CAS-28, pp. 1103–1108, November 1981.

    Google Scholar 

  40. V. Visvanathan and A. Sangiovanni-Vincentalli, “A computational approach for the diagnosability of dynamical circuits”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. CAD-3, pp. 165–171, July 1984.

    Google Scholar 

  41. H. Dai and T.M. Souders, “Time-domain testing strategies and fault diagnosis for analog systems”, IEEE Transactions on Instrumentation and Measurement, Vol. 39, pp. 157–162, February 1990.

    Article  Google Scholar 

  42. A.E. Salama and F.Z. Amer, “Parameter identification approach to fault diagnosis of switched capacitor circuits”, IEE Proceedings-G, Circuits, Devices and Systems, Vol. 139, pp. 467–472, August 1992.

    Google Scholar 

  43. A. Walker, W.E. Alexander and P.K. Lala, “Fault diagnosis in analog circuits using element modulation”, IEEE Design & Test of Computers, Vol. 9, pp. 19–29, March 1992.

    Article  Google Scholar 

  44. Z.F. Huang, C-S. Lin and R-W. Liu, “Node-fault diagnosis and a design of testability”, IEEE Transaction on Circuits and Systems, Vol. CAS-30, pp. 257–265, May 1983.

    MathSciNet  Google Scholar 

  45. A. Materka and M. Strzelecki, “Parametric testing of mixed-signal circuits by ANN processing of transient responses”, Journal of Electronic Testing: Theory and Applications, Vol. 9, pp. 187–202, August/October 1996.

    Google Scholar 

  46. S. Cherubal and A. Chatterjee, “Parametric fault diagnosis for analog systems using functional mapping 1”, Proceedings, Design, Automation and Test in Europe Conference and Exhibition (DATE 1999), pp. 195–200, March 1999.

    Google Scholar 

  47. M. Pronath, V. Gloeckel and H. Graeb, “A parametric test method for analog components in integrated mixed-signal circuits”, Digest of Papers, IEEE/ACM International Conference on Computer-Aided Design (ICCAD-2000), pp. 557–561, November 2000.

    Google Scholar 

  48. Z. Guo and J. Savir, “Algorithm-based fault detection of analog linear time-invariant circuits”, Proceedings, 18th IEEE Instrumentation and Measurement Technology Conference (IMTC 2001), Vol. 1, pp. 49–54, May 2001.

    Google Scholar 

  49. G. Temes, “Efficient methods of fault simulation”, Proceedings, 20th Midwest Symposium on Circuit and Systems, pp. 191–194, August 1977.

    Google Scholar 

  50. W.J. Dejka, “A review of measures of testability for analog systems”, Proceedings, International Automatic Testing Conference (AUTOTESTCON 1977), November 1977.

    Google Scholar 

  51. A.A. Skala, E.I. El-Masry and T.N. Trick, “A sensitivity algorithm for fault detection in analog circuits”, Proceedings, IEEE International Symposium on Circuits and Systems, pp. 1075–1077, April 1980.

    Google Scholar 

  52. M. Slamani and B. Kaminska, “Analog circuit fault diagnosis based on sensitivity computation and functional testing”, IEEE Design & Test of Computers, Vol. 9, pp. 30–39, March 1992.

    Article  Google Scholar 

  53. C-S. Lin, Z.F. Huang and R-W. Liu, “Topological conditions for single-branch-fault”, IEEE Transactions on Circuits and Systems, Vol. CAS-30, pp. 376–381, June 1983.

    MathSciNet  Google Scholar 

  54. H. Maeda, Y. Ohta, S. Kodama and S. Takeda, “Fault diagnosis of non-linear systems: graphical approach to detectability, distinguishability and diagnosis algorithm”, International Journal of Circuit Theory and Applications, Vol. 14, pp. 195–209, July 1986.

    MathSciNet  MATH  Google Scholar 

  55. T. Ozawa, J.W. Bandler and A.E. Salama, “Diagnosability in the decomposition approach for fault location in large analog networks”, IEEE Transactions on Circuits and Systems, Vol. CAS-32, pp. 415–416, April 1985.

    Google Scholar 

  56. J.A. Starzyk and H. Dai, “A decomposition approach for testing large analog networks”, Journal of Electronic Testing: Theory and Applications, Vol. 3, pp. 181–195, October 1992.

    Google Scholar 

  57. D. Ying and H. Yigang, “On the application of artificial neural networks to fault diagnosis in analog circuits with tolerances”, Proceedings, 5th International Conference on Signal Processing (WCCC-ICSP 2000), Vol. 3, pp. 1639–1642, August 2000.

    Google Scholar 

  58. D. Ying, H. Yigang and S. Yichuang, “Fault diagnosis of analog circuits with tolerances using artificial neural networks”, Proceedings, 2000 IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS 2000), pp. 292–295, December 2000.

    Google Scholar 

  59. G.N. Stenbakken and T.M. Souders, “Ambiguity groups and testability”, IEEE Transactions on Instrumentation and Measurement, Vol. 38, pp. 941–947, October 1989.

    Article  Google Scholar 

  60. G.H. Hemink, B.W. Meijer and H.G. Kerkhof, “Testability analysis of analog systems”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 9, pp. 573–583, June 1990.

    Article  Google Scholar 

  61. M. Slamani and B. Kaminska, “Fault observability analysis of analog circuits in frequency domain”, IEEE Transactions on Circuits and Systems, Vol. 43, pp. 134–139, February 1996.

    Google Scholar 

  62. J.A. Starzyk, J. Pang, S. Manetti, M.C. Piccirilli and G. Fedi, “Finding ambiguity groups in low testability analog circuits”, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 47, pp. 1125–1137, August 2000.

    MathSciNet  MATH  Google Scholar 

  63. N.S.C. Babu, “Efficient techniques for fault diagnosis of analog circuits using dictionary approach”, Ph.D. Dissertation, Indian Institute of Technology, Delhi, 1997.

    Google Scholar 

  64. V.C. Prasad and N.S.C. Babu, “Selection of test nodes for analog fault diagnosis in dictionary approach”, IEEE Transactions on Instrumentation and Measurement, Vol. 49, pp. 1289–1297, December 2000.

    Article  Google Scholar 

  65. J.A. Soares Augusto and C.F. Beltran Almeida, “Analog fault diagnosis in nonlinear DC circuits with an evolutionary algorithm”, Proceedings, 2000 Congress on Evolutionary Computation (CEC2000), Vol. 1, pp. 609–616, July 2000.

    Google Scholar 

  66. J. Viehland and T. Fairbanks, “Parallel analog functional test”, Proceedings, 2001 IEEE Autotestcon (IEEE Systems Readiness Technology Conference), pp. 616–624, August 2001.

    Google Scholar 

  67. G.O. Martens and J.D. Dyck, “Fault identification in electronic circuits with the aid of bilinear transformation”, IEEE Transactions on Reliability, Vol. R-21, pp. 99–104, May 1972.

    Google Scholar 

  68. C. Morgan and D.R. Towill, “Application of the multiharmonic Fourier filter to nonlinear system fault location”, IEEE Transactions on Instrumentation and Measurement, Vol. IM-26, pp. 164–169, June 1977.

    Google Scholar 

  69. K.C. Varghese, J.H. Williams and D.R. Towill, “Simplified ATPG and analog fault location via a clustering and separability technique”, IEEE Transaction on Circuits and Systems, Vol. CAS-26, pp. 496–505, July 1979.

    Google Scholar 

  70. P.M. Lin and Y.S. Elcherif, “Analogue circuits fault dictionary-new approaches and implementation”, International Journal of Circuit Theory and Applications, Vol. 13, pp.149–172, April 1985.

    Google Scholar 

  71. S. Seshu and R. Waxman, “Fault isolation in conventional linear systems-a feasibility study”, IEEE Transactions on Reliability, Vol. R-15, pp. 11–16, March 1966.

    Google Scholar 

  72. M.J. Macleod, “Comparison of methods of parameter estimation using pseudo random binary sequences”, Electronics Letters, Vol. 9, pp. 342–343, July 1973.

    Google Scholar 

  73. H.H. Schreiber, “Fault dictionary based upon stimulus design”, IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp. 529–537, September 1979.

    Google Scholar 

  74. F-L. Wang and H.H. Schreiber, “A pragmatic approach to automatic test generation and failure isolation of analog systems”, IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp. 584–585, July 1979.

    Google Scholar 

  75. A. Balivada, J. Chen and J.A. Abraham, “Analog testing with time response parameters”, IEEE Design & Test of Computers, Vol. 13, pp. 18–25, Summer 1996.

    Article  Google Scholar 

  76. A. Balivada, H. Zheng, N. Nagi, A. Chatterjee and J.A. Abraham, “A unified approach for fault simulation of linear mixed signal circuits”, Journal of Electronic Testing: Theory and Applications, Vol. 9, pp. 29–41, August/October 1996.

    Google Scholar 

  77. M.A. Al-Qutayri and P.R. Shepherd, “Go/no-go testing of analogue macros”, IEE Proceedings-G, Circuits, Devices and Systems, Vol. 139, pp. 534–540, August 1992.

    Google Scholar 

  78. W. Hochwald and J.D. Bastian, “A dc approach for analog fault dictionary determination”, IEEE Transactions on Circuits and systems, Vol. CAS-26, pp. 523–529, July 1979.

    Google Scholar 

  79. A. Pahwa and R.A. Rohrer, “Band faults: Efficient approximations to fault bands for the simulation before fault diagnosis of linear circuits”, IEEE Transactions on Circuits and Systems, Vol. CAS-29, pp. 81–88, February 1982.

    Google Scholar 

  80. G. Rutkowski, “A two stage neural network DC fault dictionary”, Proceedings, 1994 IEEE International Symposium on Circuits and Systems (ISCAS’94), Vol. 6, pp. 299–302, June 1994.

    Google Scholar 

  81. D.K. Papakostas and A.A. Hatzopoulos, “Supply current testing in linear bipolar ICs”, Electronics Letters, pp. 128–130, January 1994.

    Google Scholar 

  82. A.A. Hatzopoulos, S. Siskos and T. Laopoulos, “Current conveyor based test structures for mixed-signal circuits”, IEE Proceedings, Circuits, Devices and Systems, Vol. 144, pp. 213–217, August 1997.

    Google Scholar 

  83. S.S. Somayajula, E. Sanchez-Sinencio and J.P. Gyvez, “Analog fault diagnosis based on ramping power supply current signature clusters”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 43, pp. 703–712, October 1996.

    Google Scholar 

  84. A.K.B. Aain, A.H. Bratt and A.P. Dorey, “Testing analog circuits by power supply voltage control”, Electronics Letters, Vol. 30, pp. 214–215, February 1994.

    Google Scholar 

  85. A.K.B. Aain, A.H. Bratt and A.P. Dorey, “Testing analog circuits by AC power supply voltage”, Proceedings, 9th International Conference on VLSI Design, pp. 238–241, January 1996.

    Google Scholar 

  86. W.M. Lindermeir, T.J. Vogels and H.E. Graeb, “Analog test design with I/sub DD/ measurements for the detection of parametric and catastrophic faults”, Proceedings, Design Automation and Test in Europe Conference and Exhibition (DATE 1998), pp.822–827, February 1998.

    Google Scholar 

  87. H. Manhaeve, J. Verfaillie, B. Straka and J.P. Cornil, “Application of supply current testing to analogue circuits, towards a structural analogue test methodology”, Proceedings, European Test Workshop 1999, pp. 51–56, May 1999.

    Google Scholar 

  88. D. Matthes and J. Ford, “Technique for testing a very high speed mixed signal read channel design”, Proceedings, 2000 IEEE International Test Conference, pp. 965–970, October 2000.

    Google Scholar 

  89. A.A. Hatzopoulos and J.M. Kontoleon, “A new approach for automatic fault diagnosis in analog circuits”, International Journal of Circuit Theory and Applications, Vol. 18, pp. 387–400, 1989.

    Google Scholar 

  90. S. Manetti, M.C. Piccirilli and A. Liberatore, “Automatic test point selection for linear analog network fault diagnosis”, Proceedings, IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 25–28, May 1990.

    Google Scholar 

  91. A. Bernieri and G. Betta, “On-line fault detection and diagnosis obtained by implementing neural algorithms on a digital signal processor”, IEEE Transactions on Instrumentation and Measurement, Vol. 45, pp. 894–899, October 1996.

    Google Scholar 

  92. S. Yu, B.W. Jervis, K.R. Eckersall, I.M. Bell, A.G. Hall and G.E. Taylor, “Neural network approach to fault diagnosis in CMOS Op-Amps with gate oxide short faults”, Electronic letters, Vol. 30, pp. 695–696, April 1994.

    Google Scholar 

  93. A. Wu and J. Meador, “Measurement selection for parametric IC fault diagnosis”, Journal of Electronic Testing: Theory and Applications, Vol. 5, pp. 9–18, August 1994.

    Article  Google Scholar 

  94. R. Spina and S.J. Upadhyaya, “Linear circuit fault diagnosis using neuromorphic analyzers”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 44, pp. 188–196, March 1997.

    Google Scholar 

  95. A.I. Nissar and S.J. Upadhyaya, “Fault diagnosis of mixed signal VLSI systems using artificial neural networks”, Proceedings, South-West Symposium on Mixed-Signal Design, pp. 93–98, April 1999.

    Google Scholar 

  96. Z.R. Yang, M. Zwolinski, C.D. Chalk and A.C. Williams, “Applying a robust heteroscedastic probabilistic neural network to analog fault detection and classification”, IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, pp. 142–150, January 2000.

    Google Scholar 

  97. Y. Maidon, B.W. Jervis, N. Dutton and S. Lesage, “Diagnosis of multifaults in analog circuits using multilayer perceptrons”, IEE Proceedings, Circuits, Devices and Systems, Vol. 144, pp. 149–154, June 1997.

    Article  Google Scholar 

  98. M.A. El-Gamal and M.F. Abu El-Yazeed, “A combined clustering and neural network approach for analog multiple hard fault classification”, Journal of Electronic Testing: Theory and Application, Vol. 14, pp. 207–217, June 1999.

    Google Scholar 

  99. L. Carro and M. Negreivos, “Efficient test methodology based on adaptive algorithm”, Proceeding, 35th Design Automation Conference (DAC98), pp. 230–233, June 1998.

    Google Scholar 

  100. E.F. Cota, M. Negreivos, L. Carro and M. Lubaszewaski, “A new adaptive analog test and diagnosis system”, IEEE Transactions on Instrumentation and Measurement, Vol. 49, pp. 223–227, April 2000.

    Article  Google Scholar 

  101. Y-T. Chen and C. Su, “Test waveform shaping in mixed signal test bus by preequalization”, Proceedings, 19th IEEE VLSI Test Symposium (VTS 2001), pp. 260–265, April–May 2001.

    Google Scholar 

  102. M. Aminian and F. Aminian, “A comprehensive examination of neural network architectures for analog fault diagnosis”, Proceedings, INNS-IEEE International Joint Conference on Neural Networks (IJCNN2001), Vol. 3, pp. 2304–2309, July 2001.

    Google Scholar 

  103. M. Favalli, P. Olivo and B. Ricco, “A probabilistic fault model for analog faults in CMOS circuits”, Proceedings, European Design Automation Conference (EDAC), pp. 85–88, February 1991.

    Google Scholar 

  104. B.R. Epstein, M. Czigler and S.R. Miller, “Fault detection and classification in linear integrated circuits: an application of discrimination analysis and hypothesis testing”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 12, pp. 103–113, January 1993.

    Article  Google Scholar 

  105. G. Devarayanadurg, P. Goteti and M. Soma, “Hierarchy based statistical fault simulation of mixed-signal ICs”, Proceedings, 1996 IEEE International Test Conference, pp. 521–527, October 1996.

    Google Scholar 

  106. G. Devarayanadurg, M. Soma, P. Goteti and S.D. Huynh, “Test set selection for structural faults in analog ICs”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, pp. 1026–1039, July 1999.

    Article  Google Scholar 

  107. G. Gielen, Z. Wang and W. Sansen, “Optimal fault detection for analog circuits under manufacturing tolerances”, Electronics Letters, Vol. 32, pp.33–34, January 1996.

    Article  Google Scholar 

  108. Z. Wang, G. Gielen and W. Sansen, “Probabilistic fault detection and the selection of measurements for analog integrated circuits”, IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, Vol. 17, pp. 862–872, September 1998.

    Google Scholar 

  109. S. Ozev, I. Bayraktaroglu and A. Orailogiu, “Test synthesis for mixed-signal SOC paths”, Proceedings, Design, Automation and Test in Europe Conference and Exhibition (DATE 2000), pp. 28–33, March 2000.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

(2005). Introduction. In: Fault Diagnosis of Analog Integrated Circuits. Frontiers in Electronic Testing, vol 30. Springer, Boston, MA. https://doi.org/10.1007/0-387-25743-8_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-25743-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25742-6

  • Online ISBN: 978-0-387-25743-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics