Advertisement

FIV as a Model for HIV: An Overview

  • Ellen E. Sparger
Part of the Infectious Diseases and Pathogenesis book series (IAPA)

Abstract

Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. C. Pedersen, E. W. Ho, M. L. Brown, and J. K. Yamamoto, Isolation of a Tlymphotropic virus from domestic cats with an immunodeficiency-like syndrome, Science 235, 790–793 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    J. K. Yamamoto, E. Sparger, E. W. Ho, P. R. Andersen, T. P. O’Connor, C. P. Mandell, L. Lowenstine, R. Munn, and N. C. Pedersen, Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats, Am. J. Vet. Res. 49, 1246–1258 (1988).PubMedGoogle Scholar
  3. 3.
    P. J. Brown, C. D. Hopper, and D. A. Harbour, Pathological features of lymphoid tissues in cats with natural feline immunodeficiency virus infection, J. Comp. Path. 104, 345–355 (1991).PubMedGoogle Scholar
  4. 4.
    A. M. Beebe, N. Dua, T. G. Gluckstern, P. Moore, N. C. Pedersen, and S. Dandekar, The primary stage of feline immunodeficiency virus infection: viral dissemination and cellular targets, J. Virol. 68, 3080–3091 (1994).PubMedGoogle Scholar
  5. 5.
    C. D. Ackley, J. K. Yamamoto, N. Levy, N. C. Pedersen, and M. D. Cooper, Immunologic abnormalities in pathogen-free cats experimentally infected with feline immunodeficiency virus, J. Virol. 64, 5652–5655 (1990).PubMedGoogle Scholar
  6. 6.
    J. E. Barlough, C. D. Ackley, J. W. George, N. Levy, R. Acevedo, P. F. Moore, B. A. Rideout, M. D. Cooper, and N. C. Pedersen, Acquired immune dysfunction in cats with experimentally induced feline immunodeficiency virus infection: comparison of short-term and long-term infections, J.A.I. D. S. 4, 219–227 (1991).Google Scholar
  7. 7.
    L. J. Diehl, C. K. Mathiason-Dubard, L. L. O’Neil, L. A. Obert, and E. A. Hoover, Induction of accelerated feline immunodeficiency virus disease by acute-phase virus passage, J. Virol. 69, 6149–6157 (1995).PubMedGoogle Scholar
  8. 8.
    R. V. English, P. Nelson, C. M. Johnson, M. Nasisse, W. A. Tompkins, and M. B. Tompkins, Development of clinical disease in cats experimentally infected with feline immunodeficiency virus, J. Infect. Dis. 170, 543–552 (1994).PubMedGoogle Scholar
  9. 9.
    T. Ishida and I. Tomoda, Clinical staging of feline immunodeficiency virus infection, Nippon Juigaku Zasshi. 52, 645–648 (1990).PubMedGoogle Scholar
  10. 10.
    C. Novotney, R. V. English, J. Housman, M. G. Davidson, M. P. Nasisse, C. Jeng, W. C. Davis, and M. B. Tompkins, Lymphocyte population changes in cats naturally infected with feline immunodeficiency virus, AIDS 4, 1213–1218 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    N. C. Pedersen, C. M. Leutenegger, J. Woo, and J. Higgins, Virulence differences between two field isolates of feline immunodeficiency virus (FIV-A Petaluma and FIV-CPGammar) in young adult specific pathogen free cats, Vet. Immunol. Immunopathol. 79, 53–67 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    B. A. Rideout, L. J. Lowestine, C. A. Hutson, P. F. Moore, and N. C. Pedersen, Characterization of morphological changes and lymphocytes subset distribution in lymph nodes from cats with naturally acquired feline immunodeficiency virus infection, Vet. Immunol. Immunopathol. 29, 391–399 (1992).Google Scholar
  13. 13.
    J. K. Yamamoto, H. Hansen, E. W. Ho, T. Y. Morishita, T. Okuda, T. R. Sawa, R. M. Nakamura, and N. C. Pedersen, Epidemiologic and clinical aspects of feline immunodeficiency virus infection in cats from the continental United States and Canada and possible mode of transmission, J. Am. Vet. Med. Assoc. 194, 213–220 (1989).PubMedGoogle Scholar
  14. 14.
    M. Bendinelli, M. Pistello, S. Lombari, A. Poli, C. Garzelli, D. Matteucci, L. Ceccherini-Nelli, G. Malvaldi, and F. Tozzini, Feline immunodeficiency virus: an interesting model for AIDS studies and an important cat pathogen, Clin. Micorbiol. Rev. 8, 87–112 (1995).Google Scholar
  15. 15.
    T. Ishida, T. Washizu, K. Toriyabe, S. Motoyoshi, I. Tomoda, and N. Pedersen, Feline immunodeficiency virus infection in cats of Japan, J. Am. Vet. Med. Assoc. 194, 221–225(1989).PubMedGoogle Scholar
  16. 16.
    M. J. Burkhard, L. A. Obert, L. L. O’Neil, L. J. Diehl, and E. A. Hoover, Mucosal transmission of cell-associated and cell-free feline immunodeficiency virus, AIDS Res. Hum. Retroviruses. 13, 347–355 (1997).PubMedGoogle Scholar
  17. 17.
    M. J. Burkhard and G. A. Dean, Transmission and immunopathogenesis of FIV in cats as a model for HIV, Curr. HIV Res. 1, 15–29 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    S. A. Bishop, C. R. Stokes, T. J. Gruffydd-Jones, C. V. Whiting, and D. A. Harbour, Vaginal and rectal infection of cats with feline immunodeficiency virus, Vet. Microbiol. 51, 217–227(1996).PubMedCrossRefGoogle Scholar
  19. 19.
    L. L. O’Neil, M. J. Burkhard, L. J. Diehl, and E. A. Hoover, Vertical transmission of feline immunodeficiency virus, AIDS Res. Hum. Retroviruses 11, 171–182 (1995).PubMedGoogle Scholar
  20. 20.
    L. L. O’Neil, M. J. Burkhard, and E. A. Hoover, Frequent perinatal transmission of feline immunodeficiency virus by chronically infected cats, J. Virol. 70, 2894–2901 (1996).PubMedGoogle Scholar
  21. 21.
    L. A. Obert and E. A. Hoover, Feline immunodeficiency virus clade C mucosal transmission and disease courses, AIDS Res. Hum. Retroviruses 16, 677–688 (2000).PubMedCrossRefGoogle Scholar
  22. 22.
    L. A. Obert and E. A. Hoover, Relationship of lymphoid lesions to disease course in mucosal feline immunodeficiency virus type C infection, Vet. Pathol. 37, 386–401 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    L. A. Obert and E. A. Hoover, Early pathogenesis of transmucosal feline immunodeficiency virus infection, J. Virol. 76, 6311–6322 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    O. J. Cohen and A. S. Fauci, in Fields Virology, edited by D. M. Knipe and P. M. Howley (Lippincott Williams & Wilkins, Philadelphia, PA, 2001), 2043–2094.Google Scholar
  25. 25.
    T. S. Tochikura, K. A. Hayes, C. M. Cheney, T. A. Tanabe, J. L. Rojko, L. E. Mathes, and R. G. Olsen, In vitro replication and cytopathogenicity of the feline immunodeficiency virus for feline T4 thymic lymphoma 3201 cells, Virology 179, 492–497 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Goff, in Fields Virology, edited by D. M. Knipe and P. M. Howley (Lippincott Williams & Wilkins, Philadelphia, 2001), 1871–1939.Google Scholar
  27. 27.
    R. Steinman, J. Dombrowski, T. O’Connor, R. C. Montelaro, Q. Tonelli, K. Lawrence, C. Seymour, J. Goodness, N. C. Pedersen, and P. R. Andersen, Biochemical and immunological characterization of the major structural proteins of feline immunodeficiency virus, J. Gen. Virol. 71, 701–706 (1990).PubMedGoogle Scholar
  28. 28.
    H. F. Egberink, J. Ederveen, R. C. Montelaro, N. C. Pedersen, M. C. Horzinek, and M. J. Koolen, Intracellular proteins of feline immunodeficiency virus and their antigenic relationship with equine infectious anaemia virus proteins, J. Gen. Virol. 71, 739–743(1990).PubMedGoogle Scholar
  29. 29.
    P. C. Wagaman, C. S. Hasselkus-Light, M. Henson, D. L. Lerner, T. R. Phillips, and J. H. Elder, Molecular cloning and characterization of deoxyuridine triphosphatase from feline immunodeficiency virus (FIV), Virology 196, 451–457 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    J. H. Elder, D. L. Lerner, C. S. Hasselkus-Light, D. J. Fontenot, E. Hunter, P. A. Luciw, R. C. Montelaro, and T. R. Phillips, Distinct subsets of retroviruses encode dUTPase, J. Virol. 66, 1791–1794 (1992).PubMedGoogle Scholar
  31. 31.
    J. Coffin, in Fundamental Virology, edited by B. N. Fields and K. M. Knipe (Raven Press, New York, 1991), 645–708.Google Scholar
  32. 32.
    M. Shimojima, T. Miyazawa, Y. Ikeda, E. L. McMonagle, H. Haining, H. Akashi, Y. Takeuchi, M. J. Hosie, and B. J. Willett, Use of CD134 as a primary receptor by the feline immunodeficiency virus, Science 303, 1192–1195 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    B. J. Willett, L. Picard, M. J. Hosie, J. D. Turner, K. Adema, and P. R. Clapham, Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses, J. Virol. 71, 6407–6415 (1997).PubMedGoogle Scholar
  34. 34.
    S. Giannecchini, F. Bonci, M. Pistello, D. Matteucci, O. Sichi, P. Rovero, and M. Bendinelli, The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry, Virology 320, 156–166 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    A. P. De Parseval, S. V. Su, J. H. Elder, and B. Lee, Specific interaction of feline immunodeficiency virus surface glycoprotein with human DC-SIGN, J. Virol. 78, 2597–2600(2004).PubMedCrossRefGoogle Scholar
  36. 36.
    A. P. De Parseval and J. H. Elder, Binding of recombinant feline immunodeficiency virus surface glycoprotein to feline cells: role of CXCR4, cell-surface heparans, and an unidentified non-CXCR4 receptor, J. Virol. 75, 4528–4539 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    R. A. Olmsted, V. M. Hirsch, R. H. Purcell, and P. R. Johnson, Nucleotide sequence analysis of feline immunodeficiency virus: genome organization and relationship to other lentiviruses, Proc. Natl. Acad. Sci. USA 86, 8088–8092 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    R. L. Talbott, E. E. Sparger, K. M. Lovelace, W. M. Fitch, N. C. Pedersen, P. A. Luciw, and J. H. Elder, Nucleotide sequence and genomic organization of feline immunodeficiency virus, Proc. Natl. Acad. Sci. USA 86, 5743–5747 (1989).PubMedCrossRefGoogle Scholar
  39. 39.
    F. J. Thompson, J. Elder, and J. C. Neil, Cis-and trans-regulation of feline immunodeficiency virus: identification of functional binding sites in the long terminal repeat, J. Gen. Virol. 75, 545–554 (1994).PubMedGoogle Scholar
  40. 40.
    E. E. Sparger, B. L. Shacklett, L. Renshaw-Gegg, P. A. Barry, N. C. Pedersen, J. H. Elder, and P. A. Luciw, Regulation of gene expression directed by the long terminal repeat of the feline immunodeficiency virus, Virology 187, 165–177 (1992).PubMedCrossRefGoogle Scholar
  41. 41.
    T. R. Phillips, C. Lamont, D. A. M. Konings, B. L. Schacklett, C. A. Hamson, P. A. Luciw, and J. H. Elder, Identification of the rev transactivation and rev-responsive elements of feline immunodeficiency virus, J. Virol. 66, 5464–5471 (1992).PubMedGoogle Scholar
  42. 42.
    T. R. Phillips, R. L. Talbott, C. Lamont, S. Muir, K. Lovelace, and J. H. Elder, Comparison of two host cell range variants of feline immunodeficiency virus, J. Virol. 64,4605–4613 (1990).PubMedGoogle Scholar
  43. 43.
    T. Miyazawa, M. Kohmoto, Y. Kawaguchi, K. Tomonaga, T. Toysaki, K. Kiuta, A. Adachi, and T. Mikami, The AP-1 binding site in the feline immunodeficiency virus long terminal repeat is not required for virus replication in feline T lymphocytes, J. Gen. Virol. 74,1573–1580 (1993).PubMedGoogle Scholar
  44. 44.
    M. T. Browning, F. Mustafa, R. D. Schmidt, K. A. Lew, and T. A. Rizvi, Delineation of sequences important for efficient packaging of feline immunodeficiency virus RNA, J. Gen. Virol. 84, 621–627 (2003).PubMedCrossRefGoogle Scholar
  45. 45.
    I. Kemler, R. Barraza, and E. M. Poeschla, Mapping the encapsidation determinants of feline immunodeficiency virus, J. Virol. 76, 11889–11903 (2002).PubMedCrossRefGoogle Scholar
  46. 46.
    T. Whitwam, M. Peretz, and E. Poeschla, Identification of a central DNA flap in feline immunodeficiency virus, J. Virol. 75, 9407–9414 (2001).PubMedCrossRefGoogle Scholar
  47. 47.
    L. Bigornia, K. M. Lockridge, and E. E. Sparger, Construction and in vitro characterization of attenuated FIV LTR mutant viruses, J. Virol. 75, 1054–1060 (2001).PubMedCrossRefGoogle Scholar
  48. 48.
    Y. Inoshima, Y. Miyazawa, and T. Mikami, In vivo functions of the auxiliary genes and regulatory elements of feline immunodeficiency virus, Vet. Microbiol. 60, 141–153 (1998).PubMedCrossRefGoogle Scholar
  49. 49.
    Y. Kawaguchi, K. Tomonaga, K. Maeda, M. Ono, T. Miyazawa, M. Kohmoto, T. Y., and T. Mikami, The C/EBP site in the feline immunodeficiency virus (FIV) long terminal repeart (LTR) is necessary for its efficient replication and is also involved in the inhibition of FIV LTR-directed gene expression by pseudorabies virus ICP4, Virology 208,492–499 (1995).PubMedCrossRefGoogle Scholar
  50. 50.
    Y. Ikeda, Y. Inoshima, Y. Kawaguchi, K. Maeda, M. Kohmoto, C. Kai, T. Miyazawa, and T. Mikami, Protein-binding properties of the putative AP-1 and ATF sequence in the feline immunodeficiency virus long terminal repeat, J. Gen. Virol. 79, 95–99 (1998).PubMedGoogle Scholar
  51. 51.
    B. R. Cullen and W. C. Greene, Regulatory pathways governing HIV-1 replication, Cell 58, 423–426 (1989).PubMedCrossRefGoogle Scholar
  52. 52.
    B. R. Cullen, Human immunodeficiency virus as a protoypic complex retrovirus, J. Virol. 65, 1053–1056 (1991).PubMedGoogle Scholar
  53. 53.
    D. Derse, Bovine leukemia virus transcription is controlled by a virus-encoded transactiving factor and by cis-acting response elements, J. Virol. 61, 2462–2471 (1987).PubMedGoogle Scholar
  54. 54.
    R. P. S. Kwok, M. E. Laurance, J. R. Lundblad, P. S. Goldman, H. M. Shih, L. M. Connor, S. J. Marriott, and R. H. Goodman, Control of cAMP-regulated enhancers by the viral transctivator Tax through CREB and the co-activator CBP, Nature 380, 642–646(1996).PubMedCrossRefGoogle Scholar
  55. 55.
    L. Willems, R. Kettmann, G. Chen, D. Portetelle, A. Burny, and D. Derse, A cyclic AMPresponsive DNA-binding protein (CREB2) is a cellular transactivator of the bovine leukemia virus long terminal repeat, J. Virol. 66, 766–772 (1992).PubMedGoogle Scholar
  56. 56.
    L. J. Zhao and C. Z. Giam, Interaction of the human T-cell lymphotropic virus type 1 (HTLV-1) transcriptional activator Tax with cellular factors that bind specifically to the 21-base-pair repeats in the HTLV-1 enhancer, Proc. Natl. Acad. Sci. USA 88, 11445–11449(1991).PubMedCrossRefGoogle Scholar
  57. 57.
    B. A. Morse, L. M. Carruth, and J. E. Clements, Targeting of the visna virus tat protein to AP-1 sites: interactions with the bZIP domains of fos and jun in vitro and in vivo, J. Virol. 73, 37–45 (1999).PubMedGoogle Scholar
  58. 58.
    J. L. Hess, J. A. Small, and J. E. Clements, Sequences in the visna virus long terminal repeat that control transciptional activity and respond to viral trans-activation: involvement of AP-1 sites in basal activity and trans-activation, J. Virol. 63, 3001–3015 (1989).PubMedGoogle Scholar
  59. 59.
    L. M. Carruth, B. A. Morse, and J. E. Clements, The leucine domain of the visna virus tat protein mediates targeting to an AP-1 site in the viral long terminal repeat, J. Virol. 70, 4338–4344 (1996).PubMedGoogle Scholar
  60. 60.
    K. Tomonaga and T. Mikami, Molecular biology of the feline immunodeficiency virus auxiliary genes, J. Gen. Virol. 77, 1611–1621 (1996).PubMedGoogle Scholar
  61. 61.
    A. K. Waters, A. P. De Parseval, D. L. Lerner, J. C. Neil, F. J. Thompson, and J. H. Elder, Influence of ORF2 on host cell tropism of feline immunodeficiency virus, Virology 215,10–16 (1996).PubMedCrossRefGoogle Scholar
  62. 62.
    C. Nueveut, R. Vigne, J. E. Clements, and J. Sire, The visna transcriptional activator TAT: effects on the viral LTR and on cellular genes, Virology 197, 236–244 (1993).CrossRefGoogle Scholar
  63. 63.
    S. Villet-Hoc, C. Faure, B. Bouzar, G. Verdier, Y. Chelbloune, and C. Legras, Tat proteins of caprine arthritis encephalitis (CAEV) and maedi visna (MV) viruses are not transactivator proteins of MVV and CAEV LTRs, American Society of Virology Conference (University of Kentucky). 21st annual meeting, 166 (2002).Google Scholar
  64. 64.
    A. Gatignol, Identification of cellular proteins that bind to the human immunodeficiency virus type 1 trans-activation-responsive TAR element, Proc. Natl. Acad. Sci. USA 86,7828–7832 (1989).PubMedCrossRefGoogle Scholar
  65. 65.
    R. Marciniak, M. Garcia-Blanco, and P. Sharp, Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 87, 3624–3628(1990).PubMedCrossRefGoogle Scholar
  66. 66.
    A. P. De Parseval and J. H. Elder, Demonstration that orf2 encodes the feline immunodefiency virus tranactivating (Tat) protein and characterization of a unique gene product with partial rev activity, J. Virol. 73, 608–617 (1999).PubMedGoogle Scholar
  67. 67.
    U. Chatterji, A. P. De Parseval, and J. H. Elder, Feline immunodeficiency virus Orf-A is distinct from other lentivirus transactivators, J. Virol. 76, 9624–9634 (2002).PubMedCrossRefGoogle Scholar
  68. 68.
    K. Tomonaga, Y. Shin, M. Fukasawa, T. Miyazawa, A. Adachi, and T. Mikami, Feline immunodeficiency virus gene expression: analysis of the RNA splicing pattern and the monocistronic rev mRNA, J. Gen. Virol. 74, 2409–2417 (1993).PubMedGoogle Scholar
  69. 69.
    T. Kiyomasu, T. Miyazawa, T. Furuya, R. Shibata, H. Sakai, J. Sakuragi, M. Fukasawa, N. Maki, A. Hasegawa, T. Mikami, and A. Adachi, Identification of feline immunodeficiency virus rev gene activity, J. Virol. 65, 4539–4542 (1991).PubMedGoogle Scholar
  70. 70.
    M. L. Manrique, C. C. P. Celma, S. A. Gonzalez, and J. L. Affranchino, Mutational analysis of the feline immunodeficiency virus matrix protein, Virus Res. 76, 103–113(2001).PubMedCrossRefGoogle Scholar
  71. 71.
    J. H. Elder, M. Schnolzer, C. S. Hasselkus-Light, M. Henson, D. A. Lerner, T. R. Phillips, P. C. Wagaman, and S. B. H. Kent, Identification of proteolytic processing sites within the Gag and Pol polyproteins of feline immunodeficiency virus, J. Virol. 67, 1869–1876(1993).PubMedGoogle Scholar
  72. 72.
    R. Swanstrom and J. W. Wills, in Retroviruses, edited by J. Coffin, S. H. Hughes and H. E. Varmus (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1997), 263–334.Google Scholar
  73. 73.
    E. O. Freed and M. A. Martin, in Fields Virology, edited by D. M. Knipe and P. M. Howley (Lippincott Williams & Wilkins, Philadephia, PA, 2001), 1971–2041.Google Scholar
  74. 74.
    T. L. South, P. R. Blake, R. C. Sowder, L. O. Arthur, L. E. Henderson, and M. F. Summers, The nucleocapsid protein isolated from HIV-1 particles binds zinc and forms retroviraltype zinc fingers, Biochemistry 29, 7786–7789 (1990).PubMedCrossRefGoogle Scholar
  75. 75.
    M. Moscardini, M. Pistello, M. Bendinelli, D. Ficheux, J. T. Miller, C. Gabus, S. F. Le Grice, W. K. Surewicz, and J. L. Darlix, Functional interactions of nucleocapsid protein of feline immunodeficiency virus and cellular prion protein with the viral RNA, J. Mol. Biol. 318, 149–159 (2002).PubMedCrossRefGoogle Scholar
  76. 76.
    E. O. Freed, Viral late domains, J. Virol. 76, 4679–4687 (2002).PubMedCrossRefGoogle Scholar
  77. 77.
    H. G. Gottlinger, T. Dorfman, J. G. Sodroski, and W. A. Haseltine, Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release, Proc. Natl. Acad. Sci. USA 88, 3195–3199 (1991).PubMedCrossRefGoogle Scholar
  78. 78.
    M. Huang, J. Orenstein, M. Martin, and E. Freed, p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease, J. Virol. 69, 6810–6818 (1995).PubMedGoogle Scholar
  79. 79.
    M. Sudol, Structure and function of the WW domain, Prog. Biophys. Molec. Biol. 65,113–132 (1996).CrossRefGoogle Scholar
  80. 80.
    D. G. Demirov, A. Ono, J. M. Orenstein, and E. O. Freed, Overexpression of the Nterminal domain of TSF101 inhibits HIV-1 budding by blocking late domain function, Proc. Natl. Acad. Sci. USA 99, 955–960 (2002).PubMedCrossRefGoogle Scholar
  81. 81.
    J. E. Garrus, U. K. von Schwedler, O. W. Pornillos, S. G. Morham, K. H. Zavitz, H. E. Wang, D. A. Wettstein, K. M. Stray, M. Cote, R. L. Rich, and W. I. Sundquist, Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding, Cell 107, 55–65(2001).PubMedCrossRefGoogle Scholar
  82. 82.
    J. Martin-Serrano, T. Zang, and P. D. Bieniasz, HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress, Nat. Med. 7,1313–1319 (2001).PubMedCrossRefGoogle Scholar
  83. 83.
    X. Guo, J. Hu, J. B. Whitney, R. S. Russell, and C. Liang, Important role for the CA-NC spacer region in the assembly of bovine immunodeficiency virus Gag protein, J. Virol. 78, 551–560 (2004).PubMedCrossRefGoogle Scholar
  84. 84.
    H. G. Krausslich, M. Facke, A. M. Heuser, J. Konvalinka, and H. Zentgraf, The spacer peptide between human immunodeficiency virus capsid and nucleoscapsid proteins is essential for ordered assembly and viral infectivity, J. Virol. 69, 3407–3419(1995).PubMedGoogle Scholar
  85. 85.
    M. A. Accola, S. Hoglund, and H. G. Gottlinger, A putative a-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly, J. Virol. 72, 2071–2078 (1998).Google Scholar
  86. 86.
    S. Morikawa and D. H. L. Bishop, Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus, Virology 186, 389–397 (1992).PubMedCrossRefGoogle Scholar
  87. 87.
    S. Morikawa, T. F. Booth, and D. H. L. Bishop, Analyses of the requirements for the synthesis of virus-like particles by feline immunodeficiency virus Gag using baculovirus vectors, Virology 183, 288–297 (1991).PubMedCrossRefGoogle Scholar
  88. 88.
    K. von der Helm, Retroviral proteases: structure, function and inhibition from a nonanticipated viral enzyme to the target of a most promising HIV therapy, Biol. Chem. 377,765–774 (1996).PubMedGoogle Scholar
  89. 89.
    G. S. Laco, C. Schalk-Hihi, J. Lubkowski, G. M. Morris, A. Zdanov, A. Olson, J. H. Elder, A. Wlodawer, and A. Gustchina, Crystal structures of the inactive D30N mutant of feline immunodeficiency virus protease complexed with a substrate and an inhibitor, Biochemistry 36, 10696–10708 (1997).PubMedCrossRefGoogle Scholar
  90. 90.
    A. Wlodawer, A. Gustchina, L. Reshetnikova, J. Lubkowski, A. Zdanov, K. Y. Hui, E. L. Angleton, W. G. Farmerie, M. M. Goodenow, and D. Bhatt, Structure of an inhibitor complex of the proteinase from feline immunodeficiency virus, Nat. Struct. Biol. 2,480–488 (1995).PubMedCrossRefGoogle Scholar
  91. 91.
    M. Schnolzer, H. R. Rackwitz, A. Gustchina, G. S. Laco, A. Wlodawer, J. H. Elder, and S. B. Kent, Comparative properties of feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) proteinases prepared by total chemical synthesis., Virology 224, 268–275 (1996).PubMedCrossRefGoogle Scholar
  92. 92.
    Y. Lin, Z. Q. Beck, T. Lee, V. Le, G. M. Morris, A. J. Olson, C. Wong, and J. H. Elder, Alteration of substrate and inhibitor specificity of feline immunodeficiency virus protease, J. Virol. 74, 4710–4720 (2000).PubMedCrossRefGoogle Scholar
  93. 93.
    T. Lee, G. S. Laco, B. E. Torbett, H. S. Fox, D. L. Lerner, J. H. Elder, and C. H. Wong, Analysis of the S3 and S3′ subsite specificities of feline immunodeficiency virus (FIV) protease: development of a broad-based protease inhibitor efficacious against FIV, SIV, and HIV in vitro and ex vivo, Proc. Natl. Acad. Sci. USA 95, 939–944 (1998).PubMedCrossRefGoogle Scholar
  94. 94.
    Z. Q. Beck, Y. Lin, and J. H. Elder, Molecular basis for the relative substrate specificity of human immunodeficiency virus type 1 and feline immunodeficiency virus proteases, J. Virol. 75, 9458–9469 (2001).PubMedCrossRefGoogle Scholar
  95. 95.
    Y. C. Lin, Z. Q. Beck, G. M. Morris, A. J. Olson, and J. H. Elder, Structural basis for distinctions between substrate and inhibitor specificities for feline immunodeficiency virus and human immunodeficiency virus proteases, J. Virol. 77, 6589–6600 (2003).PubMedCrossRefGoogle Scholar
  96. 96.
    J. Kervinen, J. Lubkowski, A. Zdanov, D. Bhatt, B. M. Dunn, K. Y. Hui, D. J. Powell, J. Kay, A. Wlodawer, and A. Gustchina, Toward a universal inhibitor of retroviral proteases: comparative analysis of the interactions of LP-130 complexed with proteases from HIV-1, FIV, and EIAV, Protein Sci. 7, 2314–2323 (1998).PubMedGoogle Scholar
  97. 97.
    B. Buhler, Y. Lin, G. M. Morris, O. A. J., C. Wong, D. D. RIchman, J. H. Elder, and B. E. Torbett, Viral evolution in response to the broad-based retroviral protease inhibitor TL-3, J. Virol. 75, 9502–9508 (2001).PubMedCrossRefGoogle Scholar
  98. 98.
    M. Hottiger and U. Hubscher, Human immunodeficiency virus type 1 reverse transcriptase, Biol. Chem. Hopppe Seyler 377, 97–120 (1996).Google Scholar
  99. 99.
    T. W. North, G. L. North, and N. C. Pedersen, Feline immunodeficiency virus, a model for reverse transcriptase-targeted chemotherapy for acquired immune deficiency syndrome, Antimicrob. Agents Chemother. 33, 915–919 (1989).PubMedGoogle Scholar
  100. 100.
    T. W. North, R. C. Cronn, K. M. Remington, R. T. Tandberg, and R. C. Judd, Characterization of reverse transcriptase from feline immunodeficiency virus, J. Biol. Chem. 265, 5121–5128 (1990).PubMedGoogle Scholar
  101. 101.
    M. Amacker, M. Hottiger, and U. Hubscher, Feline immunodeficiency virus reverse transcritpase: expression, functional characterization, and reconstitution of the 66-and 51-kilodalton subunits, J. Virol. 69, 6273–6279 (1995).PubMedGoogle Scholar
  102. 102.
    R. C. Cronn, J. D. Whitmer, and T. W. North, RNase H activity associated with reverse transcriptase from feline immunodeficiency virus, J. Virol. 66, 1215–1218 (1992).PubMedGoogle Scholar
  103. 103.
    G. J. Klarmann, R. A. Smith, R. F. Schinazi, T. W. North, and B. D. Preston, Site-specific incorporation of nucleoside analogs by HIV-1 reverse transcriptase and the template grip mutant P157S, J. Biol. Chem. 275, 359–366 (2000).PubMedCrossRefGoogle Scholar
  104. 104.
    K. M. Remington, B. Chesebro, K. Wehrly, N. C. Pedersen, and T. W. North, Mutants of feline immunodeficiency virus resistant to 3′-azido-3′-deoxythymidine, J. Virol. 65, 308–312 (1991).PubMedGoogle Scholar
  105. 105.
    K. M. Remington, Y.-Q. Zhu, T. R. Phillips, and T. W. North, Rapid phenotypic reversion of zidovudine-resistant feline immunodeficiency virus without loss of drug-resistant feline immunodeficiency virus without loss of drug-resistant reverse transcriptase, J. Virol. 68, 632–637 (1994).PubMedGoogle Scholar
  106. 106.
    R. A. Smith, K. M. Remington, R. M. Lloyd, R. F. Schinazi, and T. W. North, A novel Met-to-Thr mutation in the YMDD motif of reverse transcriptase from feline immunodeficiency virus confers resistance to oxathiolane nucleosides, J. Virol. 71, 2357–2362 (1997).PubMedGoogle Scholar
  107. 107.
    S. M. A. McCrackin and D. G. McBroom, In vitro characterization of FIV-pPPR, a pathogenic molecular clone of feline immunodeficiency virus, and two drug-resistant pol gene mutants, Am J. Vet. Res. 62, 588–594 (2001).CrossRefGoogle Scholar
  108. 108.
    R. A. Smith, K. M. Remington, B. D. Preston, R. F. Schinazi, and T. W. North, A novel point mutation at position 156 of reverse transcriptase from feline immunodeficiency virus confers resistance to the combination of (-)-beta-2′,3′-dideoxy-3′-thiacytidine and 3′-azido-3′-deoxythymidine, J. Virol. 72, 2335–2340 (1998).PubMedGoogle Scholar
  109. 109.
    J. Auwerx, T. W. North, B. D. Preston, G. J. Klarmann, E. de Clercq, and J. Balzarini, Chimeric human immunodeficiency virus type 1 and feline immunodeficiency virus reverse transcriptases: role of the subunits in resistance/sensitivity to non-nucleoside reverse transcriptase inhibitors, Mol. Pharmacol. 61, 400–406 (2002).PubMedCrossRefGoogle Scholar
  110. 110.
    M. Amacker and U. Hubscher, Chimeric HIV-1 and feline immunodeficiency virus reverse transcriptases: critical role of the p51 subunit in the structural integrity of heterodimeric lentiviral DNA polymerases, J. Mol. Biol. 278, 757–765 (1998).PubMedCrossRefGoogle Scholar
  111. 111.
    J. E. Barlough, T. W. North, C. L. Oxford, K. M. Remington, S. Dandekar, M. N. Ellis, and N. C. Pedersen, Feline immunodeficiency virus infection of cats as a model to test the effect of certain in vitro selection pressures on the infectivity and virulence of resultant lentivirus variants, Antiviral Res. 22, 259–272 (1993).PubMedCrossRefGoogle Scholar
  112. 112.
    M. H. Gadsen, E. M. McIntosh, J. C. Game, P. J. Wilson, and R. H. Haynes, dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae, EMBO J. 12, 4425–4431 (1993).Google Scholar
  113. 113.
    S. L. Payne and J. H. Elder, The role of retroviral dUTPases in replication and virulence, Curr. Protein Pept. Sci. 2, 381–388 (2001).PubMedCrossRefGoogle Scholar
  114. 114.
    D. L. Lerner, P. C. Wagaman, T. Phillips, O. Prospero-Garcia, S. J. Henriksen, H. S. Fox, F. E. Bloom, and J. H. Elder, Increased mutation frequency of feline immunodeficiency virus lacking functional deoxyuridine-triphosphatase, Proc. Natl. Acad. Sci, USA 92, 7480–7484 (1995).PubMedCrossRefGoogle Scholar
  115. 115.
    W. K. Steagall, M. D. Robek, S. T. Perry, F. J. Fuller, and S. L. Payne, Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages, Virology 210, 302–313 (1995).PubMedCrossRefGoogle Scholar
  116. 116.
    L. Selig, S. Benichou, M. E. Rogel, L. I. Wu, M. A. Vodicka, J. Sire, R. Benarous, and M. Emerman, Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest, J. Virol. 71, 4842–4846 (1997).PubMedGoogle Scholar
  117. 117.
    L. M. Mansky, S. Preveral, L. Selig, R. Benarous, and S. Benichou, The interaction of Vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 in vivo mutation rate, J. Virol. 74, 7039–7047 (2000).PubMedCrossRefGoogle Scholar
  118. 118.
    L. M. Mansky, E. Le Rouzic, S. Benichou, and L. C. Gajary, Influence of reverse transcriptase variants, drugs, and Vpr on human immunodeficiency virus type 1 mutant frequencies, J. Virol. 77, 2071–2080 (2003).PubMedCrossRefGoogle Scholar
  119. 119.
    M. Bouhamdan, S. Benichou, F. Rey, J. Navarro, I. Agostini, B. Spire, J. Camonis, G. Slupphaug, R. Vigne, R. Benarous, and J. Sire, Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme, J. Virol. 70, 697–704 (1996).PubMedGoogle Scholar
  120. 120.
    P. O. Brown, in Retroviruses, edited by J. M. Coffin, S. H. Hughes, and H. E. Varmus (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1997), 161–204.Google Scholar
  121. 121.
    C. Vink, K. H. Van Der Linden, and R. H. A. Plasterk, Activities of the feline immunodeficiency virus integrase protein produced in Escherichia coli, J. Virol. 68, 1468–1474 (1994).PubMedGoogle Scholar
  122. 122.
    E. Khan, J. P. Mack, R. A. Katz, J. Kulkosky, and A. M. Skalka, Retroviral integrase domains: DNA binding and the recognition of LTR sequences, Nucleic Acids Res. 19, 851–860 (1991).PubMedCrossRefGoogle Scholar
  123. 123.
    Y. Shibagaki and S. A. Chow, Central core domain of retroviral integrase is responsible for target site selection, J. Biol. Chem. 272, 8361–8369 (1997).PubMedCrossRefGoogle Scholar
  124. 124.
    Y. Shibagaki, M. L. Holmes, R. S. Appa, and S. A. Chow, Characterization of feline immunodeficiency virus integrase and analysis of functional domains, Virology 230, 1–10 (1997).PubMedCrossRefGoogle Scholar
  125. 125.
    D. T. Saenz, N. Loewen, M. Peretz, T. Whitwam, R. Barraza, K. G. Howell, J. M. Holmes, M. Good, and E. M. Poeschla, Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants, J. Virol. 78, 2906–2920 (2004).PubMedCrossRefGoogle Scholar
  126. 126.
    R. A. Fouchier and M. H. Malim, Nuclear import of human immunodeficiency virus type-1 preintegration complexes, Adv. Virus Res. 52, 275–299 (1999).PubMedGoogle Scholar
  127. 127.
    B. Bouyac, M., J. D. Dvorin, R. A. Fouchier, Y. Jenkins, B. E. Meyer, L. I. Wu, M. Emerman, and M. H. Malim, HIV-1 infection requires a functional integrase NLS, Cell 7, 1025–1035 (2001).Google Scholar
  128. 128.
    C. L. Woodward, Y. Wang, W. J. Dixon, H. Htun, and S. A. Chow, Subcellular localization of feline immunodeficiency virus integrase and mapping of its karyophiclic determinant, J. Virol. 77, 4516–4527 (2003).PubMedCrossRefGoogle Scholar
  129. 129.
    E. B. Stephens, E. Monck, K. Reppas, and E. J. Butfiloski, Processing of the glycoprotein of feline immunodeficiency virus: effect of inhibitors of glycosylation, J. Virol. 65, 1114–1123 (1991).PubMedGoogle Scholar
  130. 130.
    E. J. Verschoor, E. G. J. Hulskotte, J. Ederveen, M. J. M. Koolen, M. C. Horzinek, and P. J. M. Rottier, Post-translational processing of the feline immunodeficiency virus envelope precursor protein, Virology 193, 433–438 (1993).PubMedCrossRefGoogle Scholar
  131. 131.
    M. L. Poss, S. W. Dow, and E. A. Hoover, Cell-specific envelope glycosylation distinguishes FIV glycoproteins produced in cytopathically and noncytopathically infected cells, Virology 188, 25–32 (1992).PubMedCrossRefGoogle Scholar
  132. 132.
    T. W. Vahlenkamp, A. De Ronde, P. J. M. Rottier, M. C. Horzinek, H. F. Egberink, and E. J. Verschoor, The feline immunodeficiency virus envelope protein precursor: functional analysis of a leader deletion mutant, Vet. Microbiol. 69, 115–116 (1999).PubMedCrossRefGoogle Scholar
  133. 133.
    G. Pancino, L. Camoin, and P. Sonigo, Structural analysis of the principal immunodominant domain of the feline immunodeficieny virus transmembrane glycoprotein, J. Virol. 69, 2110–2118 (1995).PubMedGoogle Scholar
  134. 134.
    G. Pancino, I. Fossati, C. Chapey, S. Castelot, B. Hurtrel, A. Maraillon, D. Katzmann, and P. Sonigo, Structure and variations of feline immunodeficiency virus envelope glycoproteins, Virology 192, 659–662 (1993).PubMedCrossRefGoogle Scholar
  135. 135.
    P.F. Serres, Molecular mimicry betwen the trimeric ectodomain of the transmembrane protein of immunosuppresive lentiviruses (HIV-SIV-FIV) and interleukin 2, C. R. Acad. Sci. Ser III. 323, 1019–1029 (2000).PubMedGoogle Scholar
  136. 136.
    G. Pancino and P. Sonigo, Retention of viral infectivity after extensive mutation of the highly conserved immunodominant domain of the feline immunodeficiency virus envelope, J. Virol. 71, 4339–4346 (1997).PubMedGoogle Scholar
  137. 137.
    H. Garg, F. J. Fuller, and W. A. F. Tompkins, Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion, Virology 321, 274–286 (2004).PubMedCrossRefGoogle Scholar
  138. 138.
    S. Giannecchini, A. Di Fenza, A. M. D’Ursi, D. Matteucci, P. Rovero, and M. Bendinelli, Antiviral activity and conformational features of an octapeptide derived from the membrane-proximal ectodomain of the feline immunodeficiency virus transmembrane glycoprotein, J. Virol. 77, 3724–3733 (2003).PubMedCrossRefGoogle Scholar
  139. 139.
    K. Salzwedel, J. T. West, and E. Hunter, A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity, J. Virol. 73, 2469–2480 (1999).PubMedGoogle Scholar
  140. 140.
    I. Munoz-Barroso, K. Salzwedel, E. Hunter, and R. Blumenthal, Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus-1 envelope glycoprotein-mediated membrane fusion, J. Virol. 73, 6089–6092 (1999).PubMedGoogle Scholar
  141. 141.
    M. A. Rigby, E. C. Holmes, M. Pistello, A. Mackay, A. J. L. Brown, and J. C. Neil, Evolution of structural proteins of feline immunodeficiency virus: molecular epidemiology and evidence of selection for change, J. Gen. Virol. 74, 425–436 (1993).PubMedGoogle Scholar
  142. 142.
    D. L. Sodora, E. G. Shpaer, B. E. Kitchell, S. W. Dow, E. A. Hoover, and J. I. Mullins, Identification of three feline immunodeficiency virus env gene subtypes and comparison of evolutionary patterns between FIV and HIV-1, J. Virol. 68, 2230–2238 (1994).PubMedGoogle Scholar
  143. 143.
    W. K. Greene, J. Meers, G. del Fierro, P. R. Carnegie, and W. F. Robinson, Extensive sequence variation of feline immunodeficiency virus env gene in isolates from naturally infected cats, Arch. Virol. 133, 51–62 (1993).PubMedCrossRefGoogle Scholar
  144. 144.
    M. G. Pistello, E. Cammarota, E. Nicoletti, D. Matteucci, M. Curcio, D. Del Mauro, and M. Bendinelli, Analysis of the genetic diversity and phylogenetic relationship of Italian isolates of feline immunodeficiency virus indicates a high prevalence and heterogeneity of subtype B, J. Gen. Virol. 78, 2247–2257 (1997).PubMedGoogle Scholar
  145. 145.
    M. R. Pecoraro, K. Tomonaga, T. Miyazawa, Y. Kawaguchi, S. Sugita, Y. Tohya, C. Kai, M. E. Etcheverrigaray, and T. Mikami, Genetic diversity of Argentine isolates of feline immunodeficiency virus, J. Gen. Virol. 77, 2031–2035 (1996).PubMedGoogle Scholar
  146. 146.
    A. Steinrigl and D. Klein, Phylogenetic analysis of feline immunodeficiency virus in Central Europe: a prerequisite for vaccination and molecular diagnostics, J. Gen. Virol. 84, 1301–1307 (2003).PubMedCrossRefGoogle Scholar
  147. 147.
    S. Kakinuma, K. Motokawa, T. Hohdatsu, J. K. Yamamoto, H. Koyama, and H. Hashimoto, Nucleotide sequence of feline immunodeficiency virus: classification of Japanese isolates into two subtypes which are distinct from non-Japanese subtypes, J. Virol. 69, 3639–3646 (1995).PubMedGoogle Scholar
  148. 148.
    G. Inada, T. Miyazawa, Y. Inoshima, M. Kohmoto, Y. Ikeda, C. H. Liu, J. A. Lin, T. F. Kuo, and T. Mikami, Phylogenetic analysis of feline immunodeficiency virus isolated from cats in Taiwan, Arch. Virol. 142, 1456–1459 (1997).CrossRefGoogle Scholar
  149. 149.
    M. A. Carpenter, E. W. Brown, D. W. MacDonald, and S. J. O’Brien, Phylogeographic patterns of feline immunodeficiency virus genetic diversity in the domestic cat, Virology 251, 234–243 (1998).PubMedCrossRefGoogle Scholar
  150. 150.
    M. H. Bachmann, C. K. Mathiason-Dubard, G. H. Learn, A. G. Rodrigo, D. L. Sodora, P. Mazzetti, H. A. Hoover, and J. I. Mullins, Genetic diversity of feline immunodeficiency virus: dual infection, recombination, and distinct evolutionary rates among envelope sequence clades, J. Virol. 71, 4241–4253 (1997).PubMedGoogle Scholar
  151. 151.
    E. A. Weaver, E. W. Collisson, M. Slater, and G. Zhu, Phylogenetic analysies of Texas isolates indicate an evolving subtype of the clade B feline immunodeficiency viruses, J. Virol. 78, 2158–2163 (2004).PubMedCrossRefGoogle Scholar
  152. 152.
    M. T. Kyaw-Tanner, W. K. Greene, H. S. Park, and H. S. Robinson, The induction of in vivo superinfection and recombination using feline immunodeficiency virus as the model, Arch. Virol. 138, 261–271 (1994).PubMedCrossRefGoogle Scholar
  153. 153.
    F. Reggeti and D. Bienzle, Feline immunodeficiency virus subtypes A, B and C and intersubtype recombinants in Ontario, Canada, J. Gen. Virol. 85, 1843–1852 (2004).PubMedCrossRefGoogle Scholar
  154. 154.
    E. C. Sabino, E. G. Shpaer, M. G. Morgado, B. T. M. Korber, R. Diaz, V. Bongertz, S. Cavalcante, B. Galvao-Castro, J. I. Mullins, and A. Mayer, Identification of human immunodeficiency virus type 1 envelope genes recombinant between subtypes B and F in two epidemiologically linked individuals in Brazil, J. Virol. 68, 6340–6346 (1994).PubMedGoogle Scholar
  155. 155.
    D. L. Robertson, B. H. Hahn, and P. M. Sharp, Recombination in AIDS viruses, J. Mol. Evol. 40, 249–259 (1995).PubMedCrossRefGoogle Scholar
  156. 156.
    D. L. Robertson, P. M. Sharp, F. E. McCutchan, and B. H. Hahn, Recombination in HIV-1, Nature 37, 124–126 (1995).CrossRefGoogle Scholar
  157. 157.
    M. C. Gemeniano, E. T. Sawai, C. M. Leutenegger, and E. E. Sparger, Feline immunodeficiency virus orf-A is required for virus particle formation and virus infectivity, J. Virol. 77, 8819–8830 (2003).PubMedCrossRefGoogle Scholar
  158. 158.
    M. C. Gemeniano, E. T. Sawai, and E. E. Sparger, Feline immunodeficiency virus Orf-A localizes to the nucleus and induces cell cycle arrest, Virology 253, 167–174 (2004).CrossRefGoogle Scholar
  159. 159.
    M. H. Malim, L. S. Tiley, D. F. McCarn, J. R. Rusche, J. Hauber, and B. R. Cullen, HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence, Cell 60, 675–683 (1990).PubMedCrossRefGoogle Scholar
  160. 160.
    B. K. Felber, M. Hadzopoulou-Cladaras, C. Cladaras, T. Copeland, and G. N. Pavlakis, Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA, Proc. Natl. Acad. Sci. USA 86, 1494–1499 (1989).CrossRefGoogle Scholar
  161. 161.
    G. C. Otero, M. E. Harris, J. E. Donello, and T. J. hope, Leptomycin B inhibits equine infectious anemia virus Rev and feline immunodeficiency virus Rev function but not the function of the hepatitus B virus posttranscriptional regulatory element, J. Virol. 72, 7593–7597 (1998).PubMedGoogle Scholar
  162. 162.
    V. A. Mancuso, T. J. Hope, L. Zhu, D. Derse, T. Phillips, and T. G. Parslow, Posttranscriptional effector domains in the Rev proteins of feline immunodeficiency virus and equine infectious anemia virus, J. Virol. 68, 1998–2001 (1994).PubMedGoogle Scholar
  163. 163.
    T. J. Hope, Viral RNA export, Chem. Biol. 4, 335–344 (1997).PubMedCrossRefGoogle Scholar
  164. 164.
    O. Schatz, M. Oft, C. Dascher, M. Schebesta, O. Rosorius, H. Jaksche, M. Dobrovnik, D. Bevec, and J. Hauber, Interaction of the HIV-1 rev cofactor eukaryotic initiation factor 5A with ribosomal protein L5, Proc. Natl. Acad. Sci. USA 95, 1607–1612 (1998).PubMedCrossRefGoogle Scholar
  165. 165.
    D. Bevec, H. Jaksche, M. Oft, T. Wohl, M. Himmellspach, A. Pacher, M. Schebesta, K. Koettnitz, M. Dobrovnik, R. Csonga, F. Lotspeich, and J. Hauber, Inhibition of HIV-1 replication in lymphocytes by mutants of the Rev cofactor eLF-5A, Science 271, 10829–10833 (1996).CrossRefGoogle Scholar
  166. 166.
    R. A. Hart, J. Billaud, S. J. Choi, and T. R. Phillips, Effects of 1,8-diaminooctane on the FIV Rev regulatory system, Virology 304, 97–104 (2002).PubMedCrossRefGoogle Scholar
  167. 167.
    H. P. Bogerd, A. Echarri, T. M. Ross, and B. R. Cullen, Inhibition of human immunodeficiency virus Rev and human T-cell leukemia virus Rex function, but not Mason-Pfizer monkey virus constitutive transport element activity, by a mutant human nucleoporin targeted to Crm1, J. Virol. 72, 8627–8635 (1998).PubMedGoogle Scholar
  168. 168.
    M. H. Park, E. C. Wolff, and J. E. Folk, Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation, Biofactors 4, 95–104 (1993).PubMedGoogle Scholar
  169. 169.
    K. Strebel, D. Daugherty, and K. Clouse, The HIV “A” (sor) gene product is essential for virus infectivity, Nature 328, 728–730 (1987).PubMedCrossRefGoogle Scholar
  170. 170.
    J. Sodroski, W. C. Goh, and C. Rosen, Replicative and cytopathic potential of HTLV-II/LAV with sor gene deletions, Science 231, 412–417 (1986).CrossRefGoogle Scholar
  171. 171.
    K. Tomonaga, Y. Inoshima, Y. Ikeda, and T. Mikami, Temporal patterns of feline immunodeficiency virus transcripts in peripheral blood cells during the latent stage of infection, J. Gen. Virol. 76, 2193–2204 (1995).PubMedGoogle Scholar
  172. 172.
    K. Tomonaga, J. Norimine, Y. Shin, M. Fukasawa, T. Miyazawa, A. Adachi, T. Toyosaki, Y. Kawaguchi, C. Kai, and T. Mikami, Identification of a feline immunodeficiency virus gene which is essential for cell-free virus infectivity, J. Virol. 66, 6181–6185 (1992).PubMedGoogle Scholar
  173. 173.
    B. L. Shacklett and P. A. Luciw, Analysis of the VIF gene of feline immunodeficiency virus, Virology 204, 860–867 (1994).PubMedCrossRefGoogle Scholar
  174. 174.
    K. Lockridge, S. Himathongkham, E. T. Sawai, M. Chien, and E. E. Sparger, The feline immunodeficiency virus vif gene is required for productive infection of feline peripheral blood mononuclear cells and monocyte-derived macrophages, Virology 261, 25–30 (1999).PubMedCrossRefGoogle Scholar
  175. 175.
    U. Chatterji, C. K. Grant, and J. H. Elder, Feline immunodeficiency virus Vif localizes to the nucleus, J. Virol. 74, 2533–2540 (2001).CrossRefGoogle Scholar
  176. 176.
    D. H. Gabuzda, K. Lawrence, E. Langhoff, E. Terwillinger, T. Dorfman, W. A. Haseltine, and J. Sodroski, Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes, J. Virol. 66, 6489–6495 (1992).PubMedGoogle Scholar
  177. 177.
    N. Madani and D. Kabat, An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral vif protein, J. Virol. 72, 10251–10255 (1998).PubMedGoogle Scholar
  178. 178.
    A. M. Sheehy, N. C. Gaddis, J. D. Choi, and M. H. Malim, Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature 418, 646–650 (2002).PubMedCrossRefGoogle Scholar
  179. 179.
    V. N. Kewal-Ramani and J. M. Coffin, Virology. Weapons of mutational destruction, Science 301, 923–925 (2003).CrossRefGoogle Scholar
  180. 180.
    Q. Yu, R. Konig, S. Pillai, K. Chiles, M. Kearney, S. Palmer, D. Richman, J. M. Coffin, and N. R. Landau, Single-strand specificity of APOBEC3G accounts for minus-strand deaminatin of the HIV genome, Nat. Struct. Mol. Biol. 11, 435–442 (2004).PubMedCrossRefGoogle Scholar
  181. 181.
    S. P. Goff, Death by deamination: a novel host restriction system for HIV-1, Cell 114, 281–283 (2003).PubMedCrossRefGoogle Scholar
  182. 182.
    R. Mariani, D. Chen, B. Schrofelbauer, F. Navarro, R. Konig, B. Bollman, C. Munk, H. Nymark-McMahon, and N. R. Landau, Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif, Cell 114, 21–31 (2003).PubMedCrossRefGoogle Scholar
  183. 183.
    M. Marin, K. M. Rose, S. L. Kozak, and D. Kabat, HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation, Nat. Med. 9, 1398–1403 (2003).PubMedCrossRefGoogle Scholar
  184. 184.
    A. M. Sheehy, N. C. Gaddis, and M. H. Malim, The antiretroviral enzyme APOBEC3G is degraded by the protesome in response to HIV-1 Vif, Nat. Med. 9, 1404–1407 (2003).PubMedCrossRefGoogle Scholar
  185. 185.
    R. M. Norway, P. C. Crawford, C. M. Johnson, and A. Mergia, Thymic lesions in cats infected with a pathogenic molecular clone or an ORF-A/2-deficient molecular clone of feline immunodeficiency virus, J. Virol. 75, 5833–5841 (2001).PubMedCrossRefGoogle Scholar
  186. 186.
    G. Dean and E. E. Sparger, In vivo tropism of molecular cloned isolates of FIV, in Third International Feline Retrovirus Research Symposim. Fort Collins, CO (1996).Google Scholar
  187. 187.
    M. Pistello, M. Moscardini, P. Mazzetti, F. Bonci, L. Zaccaro, P. Isola, G. Freer, S. Specter, I. D. Matteucc, and M. Bendinelli, Development of feline immunodeficiency virus ORFA (tat) mutants: in vitro and in vivo characterization, Virology 298, 84–95 (2002).PubMedCrossRefGoogle Scholar
  188. 188.
    K. Tomonaga, T. Miyazawa, J. Sakuragi, T. Mori, A. Adachi, and T. Mikami, The feline immunodeficiency virus ORF-A gene facilitates efficient viral replication in established T-cell lines and peripheral blood lymphocytes, J. Virol. 67, 5889–5895 (1993).PubMedGoogle Scholar
  189. 189.
    S. Villet, B. A. Bouzar, T. Morin, G. Verdier, C. Legras, and Y. Chebloune, Maedi-visna virus and caprine arthiritis encphalitis virus genomes encode a Vpr-like but no Tat protein, J. Virol. 77, 9632–9638 (2003).PubMedCrossRefGoogle Scholar
  190. 190.
    S. De Rozieres, C. K. Mathiason, M. R. Rolston, U. Chatterji, E. A. Hoover, and J. H. Elder, Characterization of a highly pathogenic molecular clone of feline immunodefi-ciency virus clade C, J. Virol. 78, 8971–8982 (2004).PubMedCrossRefGoogle Scholar
  191. 191.
    L. Diehl, C. K. Mathiason-Dubard, L. L. O’Neil, and E. A. Hoover, Plasma viral RNA load predicts disease progression in accelerated feline immunodeficiency virus infection, J. Virol. 70, 2503–2507 (1996).PubMedGoogle Scholar
  192. 192.
    E. E. Sparger, A. M. Beebe, N. Dua, J. Elder, S. Himathongkam, M. Torten, and J. Higgins, Infection of cats with molecularly cloned and biological isolates of the feline immunodeficiency virus, Virology 205, 546–553 (1994).PubMedCrossRefGoogle Scholar
  193. 193.
    J. C. Woo, G. A. Dean, N. C. Pedersen, and P. F. Moore, Immunopathologic changes in the thymus during the acute stage of experimentally induced feline immunodeficiency virus infection in juvenile cats, J. Virol. 71, 8632–8641 (1997).PubMedGoogle Scholar
  194. 194.
    J. Yang, R. V. English, J. W. Ritchey, M. G. Davidson, T. Wasmoen, J. K. Levy, D. H. Gebhard, M. B. Tompkins, and W. A. F. Tompkins, Molecularly cloned feline immunodeficiency virus NCSU1 YSY3 induces immunodeficiency in specific-pathogen-free cats, J. Virol. 70, 3011–3017 (1996).PubMedGoogle Scholar
  195. 195.
    W. C. Brown, L. Bissey, K. S. Logan, N. C. Pedersen, J. H. Elder, and E. W. Collisson, Feline immunodefiency virus infects both CD4+ and CD8+ T lymphocytes, J. Virol. 65, 3359–3364 (1991).PubMedGoogle Scholar
  196. 196.
    D. Brunner and N. C. Pedersen, Infection of peritoneal macrophages in vitro and in vivo with feline immunodeficiency virus, J. Virol. 63, 5483–5488 (1989).PubMedGoogle Scholar
  197. 197.
    G. A. Dean, S. Himathongkham, and E. E. Sparger, Differential cell tropism of feline immunodeficiency virus molecular clones in vivo, J. Virol. 73, 2596–2603 (1999).PubMedGoogle Scholar
  198. 198.
    S. W. Dow, M. L. Poss, and E. A. Hoover, Feline immunodeficiency virus: a neurotropic lentivirus, J. Acquir. Immune Defic. Syndr. 3, 658–668 (1990).PubMedGoogle Scholar
  199. 199.
    S. W. Dow, C. K. Mathiason, and E. A. Hoover, In vivo monocyte tropism of pathogenic feline immunodeficiency viruses, J. Virol. 73, 6852–6861 (1999).PubMedGoogle Scholar
  200. 200.
    N. Dua, G. Reubel, J. Higgins, and N. C. Pedersen, The primary stage of feline immunodeficiency virus infection, Vet. Immunol. Immunopathol. 43, 337–355 (1994).PubMedCrossRefGoogle Scholar
  201. 201.
    R. V. English, C. M. Johnson, D. H. Gebhard, and M. B. Tompkins, In vivo lympohcyte tropism of feline immunodeficiency virus, J. Virol. 67, 5175–5186 (1993).PubMedGoogle Scholar
  202. 202.
    A. Hein, J. P. Martin, F. Koehren, A. Bingen, and R. Dorries, In vivo infection of rami-fied microglia from adult cat central nervous system by feline immunodeficiency virus, Virology 268, 420–429 (2000).PubMedCrossRefGoogle Scholar
  203. 203.
    A. Kipar, F. S. Boretti, M. M. Meli, K. Failing, M. Reinacher, and H. Lutz, Reduced constitutive cytokine transcription in isolated monocytes of clinically healthy cats, infected with an FIV strain of low pathogenicity, Vet. Immunol. Immunopathol. 98, 215–221 (2004).PubMedCrossRefGoogle Scholar
  204. 204.
    M. Magnani, L. Rossi, A. Fraternale, L. Silvotti, F. Quintavalla, G. Piedimonte, D. Matteucci, F. Baldinotti, and M. Bendinelli, Feline immunodeficiency virus infection of macrophages: in vitro and in vivo inhibition by dideoxycytidine-5′-triphosphate-loaded erythrocytes, AIDS Res. Hum. Retroviruses 10, 1179–1186 (1994).PubMedGoogle Scholar
  205. 205.
    K. Nakagaki, K. Nakagaki, K. Takahashi, D. Schols, E. De Clercq, and T. Tabira, CXCR4 is the primary receptor for feline immunodeficiency virus in astrocytes, J. Neurovirol. 7, 487–492 (2001).PubMedCrossRefGoogle Scholar
  206. 206.
    A. Rogers and E. Hoover, Fetal feline immunodeficiency virus is prevalent and occult, J. Infect. Dis. 186, 895–904 (2002).PubMedCrossRefGoogle Scholar
  207. 207.
    A. B. Rogers, C. K. Mathiason, and E. A. Hoover, Immunohistochemical localization of feline immunodeficiency virus using native species antibodies, Am. J. Pathol. 161, 1143–1151 (2002).PubMedGoogle Scholar
  208. 208.
    T. Toyosaki, T. Miyazawa, T. Furuya, K. Tomonaga, Y.-S. Shin, M. Okita, Y. Kawaguchi, C. Kai, S. Mori, and T. Mikami, Localizaion of the viral antigen of feline immunodeficiency virus in the lymph nodes of cats at the early stage of infection, Arch. Virol. 131, 335–347 (1993).PubMedCrossRefGoogle Scholar
  209. 209.
    T. W. Vahlenkamp, A. De Ronde, N. N. Schuurman, A. L. Van Vliet, J. Van Drunen, M. C. Horzinek, and H. F. Egberink, Envelope gene sequences encoding variable regions 3 and 4 are involved in macrophage tropism of feline immunodeficiency virus, J. Gen. Virol. 80, 2639–2646 (1999).PubMedGoogle Scholar
  210. 210.
    N. Yu, J. N. Billaud, and T. R. Phillips, Effects of feline immunodeficiency virus on astrocyte glutamate uptake: implications for lentivirus-induced central nervous system diseases, Proc. Natl. Acad. Sci. USA 95, 2624–2629 (1998).PubMedCrossRefGoogle Scholar
  211. 211.
    D. L. Lerner, C. K. Grant, A. P. De Parseval, and J. H. Elder, FIV infection of IL-2-dependent and-independent feline lymphocyte lines: host cells range distinctions and specific cytokine upregulation, Vet. Immunol. Immunopathol. 65, 277–297 (1998).PubMedCrossRefGoogle Scholar
  212. 212.
    M. J. Hosie, B. J. Willett, D. Klein, T. H. Dunsford, C. Cannon, M. Shimojima, J. C. Neil, and O. Jarett, Evolution of replication efficiency following infection with a molecularly cloned feline immunodeficiency virus of low virulence, J. Virol. 76, 6062–6072 (2002).PubMedCrossRefGoogle Scholar
  213. 213.
    J. Norimine, T. MIyazawa, Y. Kawaguchi, K. Tomonaga, Y. S. Shin, T. Toyosaki, M. Kohmoto, M. Niikura, Y. Tohya, and T. Mikami, Feline CD4 molecules expressed on feline non-lymphoid cell lines are not enough for productive infection of highlt lymphotropic feline immunodeficiency virus isolates, Arch. Virol. 130, 171–178 (1993).PubMedCrossRefGoogle Scholar
  214. 214.
    B. J. Willet, M. J. Hosie, O. Jarrett, and J. C. Neil, Identification of a putative cellular receptor for feline immunodeficiency virus as the feline homologue of CD9, Immunology 81, 228–233 (1994).Google Scholar
  215. 215.
    M. J. Hosie, B. J. Willett, T. H. Dunsford, O. Jarrett, and J. C. Neil, A monoclonal antibody which blocks infection with feline immunodeficiency virus identifies a possible non-CD4 receptor, J. Virol. 67, 1667–1671 (1993).PubMedGoogle Scholar
  216. 216.
    A. De Parseval, D. L. Lerner, P. Borrow, B. J. Willett, and J. H. Elder, Blocking of feline immunodeficiency virus infection by a monoclonal antibody to CD9 is via inhibition of virus release rather than interference with receptor binding, J. Virol. 71, 5742–5749 (1997).PubMedGoogle Scholar
  217. 217.
    B. J. Willett, M. J. Hosie, J. C. Neil, J. D. Turner, and J. A. Hoxie, Common mechanism of infection by lentiviruses, Nature 385, 587 (1997).PubMedCrossRefGoogle Scholar
  218. 218.
    B. J. Willett, K. Adema, N. Heveker, A. Brelot, L. Picard, M. Alizon, J. D. Turner, J. A. Hoxie, S. Peiper, J. C. Neil, and M. J. Hosie, The extracellular loop of CXCR4 determines its function as a receptor for feline immunodeficiency virus, J. Virol. 72, 6475–6481 (1998).PubMedGoogle Scholar
  219. 219.
    M. J. Hosie, N. Broere, J. Hesselgesser, J. D. Turner, J. A. Hoxie, J. C. Neil, and B. J. Willett, Modulation of feline immunodeficiency virus infection by stromal cell-derived factor (SDF-1), J. Virol. 72, 2097–2104 (1998).PubMedGoogle Scholar
  220. 220.
    H. F. Egberink, E. De Clercq, A. L. W. Van Vliet, J. Balzarini, G. J. Bridger, G. Henson, M. C. Horzinek, and D. Schols, Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication, J. Virol. 73, 6346–6352 (1999).PubMedGoogle Scholar
  221. 221.
    J. Richardson, G. Pancino, R. Merat, T. Leste-Lasserre, A. Maraillon, J. Schneider-Mergener, M. Alizon, P. Sonigo, and N. Heveker, Shared usage of the chemokine receptor CXCR4 by primary and laboratory-adapted strains of feline immunodeficiency virus, J. Virol. 73, 3661–3671 (1999).PubMedGoogle Scholar
  222. 222.
    A. Brelot, N. Heveker, K. Adema, M. J. Hosie, B. Willett, and M. Alizon, Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses, J. Virol. 73, 2576–2586 (1999).PubMedGoogle Scholar
  223. 223.
    J. C. Johnston and C. Power, Feline immunodeficiency virus xenoinfection: the role of chemokine receptors and envelope diversity, J. Virol. 76, 3626–3636 (2002).PubMedCrossRefGoogle Scholar
  224. 224.
    B. J. Willett, C. A. Cannon, and M. J. Hosie, Upregulation of surface feline CXCR4 expression following ectopic expression of CCR5: implications for studies of the cell tropism of feline immunodeficiency virus, J. Virol. 76, 9242–9252 (2002).PubMedCrossRefGoogle Scholar
  225. 225.
    J. C. Johnston, M. Gasmi, L. E. Lim, J. H. Elder, J. Yee, D. J. Jolly, K. P. Campbell, B. L. Davison, and S. L. Sauter, Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors, J. Virol. 73, 4991–5000 (1999).PubMedGoogle Scholar
  226. 226.
    A. De Parseval, S. Ngo, P. Sun, and J. H. Elder, Factors that increase the effective concentration of CXCR4 dictate feline immunodeficiency virus tropism and kinetics of replication, J. Virol. 78, 9132–9143 (2004).PubMedCrossRefGoogle Scholar
  227. 227.
    A. De Parseval, U. Chatterji, P. Sun, and J. H. Elder, Feline immunodeficiency virus targets activated CD4+ T-cells by using CD134 as a binding receptor, Proc. Natl. Acad. Sci. USA 101, 13044–13049 (2004).PubMedCrossRefGoogle Scholar
  228. 228.
    A. D. Weinberg, D. E. Evans, C. Thalhofer, T. Shi, and R. A. Prell, The generation of Tcell memory: a review describing the molecular and cellular events following OX40 (CD1334) engagement, J. Leukocyte Biol. 75, 1–11 (2004).Google Scholar
  229. 229.
    P. R. Baum, R. B. I. Gayle, F. Ramsdell, S. Srinivasan, R. A. Sorensen, M. L. Watson, M. F. Seldin, E. Baker, G. R. Sutherland, K. N. Clifford, et al., Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34, EMBO J. 13, 3992–4001 (1994).PubMedGoogle Scholar
  230. 230.
    H. Durkop, I. Anagnostopoulos, S. Bulfone-Paus, and H. Stein, Expression of several members of the TNF-ligand and receptor family on tonsillar lymphoid B cells, Br. J. Haematol. 98, 863–868 (1997).PubMedCrossRefGoogle Scholar
  231. 231.
    H. Durkop, U. Latza, P. Himmelreich, and H. Stein, Expression of the human OX40 (hOX40) antigen in normal and neoplastic tissues, Br. J. Haematol. 91, 927–931 (1995).PubMedGoogle Scholar
  232. 232.
    J. D. Siliciano, J. Kajdas, D. Finzi, T. C. Quinn, K. Chadwick, J. B. Margolick, C. Kovacs, S. J. Gange, and R. F. Siliciano, Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T-cells, Nat. Med. 9, 727–728 (2003).PubMedCrossRefGoogle Scholar
  233. 233.
    R. S. Veazey, I. C. Tham, K. G. Mansfield, M. DeMaria, A. E. Forand, D. E. Shvetz, L. V. Chalifoux, P. K. Sehgal, and A. A. Lackner, Identifying the target cell in primary simian immunodeficiency virus (SIV) infection: highly activated memory CD4(+) T-cells are rapidly eliminated in early SIV infection in vivo, J. Virol. 74, 57–64 (2000).PubMedCrossRefGoogle Scholar
  234. 234.
    Z. Q. Zhang, S. W. Wietgrefe, Q. Li, M. D. Shore, L. Duan, C. Reilly, J. D. Lifson, and A. T. Haase, Roles of substrate availability and infection of resting and activated CD4+ T-cells in transmission and acute simian immunodeficiency virus infection, Proc. Natl. Acad. Sci. USA 101, 5640–5645 (2004).PubMedCrossRefGoogle Scholar
  235. 235.
    Z. Zhang, T. Schuler, M. Zupancic, S. Wietgrefe, et al., Sexual transmission and propagation of SIV and HIV in resting and activated CD4(+) T-cells, Science 286, 1353–1357 (1999).PubMedCrossRefGoogle Scholar
  236. 236.
    D. M. Willerford, M. J. Gale, R. E. Benveniste, E. A. Clark, and W. M. Gallatin, Simian immunodeficiency virus is restricted to a subset of blood CD4+ lymphocytes that includes memory cells, J. Immunol. 144, 3779–3783 (1990).PubMedGoogle Scholar
  237. 237.
    S. M. Schnittman, H. C. Lane, J. J. Greenhouse, J. S. Justement, M. Baseler, and A. S. Fauci, Preferential infection of CD4+ memory T-cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals, Proc. Natl. Acad. Sci. USA 87, 6058–6062 (1990).PubMedCrossRefGoogle Scholar
  238. 238.
    T. Hohdatsu, H. Hirabayashi, K. Motokawa, and H. Koyama, Comparative study of the cell tropism of feline immunodeficiency virus isolates of subtypes A, B and D classified on the basis of the env gene V3–V5 sequence, J. Gen. Virol. 77, 93–100 (1996).PubMedGoogle Scholar
  239. 239.
    T. Miyazawa, T. Furuya, S. Itagaki, Y. Tohya, K. Nakano, E. Takahashi, and T. Mikami, Preliminary comparisons of the biological properties of two strains of feline immunodeficiency virus (FIV) isolated in Japan with FIV Petaluma strain isolated in the United States, Arch. Virol. 108, 59–68 (1989).PubMedCrossRefGoogle Scholar
  240. 240.
    R. A. Olmsted, A. K. Barnes, J. K. Yamamoto, V. M. Hirsch, R. H. Purcell, and P. R. Johnson, Molecular cloning of feline immunodeficiency virus, Proc. Natl. Acad. Sci. USA 86, 2448–2452 (1989).PubMedCrossRefGoogle Scholar
  241. 241.
    B. J. Willett, M. J. Hosie, T. H. Dunsford, J. C. Neil, and O. Jarrett, Productive infection of T-helper lymphocytes with feline immunodeficiency virus is accompanied by reduced expression of CD4, AIDS 5, 1469–1475 (1991).PubMedCrossRefGoogle Scholar
  242. 242.
    J. K. Yamamoto, C. D. Ackley, H. Zochlinski, H. Louie, E. Pembroke, M. Torten, H. Hansen, R. Munn, and T. Okuda, Development of IL-2-independent feline lymphoid cell lines chronically infected with feline immunodeficiency virus: importance for diagnostic reagents and vaccines, Intervirology 32, 361–375 (1991).PubMedGoogle Scholar
  243. 243.
    K. H. Siebelink, J. A. Karlas, G. F. Rimmelzwaan, A. D. Osterhaus, and M. L. Bosch, A determinant of feline immunodeficiency virus involved in Crandell feline kidney cell tropism, Vet. Immunol. Immunopathol. 46, 61–69 (1995).PubMedCrossRefGoogle Scholar
  244. 244.
    E. J. Verschoor, L. A. Boven, H. llaak, A. L. W. Van Vliet, M. C. Horzinek, and A. De Ronde, A single mutation within the V3 envelope neutralization domain of feline immunodeficiency virus determines its tropism for CRFK cells, J. Virol. 69, 4752–4757 (1995).PubMedGoogle Scholar
  245. 245.
    D. L. Lerner and J. H. Elder, Expanded host cell tropism and cytopathic properties of feline immunodeficiency virus strain PPR subsequent to passage through interleukin-2-independent T-cells, J. Virol. 74, 1854–1863 (2000).PubMedCrossRefGoogle Scholar
  246. 246.
    M. Kohmoto, T. Miyazawa, K. Tomonaga, Y. Kawaguchi, T. Mori, Y. Tohya, C. Kai, and T. Mikami, Comparison of biological properties of feline immunodeficiency virus isolates using recombinant chimeric viruses, J. Gen. Virol. 75, 1935–1942 (1994).PubMedGoogle Scholar
  247. 247.
    T. W. Vahlenkamp, E. J. Verschoor, N. N. Schuurman, A. L. Van Vliet, M. C. Horzinek, H. F. Egberink, and A. De Ronde, A single amino acid substitution in the transmembrane envelope glycoprotein of feline immunodeficiency virus alters cellular tropism, J. Virol. 71, 7132–7135 (1997).PubMedGoogle Scholar
  248. 248.
    G. Pancino, S. Castelot, and P. Sonigo, Differences in feline immunodeficiency virus host cell range correlate with envelope fusogenic properties, Virology 206, 796–806 (1995).PubMedCrossRefGoogle Scholar
  249. 249.
    T. Shioda, J. A. Levy, and C. Cheng-Mayer, Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell line and macrophage tropism of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 89, 9434–9438 (1992).PubMedCrossRefGoogle Scholar
  250. 250.
    T. Shioda, J. A. Levy, and C. Cheng-Mayer, Macrophage and T-cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene, Nature 349, 167–169 (1991).PubMedCrossRefGoogle Scholar
  251. 251.
    J. J. De Jong, A. De Ronde, W. Keulen, M. Tersmette, and J. Goudsmit, Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution, J. Virol. 66, 6777–6780 (1992).PubMedGoogle Scholar
  252. 252.
    A. De Ronde, J. G. Stam, P. Boers, H. Langedijk, R. Meloen, W. Hesselink, L. C. Keldermans, A. Van Vliet, E. J. Verschoor, M. C. Horzinek, and H. F. Egberink, Antibody response in cats to the envelope proteins of feline immunodeficiency virus: identification of an immunodominant neutralization domain, Virology 198, 257–264 (1994).PubMedCrossRefGoogle Scholar
  253. 253.
    S. Lombardi, C. Garzelli, M. Pistello, C. Massi, D. Matteucci, F. Baldinotti, G. Cammarota, L. Da Prato, P. Bandecchi, F. Tozzini, and M. Bendinelli, A neutralizing antibodyinducing peptide of the V3 domain of feline immunodeficiency virus envelope glycoprotein does not induce protective immunity, J. Virol. 68, 8374–8379 (1994).PubMedGoogle Scholar
  254. 254.
    S. Lombardi, C. Massi, F. Tozzini, L. Zaccaro, P. Bancecchi, C. La Rosa, M. Bendinelli, and C. Garzelli, Epitope mapping of the V3 domain of feline immunodeficiency virus envelope glycoprotein by monoclonal antibodies, J. Gen. Virol. 76, 1893–1899 (1995).PubMedGoogle Scholar
  255. 255.
    A. Hein, H. Schuh, S. Thiel, J. P. Martin, and R. Dorries, Ramified feline microglia selects for distinct variants of feline immunodeficiency virus during early central nervous system infection, J. Neurovirol. 9, 465–476 (2003).PubMedGoogle Scholar
  256. 256.
    T. Miyazawa, Y. Kawaguchi, M. Kohmoto, K. Tomonaga, and T. Mikami, Comparative functional analysis of the various lentivirus long terminal repeats in human colon carcinoma cell line (SW489 cells) and feline renal cell line (CRFK cells), J. Vet. Med. Sci. 56, 895–899 (1994).PubMedGoogle Scholar
  257. 257.
    T. Miyazawa, Y. Kawaguchi, M. Kohmoto, J. Sakuragi, A. Adachi, M. Fukasawa, and T. Mikami, Production of feline immunodeficiency virus in feline and non-feline nonlymphoid cell lines by transfection of an infectious molecular clone, J. Gen. Virol. 73, 1543–1546 (1992).PubMedGoogle Scholar
  258. 258.
    Y. Ikeda, K. Tomonaga, Y. Kawaguchi, M. Kohmoto, Y. Inoshima, Y. Tohya, T. Miyazawa, C. Kai, and T. Mikami, Feline immunodeficiency virus can infect a human cell line (MOLT-4) but establishes a state of latency in the cells, J. Gen. Virol. 77, 1623–1630 (1996).PubMedGoogle Scholar
  259. 259.
    T. S. Tochikura, A. Tanabe-Tochikura, K. Hayes, A. Lazo, R. T. Bailer, J. R. Blakeeslee, L. J. Lafrado, P. Roy-Burman, R. Pandey, R. G. Olsen, and L. E. Mathes, Fusion activity dissociated from replication ability in feline immunodeficiency virus (FIV) in human cells, JAIDS 6, 1297–1300 (1993).Google Scholar
  260. 260.
    E. M. Poeschla, F. Wong-Staal, and D. J. Looney, Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors, Nature Med. 4, 354–357 (1998).PubMedCrossRefGoogle Scholar
  261. 261.
    J. Johnston and C. Power, Productive infection of human peripheral blood mononuclear cells by feline immunodeficiency virus: implications for vector development, J. Virol. 73, 2491–2498 (1999).PubMedGoogle Scholar
  262. 262.
    J. B. Johnston, M. E. Olson, E. W. Rud, and C. Power, Xenoinfection of nonhuman primates by feline immunodeficiency virus, Curr. Biol. 11, 1109–1113 (2001).PubMedCrossRefGoogle Scholar
  263. 263.
    M. C. Barr, M. B. Pough, R. H. Jacobson, and F. W. Scott, Comparison and interpretation of diagnostic tests for feline immunodeficiency virus infection, J. Am. Vet. Med. Assoc. 199, 1377–1381 (1991).PubMedGoogle Scholar
  264. 264.
    R. Groat, G. Maddsen, B. Bartol, P. Skvorak, K. Serlemitsos, and M. Monn. Upgraded IDEXX diagnostic products for simultaneous detection of antibodies to feline immunodeficiency virus (FIV) gag and env proteins in feline blood samples. in 25th World Small Animal Veterinary Association / 6th Federation of European Companion Animal Veterinary Association / Voorjaarsdagen Congress. Amsterdam, The Netherlands (2000).Google Scholar
  265. 265.
    K. Hartmann, R. M. Werner, H. Egberink, and O. Jarrett, Comparison of six in-house tests for the rapid diagnosis of feline immunodeficiency and feline leukemia virus infections, Vet. Rec. 149, 317–320 (2001).PubMedGoogle Scholar
  266. 266.
    T. P. O’Connor, Q. J. Tonelli, and J. M. Scarlett, Report of the national FeLV/FIV awareness project, J. Am. Vet. Med. Assoc. 199, 1348–1353 (1991).PubMedGoogle Scholar
  267. 267.
    J. D. Fontenot, E. A. Hoover, J. H. Elder, and R. C. Montelaro, Evaluation of feline immunodeficiency virus and feline leukemia virus transmembrane peptides for serological diagnosis, J. Clin. Microbiol. 30, 1885–1890 (1992).PubMedGoogle Scholar
  268. 268.
    M. J. Hosie, C. Robertson, and O. Jarrett, Prevalence of feline leukemia virus and antibodies to feline immunodeficiency virus in cats in the United Kingdom, Vet. Rec. 125, 293–297 (1989).PubMedGoogle Scholar
  269. 269.
    R. A. Olmsted, R. Langley, M. E. Roelke, R. M. Goeken, D. Adger-Johnson, J. P. Goff, J. P. Alber, C. Packer, M. K. Laurenson, T. M. Caro, L. Scheepers, D. E. Wildt, M. Bush, J. S. Martenson, and S. J. O’Brien, Worldwide prevalence of lentivirus infection in wild felidae species: epidemiologic and phylogenetic aspects, J. Virol. 66, 6008–6018 (1992).PubMedGoogle Scholar
  270. 270.
    I. Lee, J. A. Levy, S. Gorman, P. C. Crawford, and M. Slater, Prevalence of feline leukemia virus infection and serum antibodies against feline immunodeficiency virus in unowned free-roaming cats, J. Am. Vet. Med. Assoc. 220, 620–622 (2002).PubMedCrossRefGoogle Scholar
  271. 271.
    M. Uema, Y. Ikeda, and T. Miyazawa, Feline immunodeficiency virus subtype C is prevalent in northern part of Taiwan, J. Vet. Med. Sci. 61, 197–199 (1999).PubMedCrossRefGoogle Scholar
  272. 272.
    I. G. Winkler, M. Lochelt, and R. L. P. Flower, Epidemiology of feline foamy virus and feline immunodeiciency virus infections in domestic and feral cats: a seroepidemiological study, J. Clin. Microbiol. 37, 2848–2851 (1999).PubMedGoogle Scholar
  273. 273.
    F. Courchamp and D. Pontier, Feline immunodeficiency virus: an epidemiological review, C. R. Acad. Sci. III 317, 1123–1134 (1994).PubMedGoogle Scholar
  274. 274.
    E. Sparger, P. Luciw, J. Elder, J. Yamamoto, L. Lowenstine, and N. Pedersen, Feline immunodeficiency virus is a lentivirus associated with an AIDS-like disease in cats, AIDS 3(Suppl 1), S43–49 (1989).PubMedCrossRefGoogle Scholar
  275. 275.
    M. C. Barr, L. Zou, D. L. Holzschu, L. Pillips, F. W. Scott, J. W. Casey, and R. J. Avery, Isolation of a highly cytopathic lentivirus from a nondomestic cat, J. Virol. 69, 7371–7374 (1995).PubMedGoogle Scholar
  276. 276.
    E. W. Brown, S. Miththapala, and S. J. O’Brien, Prevalence of exposure to feline immunodeficiency virus in exotic felid species, J. Zoo. Wildl. Med. 24, 357–364 (1993).Google Scholar
  277. 277.
    E. W. Brown, N. Yuhki, C. Packer, and S. J. O’Brien, A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects, J. Virol. 68, 5953–5968 (1994).PubMedGoogle Scholar
  278. 278.
    H. Lutz, E. Isenbugel, R. Lehmann, R. Sabapara, and C. Wolfensberger, Retrovirus infections in non-domestic felids: serological studies and attempts to isolate a lentivirus, Vet. Immunol. Immunopathol. 35, 215–224 (1992).PubMedCrossRefGoogle Scholar
  279. 279.
    Y. Nishimura, Y. Goto, K. Yoneda, Y. Endo, T. Mizuno, M. Hamachi, H. Maruyama, H. Kinoshita, S. Koga, M. Komori, S. Fushuku, K. Ushinohama, M. Akuzawa, T. Watari, A. Hasegawa, and H. Tsujimoto, Interspecies transmission of feline immunodeficiency virus from the domestic cat to the Tsushima cat, J. Virol. 73, 7916–7921 (1999).PubMedGoogle Scholar
  280. 280.
    J. A. Spencer, A. A. Van Dijk, M. C. Horzinek, H. F. Egberink, R. G. Bengis, D. F. Keet, S. Morikawa, and D. H. L. Bishop, Incidence of feline immunodeficiency virus reactive antibodies in free-ranging lions of the Kruger National Park and the Etosha National Park in southern Africa detected by recombinant FIV p24 antigen, Onderstepoort J. Vet. Res. 59, 315–322 (1992).PubMedGoogle Scholar
  281. 281.
    R. Hofmann-Lehmann, D. Fehr, M. Grob, M. Elgizoli, C. Packer, J. S. Martenson, S. J. O’Brien, and H. Lutz, Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in East Africa, Clin. Diagn. Lab. Immunol. 3, 554–562 (1996).PubMedGoogle Scholar
  282. 282.
    R. Biek, A. G. Rodrigo, D. Holley, A. Drummond, C. R. Anderson, H. A. Ross, and M. Poss, Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars, J. Virol. 77, 9578–9589 (2003).PubMedCrossRefGoogle Scholar
  283. 283.
    F. Courchamp, D. Pontier, M. Langlais, and M. Artois, Population dynamics of feline immunodeficiency virus within cat populations, J. Theor. Biol. 175, 553–560 (1995).PubMedCrossRefGoogle Scholar
  284. 284.
    F. Courchamp, N. G. Yoccoz, M. Artois, and D. Pontier, At-risk individuals in feline immunodeficiency virus epidemiology: evidence from a multivariate approach in a natural population of domestic cats (Felis catus), Epidemiol. Infect. 121, 227–236 (1998).PubMedCrossRefGoogle Scholar
  285. 285.
    P. Dorny, N. Speybroeck, S. Verstraete, M. Baeke, A. De Becker, D. Berkvens, and J. Vercruysse, Serological survey of Toxoplasma gondii, feline immunodeficiency virus and feline leukemia virus in urban stray cats in Belgium, Vet. Rec. 151, 626–629 (2002).PubMedGoogle Scholar
  286. 286.
    E. Holznagel, H. Lutz, D. Steinhauer, and M. Reinacher, Feline immunodeficiency virus (FIV) infection in cats at necropsy: a serological study, J. Comp. Pathol. 116, 339–352 (1997).PubMedCrossRefGoogle Scholar
  287. 287.
    B. J. Luria, J. K. Levy, M. R. Lappin, E. B. Breitschwerdt, A. M. Legendre, J. A. Hernandez, S. P. Gorman, and I. T. Lee, Prevalence of infectious diseases in feral cats in Northern Florida, J. Feline Med. Surg. 6, 287–296 (2004).PubMedCrossRefGoogle Scholar
  288. 288.
    N. C. Pedersen, in The Retroviridae Vol. 2, edited by J. A. Levy (Plenum Press, New York, 1993), 181–227Google Scholar
  289. 289.
    D. Pontier, E. Fromont, F. Courchamp, M. Artois, and N. G. Yoccoz, Retroviruses and sexual size dimorphism in domestic cats (Felis catus L.), Proc. R. Soc. Lond. B. Biol. Sci. 265, 167–173 (1998).CrossRefGoogle Scholar
  290. 290.
    D. Matteucci, F. Baldinotti, P. Mazzetti, M. Pistello, P. Bandecchi, R. Ghilarducci, A. Poli, F. Tozzini, and M. Bendinelli, Detection of feline immunodeficiency virus in saliva and plasma by cultivation and polymerase chain reaction, J. Clin. Microbiol. 31, 494–501 (1993).PubMedGoogle Scholar
  291. 291.
    K. Ueland and L. Nesse, No evidence of vertical transmission of naturally acquired feline immunodeficiency virus infection, Vet. Immunol. Immunopathol. 33, 301–308 (1992).PubMedCrossRefGoogle Scholar
  292. 292.
    J. J. Callanan, M. J. Hosie, and O. Jarrett, Transmission of feline immunodeficiency virus from mother to kitten, Vet. Rec. 128, 332–333 (1991).PubMedGoogle Scholar
  293. 293.
    R. K. Sellon, H. L. Jordan, S. Kennedy-Stoskopf, M. B. Tompkins, and W. A. Tompkins, Feline immunodeficiency virus can be experimentally transmitted via milk during acute maternal infection, J. Virol. 68, 3380–3385 (1994).PubMedGoogle Scholar
  294. 294.
    A. B. Rogers and E. A. Hoover, Maternal-fetal feline immunodeficiency virus transmission: timing and tissue tropisms, J. Infect. Dis. 178, 960–967 (1998).PubMedCrossRefGoogle Scholar
  295. 295.
    R. Allison and E. Hoover, Feline immunodeficiency virus is concentrated in milk early in lactation, AIDS Res. Hum. Retroviruses 19, 245–253 (2003).PubMedCrossRefGoogle Scholar
  296. 296.
    L. L. O’Neil, M. J. Burkhard, L. A. Obert, and E. A. Hoover, Regression of feline immunodeficiency virus infection, AIDS Res. Hum. Retroviruses 13, 713–718 (1997).PubMedGoogle Scholar
  297. 297.
    R. Allison and E. Hoover, Covert vertical transmission of feline immunodeficiency virus, AIDS Res. Hum. Retroviruses 19, 421–434 (2003).PubMedCrossRefGoogle Scholar
  298. 298.
    S. Dandekar, A. M. Beebe, J. Barlough, T. Phillips, J. Elder, M. Torten, and N. Pedersen, Detection of feline immunodeficience virus (FIV) nucleic acids in FIV-seronegative cats, J. Virol. 66, 4040–4049 (1992).PubMedGoogle Scholar
  299. 299.
    C. J. Miller, M. Marthas, J. Torten, N. J. Alexander, J. P. Moore, G. F. Doncel, and A. G. Hendrickx, Intravaginal inoculation of rhesus macaques with cell-free simian immunodeficiency virus results in persistent or transient viremia, J. Virol. 68, 6391–6400 (1994).PubMedGoogle Scholar
  300. 300.
    M. B. McChesney, J. R. Collins, D. Lu, X. Lü, J. Torten, R. L. Ashley, M. W. Cloyd, and C. J. Miller, Occult systemic infection and persistent SIV-specific CD4+ T-cell proliferative responses in rhesus macaques that were transiently viremic after intravaginal inoculation of SIV, J. Virol. 72, 10029–10035 (1998).PubMedGoogle Scholar
  301. 301.
    P. Palumbo, J. Skurnick, D. Lewis, and M. Eisenberg, PCR analysis of HIV-seronegative, heterosexual partners of HIV-infected individuals, J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 10, 436–440 (1995).PubMedGoogle Scholar
  302. 302.
    G. K. Sahu, J. J. Chen, J. C. Huang, K. M. Ramsey, and M. W. Cloyd, Transient or occult HIV-1 infection in high-risk adults, AIDS 15, 1175–1177 (2001).PubMedCrossRefGoogle Scholar
  303. 303.
    H. L. Jordan, J. Howard, M. C. Barr, S. Kennedy-Stoskopf, J. K. Levy, and W. A. Tompkins, Feline immunodeficiency virus is shed in semen from experimentally and naturally infected cats, AIDS Res. Hum. Retroviruses 14, 1087–1092 (1998).PubMedGoogle Scholar
  304. 304.
    H. L. Jordan, Y. Liang, L. C. Hudson, and W. A. Tompkins, Shedding of feline immunodeficiency virus in semen of domestic cats during acute infection, Am. J. Vet. Res. 60, 211–215 (1999).PubMedGoogle Scholar
  305. 305.
    H. L. Jordan, J. Howard, R. K. Sellon, D. E. Wildt, W. A. Tompkins, and S. Kennedy-Stoskopf, Transmission of feline immunodeficiency virus in domestic cats via artificial insemination, J. Virol. 70, 8224–8228 (1996).PubMedGoogle Scholar
  306. 306.
    H. L. Jordan, J. G. Howard, J. G. Bucci, J. L. Butterworth, R. V. English, S. Kennedy-Stoskopf, M. B. Tompkins, and W. A. Tompkins, Horizontal transmission of feline immunodeficiency virus with semen from seropositive cats, J. Reprod. Immunol. 41, 341–357 (1998).PubMedCrossRefGoogle Scholar
  307. 307.
    R. J. Avery and E. A. Hoover, Gamma interferon/interleukin 10 balance in tissue lymphocytes correlates with down modulation of mucosal feline immunodeficiency virus infection, J. Virol. 78, 4011–4019 (2004).PubMedCrossRefGoogle Scholar
  308. 308.
    J. G. Bucci, R. V. English, H. L. Jordan, T. A. Childers, M. B. Tompkins, and W. A. Tompkins, Mucosally transmitted feline immunodeficiency virus induces a CD8+ antiviral response that correlates with reduction of cell-associated virus, J. Infect. Dis. 177, 18–25 (1998).PubMedGoogle Scholar
  309. 309.
    M. J. Burkhard, C. K. Mathiason, K. O’Halloran, and E. A. Hoover, Kinetics of early FIV infection in cats exposed via the vaginal versus intravenous route, AIDS Res. Hum. Retroviruses 18, 217–226 (2002).PubMedCrossRefGoogle Scholar
  310. 310.
    T. R. Moench, K. J. Whaley, T. D. Mandrell, B. D. Bishop, C. J. Witt, and R. A. Cone, The cat/feline immunodeficiency virus animal model for transmucosal transmission of AIDS: nonoxynol-9 contraceptive jelly blocks transmission by an infected cell inoculum, AIDS 7, 797–802 (1993).PubMedCrossRefGoogle Scholar
  311. 311.
    M. Shimojima, Y. Nishimura, T. Miyazawa, Y. Tohya, and H. Akashi, T-cell subpopulations mediating inhibition of feline immunodeficiency virus replication in mucosally infected cats, Microbes Infect. 6, 265–271 (2004).PubMedCrossRefGoogle Scholar
  312. 312.
    T. Miyazawa, T. Furuya, S. Itagaki, Y. Tohya, E. Takahashi, and T. Mikami, Establishment of a feline T-lymphoblastoid cell line highly sensitive for replication of feline immunodeficiency virus, Arch. Virol. 108, 131–135 (1989).PubMedCrossRefGoogle Scholar
  313. 313.
    Y. Goto, Y. Nishimura, K. Baba, T. Mizuno, Y. Endo, K. Masuda, K. Ohno, and H. Tsujimoto, Association of plasma viral RNA load with prognosis in cats naturally infected with feline immunodeficiency virus, J. Virol. 76, 10079–10083 (2002).PubMedCrossRefGoogle Scholar
  314. 314.
    S. T. Dunham, J. N. Flynn, M. A. Rigby, J. MacDonald, J. Bruce, C. Cannon, M. C. Golder, L. Hanlon, D. A. Harbour, N. A. Mackay, N. Spibey, O. Jarrett, and J. C. Neil, Protection against feline immunodeficiency virus using replication defective proviral DNA vaccines with feline interleukin-12 and-18, Vaccine 20, 1483–1496 (2002).PubMedCrossRefGoogle Scholar
  315. 315.
    C. M. Leutenegger, D. Klein, R. Hofmann-Lehmann, C. Mislin, U. Hummel, J. Boni, F. Boretti, W. H. Guenzbug, and H. Lutz, Rapid feline immunodeficiency virus provirus quantitation by polymerase chain reaction using the TaqManŖ fluorogenic real-time detection system, J. Virol. Methods 78, 105–116 (1999).PubMedCrossRefGoogle Scholar
  316. 316.
    M. Pistello, D. Matteucci, F. Bonci, P. Isola, P. Mazzetti, L. Zaccaro, A. Merico, D. Del Mauro, N. Flynn, and M. Bendinelli, AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: protection from an intraclade challenge admin-istered systemically or mucosally by an attenuated vaccine, J. Virol. 77, 10740–10750 (2003).PubMedCrossRefGoogle Scholar
  317. 317.
    K. Tokunaga, Y. Nishino, H. Oikawa, C. Ishihara, T. Mikami, and K. Ikuta, Altered cell tropism and cytopathicity of feline immunodeficiency viruses in two different feline CD4-positive, CD8-negative cell lines, J. Virol. 66, 3893–3898 (1992).PubMedGoogle Scholar
  318. 318.
    A. Moraillon, F. Barre-Sinoussi, A. Parodi, R. Moraillon, and C. Dauguet, In vitro properties and experimental pathogenic effect of three strains of feline immunodefi-ciency viruses (FIV) isolated from cats with terminal disease, Vet. Microbiol. 31, 41–54 (1992).PubMedCrossRefGoogle Scholar
  319. 319.
    A. T. Haase, K. Henry, M. Zupancic, G. Sedgewick, R. A. Faust, H. Melroe, W. Cavert, K. Gebhard, K. A. Staskus, Z. Q. Zhang, P. J. Dailey, H. H. Balfour, A. Erice, and A. S. Perelson, Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science 274, 985–989 (1996).PubMedCrossRefGoogle Scholar
  320. 320.
    G. Pantaleo, C. Graziosi, L. Butini, P. A. Pizzo, S. M. Schnittman, D. P. Kotler, and A. S. Fauci, Lymphoid organs function as major reservoirs for human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 88, 9838–9842 (1991).PubMedCrossRefGoogle Scholar
  321. 321.
    T. A. Reinhart, M. J. Rogan, D. Huddleston, D. M. Rausch, L. E. Eiden, and A. T. Haase, Simian immunodeficiency virus burden in tissues and cellular compartments during clinical latency and AIDS, J. Infect. Dis. 176, 1198–1208 (1997).PubMedGoogle Scholar
  322. 322.
    S. Matsumura, T. Ishida, T. Washizu, I. Tomoda, S. Nagata, J. Chiba, and T. Kurata, Pathologic features of acquired immunodeficiency-like syndrome in cats experimentally infected with feline immunodeficiency virus, J. Vet. Med. Sci. 55, 387–394 (1993).PubMedGoogle Scholar
  323. 323.
    M. L. Linenberger, A. M. Beebe, N. C. Pedersen, J. L. Abkowitz, and S. Dandekar, Marrow accessory cell infection and alterations in hematopoiesis accompany severe neutropenia during experimental acute infection with feline immunodeficiency virus, Blood 85, 941–951 (1995).PubMedGoogle Scholar
  324. 324.
    M. Podell, M. Oglesbee, L. Mathes, S. Krakowka, R. Olmstead, and L. Lafrado, AIDSassociated encephalopathy with experimental feline immunodeficiency virus infection, J. Acquir. Immune Defic. Syndr. 6, 758–771 (1993).PubMedGoogle Scholar
  325. 325.
    C. R. Stokes, S. Finerty, T. J. Gruffydd-Jones, C. P. Sturgess, and D. A. Harbour, Mucosal infection and vaccination against feline immunodeficiency virus, J. Biotechnol. 73, 213–221 (1999).PubMedCrossRefGoogle Scholar
  326. 326.
    G. Ryan, D. Klein, E. Knapp, M. J. Hosie, T. Grimes, M. J. Mabruk, O. Jarrett, and J. J. Callanan, Dynamics of viral and proviral loads of feline immunodeficiency virus within the feline central nervous system during the acute phase following intravenous infection, J. Virol. 77, 7477–7485 (2003).PubMedCrossRefGoogle Scholar
  327. 327.
    T. Tanabe and J. K. Yamamoto, Phenotypic and functional characteristics of FIV infection in the bone marrow stroma, Virology 282, 113–122 (2001).PubMedCrossRefGoogle Scholar
  328. 328.
    J. C. Woo, G. A. Dean, A. Lavoy, R. Clark, and P. F. Moore, Investigation of recombinant human insulin-like growth factor type I in thymus regeneration in the acute stage of experimental FIV infection in juvenile cats, AIDS Res. Hum. Retroviruses 15, 1377–1388 (1999).PubMedCrossRefGoogle Scholar
  329. 329.
    J. B. Johnston, C. Silva, and C. Power, Envelope gene-mediated neurovirulence in feline immunodeficiency virus infection: induction of matrix metalloproteinases and neuronal injury, J. Virol. 76, 2622–2633 (2002).PubMedCrossRefGoogle Scholar
  330. 330.
    J. B. Johnston, C. Silva, T. Hiebert, R. Buist, M. R. Dawood, J. Peeling, and C. Power, Neurovirulence depends on virus input titer in brain in feline immunodeficiency virus infection: Evidence for activation of innate immunity and neuronal injury, J. Neurovirol. 8, 420–431 (2002).PubMedCrossRefGoogle Scholar
  331. 331.
    K. Lockridge, M. Chien, P. A. Luciw, and E. E. Sparger, Protective immunity against feline immunodeficiency virus inducedby inoculation with vif-deleted proviral DNA, Virology. 273, 67–79 (2000).PubMedCrossRefGoogle Scholar
  332. 332.
    A. J. Phipps, K. A. Hayes, W. R. Buck, M. Podell, and L. E. Mathes, Neurophysiologic and immunologic abnormalities associated with feline immunodeficiency virus molecular clone FIV-PPR DNA inoculation, J. Acquir. Immune Defic. Syndr. 23, 8–16 (2000).PubMedGoogle Scholar
  333. 333.
    C. J. Miller, D. W. Kang, M. Marthas, Z. Moldoveanu, H. Kiyono, P. Marx, J. H. Eldridge, J. Mestecky, and J. R. McGhee, Genital secretory immune response to chronic simian immunodeficiency virus (SIV) infection: a comparison between intravenously and genitally inoculated rhesus macaques, Clin. Exp. Immunol. 88, 520–526 (1992).PubMedCrossRefGoogle Scholar
  334. 334.
    J. Bucci, D. Gebhard, T. A. Childers, E. R., M. B. Tompkins, and W. A. Tompkins, The CD8+ phenotype mediating antiviral activity in feline immunodeficiency virus-infected cats is characterized by reduced surface expression of the CD8 β chain, J. Infect. Dis. 178, 968–977 (1998).PubMedGoogle Scholar
  335. 335.
    S. W. Dow, M. J. Dreitz, and E. A. Hoove, Feline immunodeficiency virus neurotropism: evidence that astrocytes and microglia are the primary target cells, Vet. Immunol. Immunopathol. 35, 23–35 (1992).PubMedCrossRefGoogle Scholar
  336. 336.
    A. Hein, J. P. Martin, and R. Dorries, In vitro activation of feline immunodeficiency virus in ramified microglial cells from asymptomatically infected cats, J. Virol. 75, 8090–8095 (2001).PubMedCrossRefGoogle Scholar
  337. 337.
    E. Zenger, E. Tiffany-Castiglioni, and E. W. Collisson, Cellular mechanisms of feline immunodeficiency virus (FIV)-induced neuropathogenesis, Front. Biosci. 2, 527–537 (1997).Google Scholar
  338. 338.
    M. K. Patrick, J. B. Johnsto, and C. Power, Lentiviral neuropathogenesis: comparative neuroinvasion, neurotropism, neurovirulence, and host neurosusceptibility, J. Virol. 76, 7923–7931 (2002).PubMedCrossRefGoogle Scholar
  339. 339.
    A. Poli, F. Abramo, C. Di Iorio, C. Cantile, M. Carli, C. Pollera, L. Vago, A. Tosoni, and G. Costanzi, Neuropathology in cats experimentally infected with feline immunodefi-ciency virus: a morphological, immunocytochemical and morphometric study, J. Neurovirol. 3, 361–368 (1997).PubMedCrossRefGoogle Scholar
  340. 340.
    A. Poli, M. Pistello, M. A. Carli, F. Abramo, G. Mancuso, E. Nicoletti, and M. Bendinelli, Tumor necrosis factor-alpha and virus expression in the central nervous system of cats infected with feline immunodeficiency virus, J. Neurovirol. 5, 465–473 (1999).PubMedGoogle Scholar
  341. 341.
    T. R. Phillips, O. Prospero-Garcia, D. W. Wheeler, P. C. Wagaman, D. L. Lerner, H. S. Fox, L. R. Whalen, F. E. Bloom, J. H. Elder, and S. J. Henriksen, Neurologic dysfunctions caused by a molecular clone of feline immunodeficiency virus, FIV-PPR, J. Neurovirol. 2, 388–396 (1996).PubMedGoogle Scholar
  342. 342.
    A. A. Lackner, S. Dandekar, and M. B. Gardner, Neurobiology of simian and feline immunodeficiency virus infections, Brain Pathol. 1, 201–212 (1991).PubMedGoogle Scholar
  343. 343.
    S. Huitron-Resendiz, S. De Rozieres, M. Sanchez-Alavez, B. Buhler, Y. C. Lin, D. L. Lerner, N. W. Henriksen, M. Burudi, H. S. Fox, B. E. Torbett, S. J. Henriksen, and J. H. Elder, Resolution and prevention of feline immunodeficiency virus-induced neurological deficits by treatment with the protease inhibitor TL-3, J. Virol. 78, 4525–4532 (2004).PubMedCrossRefGoogle Scholar
  344. 344.
    M. Hurtrel, J. P. Ganiere, J. F. Guelfi, L. Chakrabarti, M. A. Maire, F. Gray, L. Montagnier, and B. Hurtrel, Comparison of early and late feline immunodeficiency virus encephalopathies, AIDS 6, 399–406 (1992).PubMedCrossRefGoogle Scholar
  345. 345.
    A. T. Haase, Population biology of HIV-1 infection: viral and CD4+ T-cell demographics and dynamics in lymphatic tissues, Annu. Rev. Immunol. 17, 635–656 (1999).CrossRefGoogle Scholar
  346. 346.
    R. S. Veazey, M. DeMaria, L. V. Chalifoux, D. E. Shvetz, D. R. Pauley, H. L. Knight, M. Rosenzweig, R. P. Johnson, R. C. Desrosiers, and A. A. Lackner, Gastrointestinal tract as a major site of CD4+ T-cell depletion and viral replication in SIV infection, Science 280, 427–431 (1998).PubMedCrossRefGoogle Scholar
  347. 347.
    I. M. Belyakov, Z. Hel, B. Kelsall, V. A. Kuznetsov, J. D. Ahlers, J. Nacsa, D. I. Watkins, T. M. Allen, A. Sette, J. Altman, R. Woodward, P. D. Markham, J. D. Clements, G. Franchini, W. Strober, and J. A. Berzofsky, Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques, Nat. Med. 7, 1320–1326 (2001).PubMedCrossRefGoogle Scholar
  348. 348.
    M. Guadalupe, E. Reay, S. Sankaran, T. Prindiville, J. Flamm, A. McNeil, and S. Dandekar, Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy, J. Virol. 77, 11708–11717 (2003).PubMedCrossRefGoogle Scholar
  349. 349.
    J. M. Brenchley, T. W. Schacker, L. E. Ruff, D. A. Price, J. H. Taylor, G. J. Beilman, P. L. Nguyen, A. Khoruts, M. Larson, A. T. Haase, and D. C. Douek, CD4+ T-cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract, J. Exp. Med. 200, 749–759 (2004).PubMedCrossRefGoogle Scholar
  350. 350.
    S. Mehandru, M. A. Poles, K. Tenner-Racz, A. Horowitz, A. Hurley, C. Hogan, D. Boden, P. Racz, and M. Markowitz, Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract, J. Exp. Med. 200, 761–770 (2004).PubMedCrossRefGoogle Scholar
  351. 351.
    G. Pantaleo, O. J. Cohen, T. Schacker, M. Vaccarezza, C. Graziosi, G. P. Rizzardi, J. Kahn, C. H. Fox, S. M. Schnittman, D. H. Schwartz, L. Corey, and A. S. Fauci, Evolutionary pattern of human immunodeficiency virus (HIV) replication and distribution in lymph nodes following primary infection: implications for antiviral therapy, Nat. Med. 4, 341–345 (1998).PubMedCrossRefGoogle Scholar
  352. 352.
    G. A. Dean, G. H. Reubel, P. F. Moore, and N. C. Pedersen, Proviral burden and infection kinetics of feline immunodeficiency virus in lymphocyte subsets of blood and lymph node, J. Virol. 70, 5165–5169 (1996).PubMedGoogle Scholar
  353. 353.
    B. Hurtrel, L. Chakrabarti, M. Hurtrel, J. M. Bach, J. P. Ganiere, and L. Montagnier, Early events in lymph nodes during infection with SIV and FIV, Res. Virol. 145, 221–227 (1994).PubMedGoogle Scholar
  354. 354.
    G. A. Dean, G. H. Reubel, and N. C. Pedersen, Simian immunodeficiency virus infection of CD8+ lymphocytes in vivo, J. Virol. 70, 5646–5650 (1997).Google Scholar
  355. 355.
    A. De Maria, G. Pantaleo, S. M. Schnittman, J. J. Greenhouse, M. Baseler, J. M. Orenstein, and A. Fauci, Infection of CD8+ T lymphocytes with HIV. Requirement for interaction with infected CD4+ cells and induction of infectious virus from chronically infected CD8+ cells, J. Immunol. 146, 2220–2226 (1991).PubMedGoogle Scholar
  356. 356.
    A. Joshi, T. W. Vahlenkamp, H. Garg, W. A. Tompkins, and M. B. Tompkins, Preferential replication of FIV in activated CD4(+)CD25(+) T-cells independent of cellular proliferation, Virology 321, 307–322 (2004).PubMedCrossRefGoogle Scholar
  357. 357.
    T. W. Vahlenkamp, M. B. Tompkins, and W. A. Tompkins, Feline immunodeficiency virus infection phenotypically and functionally activates immunosuppressive CD4+CD25+ T regulatory cells, J. Immunol. 172, 4752–4761 (2004).PubMedGoogle Scholar
  358. 358.
    K. Hartmann, Feline immunoderficiency virus infection-an overview, Vet. J. 155, 123–137 (1998).PubMedCrossRefGoogle Scholar
  359. 359.
    A. H. Sparkes, C. D. Hopper, W. G. Millard, T. J. Gruffydd-Jones, and D. A. Harbour, Feline immunodeficiency virus infection. Clinicopathologic findings in 90 naturally occurring cases, J. Vet. Intern. Med. 7, 85–90 (1993).PubMedGoogle Scholar
  360. 360.
    T. Ishida, A. Taniguchi, S. Matsumura, T. Washizu, and I. Tomoda, Long-term clinical observations on feline immunodeficiency virus infected asymptomatic carriers, Vet. Immunol. Immunopathol. 35, 15–22 (1992).PubMedCrossRefGoogle Scholar
  361. 361.
    R. Hofmann-Lehmann, E. Holznagel, P. Ossent, and H. Lutz, Parameters of disease progression in long-term experimental feline retrovirus (feline immunodeficiency virus and feline leukemia virus) infections: hematology, clinical chemistry, and lymphocyte subsets, Clin. Diagn. Lab. Immunol. 4, 33–42 (1997).PubMedGoogle Scholar
  362. 362.
    E. J. Fleming, D. L. McCaw, J. A. Smith, G. M. Buening, and C. Johnson, Clinical, hematologic, and survival data from cats infected with feline immunodeficiency virus: 42 cases (1983–1988), J. Am. Vet. Med. Assoc. 199, 913–916 (1991).PubMedGoogle Scholar
  363. 363.
    G. H. Shelton, M. L. Linenberger, M. T. Persik, and J. L. Abkowitz, Prospective hematologic and clinicopathologic study of asymptomatic cats with naturally acquired feline immunodeficiency virus infection, J. Vet. Intern. Med. 9, 133–140 (1995).PubMedGoogle Scholar
  364. 364.
    J. A. Levy, HIV and the pathogenesis of AIDS (ASM Press, Washington, DC, 1998).Google Scholar
  365. 365.
    M. D. Daniel, N. L. Letvin, P. K. Sehgal, G. Hunsmann, D. K. Schmidt, N. W. King, and R. C. Desrosiers, Long-term persistent infection of macaque monkeys with the simian immunodeficiency virus, J. Gen. Virol. 68, 3183–3189 (1987).PubMedCrossRefGoogle Scholar
  366. 366.
    M. B. Gardner and P. A. Luciw, Animal models of AIDS, Faseb J. 3, 2593–2606 (1989).PubMedGoogle Scholar
  367. 367.
    Y. Inoshima, M. Kohmoto, Y. Ikeda, H. Yamada, Y. Kawaguchi, K. Tomonaga, T. Miyazawa, C. Kai, T. Umemura, and T. Mikami, Roles of the auxiliary genes and AP-1 binding site in the long terminal repeat of feline immunodeficiency virus in the early stage of infection in cats, J. Virol. 70, 8518–8526 (1996).PubMedGoogle Scholar
  368. 368.
    M. De Monte, H. Nonnenmacher, N. Brignon, M. Ullmann, and J. P. Martin, A multivariate statistical analysis to follow the course of disease after infection of cats with different strains of the feline immunodeficiency virus (FIV), J. Virol. Methods 103, 157–170 (2002).PubMedCrossRefGoogle Scholar
  369. 369.
    A. P. Kourtis, C. Ibegbu, A. J. Nahmias, F. K. Lee, W. S. Clark, M. K. Sawyer, and S. Nesheim, Early progression of disease in HIV-infected infants with thymus dysfunction, N. Engl. J. Med. 335, 1431–1436 (1997).CrossRefGoogle Scholar
  370. 370.
    A. J. Nahmias, W. S. Clark, A. P. Kourtis, F. K. Lee, G. Cotsonis, C. Ibegbu, D. Thea, P. Palumbo, P. Vink, R. J. Simonds, and S. R. Nesheim, Thymic dysfunction and time of infection predict mortality in human immunodeficiency virus-infected infants. CDC Perinatal AIDS Collaborative Transmission Study Group, J. Infect. Dis. 178, 680–685 (1998).PubMedGoogle Scholar
  371. 371.
    J. Meers, W. F. Robinson, G. M. del Fierro, M. A. Scoones, and M. A. Lawson, Feline immunodeficiency virus: quantification in peripheral blood mononuclear cells and isolation from plasma of infected cats, Arch. Virol. 127, 233–243 (1992).PubMedCrossRefGoogle Scholar
  372. 372.
    K. Tokunaga, K. Shoda, Y. Nishino, S. Mori, Q. Zhong, Y. Zheng, M. Kishi, C. Ishihara, M. Kanda, and K. Ikuta, Maintenance of high virus load even after seroconversion in newborn kittens acutely infected with feline immunodeficiency virus, Vaccine 13, 1393–1398 (1995).PubMedCrossRefGoogle Scholar
  373. 373.
    J. A. George, N. C. Pedersen, and J. Higgins, The effect of age on the course of experimental feline immunodeficiency virus infection, AIDS Res. Hum. Retroviruses 9, 897–905 (1993).PubMedGoogle Scholar
  374. 374.
    M. S. Orandle, P. C. Crawford, J. K. Levy, R. Udoji, G. P. Papadi, T. Ciccarone, A. Mergia, and C. M. Johnson, CD8+ thymic lymphocytes express reduced levels of CD8 β and increased interferon γ in cats perinatally infected with JSY3 molecular clone of feline immunodeiciecny virus, AIDS Res. Hum. Retroviruses 16, 1559–1571 (2000).PubMedCrossRefGoogle Scholar
  375. 375.
    G. Hoffmann-Fezer, J. Thum, C. Ackley, M. Herbold, J. Mysliwietz, S. Thefeld, K. Hartmann, and W. Kraft, Decline in CD4+ cell numbers in cats with naturally acquired feline immunodeficiency virus infection, J. Virol. 66, 1484–1488 (1992).PubMedGoogle Scholar
  376. 376.
    D. Gebhard, J. Dow, T. Childers, J. Alvelo, M. Tompkins, and W. Tompkins, Progressive expansion of an L-selectin-negative CD8 cell with anti-feline immunodeficiency virus (FIV) suppressor function in the circulation of FIV-infected cats, J. Infect. Dis. 180, 1503–1513 (1999).PubMedCrossRefGoogle Scholar
  377. 377.
    B. J. Willett, M. J. Hosie, J. J. Callanan, J. C. Neil, and O. Jarrett, Infection with feline immunodeficiency virus is followed by the rapid expansion of a CD8+ lymphocyte subset, Immunology 78, 1–6 (1993).PubMedGoogle Scholar
  378. 378.
    M. Shimojima, T. Miyazawa, M. Kohmoto, Y. Ikeda, Y. Nishimura, K. Maeda, Y. Tohya, and T. Mikami, Expansion of CD8alpha+beta-cells in cats infected with feline immunodeficiency virus, J. Gen. Virol. 79, 91–94 (1998).PubMedGoogle Scholar
  379. 379.
    P. C. Crawford, G. P. Papadi, J. K. Levy, N. A. Benson, A. Mergia, and C. M. Johnson, Tissue dynamics of CD8 lymphocytes that suppress viral replication in cats infected neonatally with feline immunodeficiency virus, J. Infect. Dis. 184, 671–681 (2001).PubMedCrossRefGoogle Scholar
  380. 380.
    A. Oxenius, H. F. Gunthard, B. Hirschel, S. Fidler, J. N. Weber, P. J. Easterbrook, J. I. Bell, R. E. Phillips, and D. A. Price, Direct ex vivo analysis reveals distinct phenotypic patterns of HIV-specific CD8+ T lymphocyte activation in response to therapeutic manipulation of virus load, Eur. J. Immunol. 31, 1115–1121 (2001).PubMedCrossRefGoogle Scholar
  381. 381.
    J. E. Schmitz, M. A. Forman, M. A. Lifton, O. Concepcion, K. A. Reimann, C. S. Crumpacker, J. F. Daley, R. S. Gelman, and N. L. Letvin, Expression of the CD8alpha beta-heterodimer on CD8(+) T lymphocytes in peripheral blood lymphocytes of human immunodeficiency virus-and human immunodeficiency virus+ individuals, Blood 92, 198–206 (1998).PubMedGoogle Scholar
  382. 382.
    C. E. Mackewicz, L. C. Yang, J. D. Lifson, and J. A. Levy, Non-cytolytic CD8 T-cell anti-HIV responses in primary HIV-1 infection, Lancet. 344, 1671–1673 (1994).PubMedCrossRefGoogle Scholar
  383. 383.
    J. A. Levy, C. E. Mackewicz, and E. Barker, Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T-cells, Immunol. Today 17, 217–224 (1996).PubMedCrossRefGoogle Scholar
  384. 384.
    M. Torten, M. Franchini, J. E. Barlough, J. W. George, E. Mozes, H. Lutz, and N. C. Pedersen, Progressive immune dysfunction in cats experimentally infected with feline immunodeficiency virus, J. Virol. 65, 2225–2230 (1991).PubMedGoogle Scholar
  385. 385.
    D. S. Lin, D. D. Bowman, R. H. Jacobson, M. C. Barr, M. Fevereiro, J. R. Williams, F. M. O. Noronha, F. W. Scott, and R. J. Avery, Suppression of lymphocyte blastogenesis to mitogens in cats experimentally infected with feline immunodeficiency virus, Vet. Immunol. Immunopathol. 26, 183–189 (1990).PubMedCrossRefGoogle Scholar
  386. 386.
    Y. Hara, T. Ishida, H. Ejima, M. Tagawa, S. Motoyoshi, I. Tomoda, M. Shimizu, and K. Shichinohe, Decrease in mitogen-induced lymphocyte proliferative responses in cats infected with feline immunodeficiency virus, Nippon Juigaku Zasshi 52, 573–579 (1990).PubMedGoogle Scholar
  387. 387.
    S. A. Bishop, N. A. Williams, T. J. Gruffydd-Jones, D. A. Harbour, and C. R. Stokes, Impaired T-cell priming and proliferation in cats infected with feline immunodeficiency virus, AIDS 6, 287–293 (1992).PubMedCrossRefGoogle Scholar
  388. 388.
    K. Ohno, T. Watari, R. Goitsuka, H. Tsujimoto, and A. Hasegawa, Altered surface antigen expression on peripheral blood mononuclear cells in cats infected with feline immunodeficiency virus, J. Vet. Med. Sci. 54, 517–522 (1992).PubMedGoogle Scholar
  389. 389.
    G. A. Dean and N. C. Pedersen, Cytokine response in multiple lymphoid tissues during the primary phase of feline immunodeficiency virus infection, J. Virol. 72, 9436–9440 (1998).PubMedGoogle Scholar
  390. 390.
    Y. Liang, L. C. Hudson, J. K. Levy, J. W. Ritchey, W. A. Tompkins, and M. B. Tompkins, T-cells overexpressing interferon-gamma and interleukin-10 are found in both the thymus and secondary lymphoid tissues of feline immunodeficiency virus-infected cats, J. Infect. Dis. 181, 564–575 (2000).PubMedCrossRefGoogle Scholar
  391. 391.
    C. E. Lawrence, J. J. Callanan, B. J. Willett, and O. Jarrett, Cytokine production by cats infected with feline immunodeficiency virus: a longitudinal study, Immunology 85, 568–574 (1995).PubMedGoogle Scholar
  392. 392.
    L. A. Kraus, W. G. Bradley, R. W. Engelman, K. M. Brown, R. A. Good, and N. K. Day, Relationship between tumor necrosis factor alpha and feline immunodeficiency virus expressions, J. Virol. 70, 566–569 (1996).PubMedGoogle Scholar
  393. 393.
    J. W. Ritchey, J. K. Levy, S. K. Bliss, W. A. Tompkins, and M. B. Tompkins, Constitutive expression of types 1 and 2 cytokines by alveolar macrophages from feline immunodeficiency virus-infected cats, Vet. Immunol. Immunopathol. 79, 83–100 (2001).PubMedCrossRefGoogle Scholar
  394. 394.
    T. Tanabe and J. K. Yamamoto, Feline immunodeficiency virus lacks sensitivity to the antiviral activity of feline IFN-gamma, J. Interferon Cytokine Res. 21, 1039–1046 (2001).PubMedCrossRefGoogle Scholar
  395. 395.
    G. A. Dean, J. A. Bernales, and N. C. Pedersen, Effect of feline immunodeficiency virus on cytokine response to Listeria monocytogenes in vivo, Vet. Immunol. Immunopathol. 65, 125–138 (1998).PubMedCrossRefGoogle Scholar
  396. 396.
    G. H. Reubel, J. W. George, J. E. Barlough, J. Higgins, C. K. Grant, and N. C. Pedersen, Interaction of acute feline herpesvirus-1 and chronic feline immunodeficiency virus infections in experimentally infected specific pathogen free cats, Vet. Immunol. Immunopathol. 35, 95–119 (1992).PubMedCrossRefGoogle Scholar
  397. 397.
    M. Torten, E. E. Sparger, B. A. Rideout, N. C. Pedersen, and P. A. Luciw, in Vaccines 90: Modern Approaches to New Vaccines Including Prevention of AIDS, edited by F. Brown, R. M. Chanock, H. S. Ginsberg, and R. A. Lerner (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1990), 375–378.Google Scholar
  398. 398.
    A. Taniguchi, T. Ishida, T. Washizu, and I. Tomoda, Humoral immune response to T-cell dependent and independent antigens in cats infected with feline immunodeficiency virus, J. Vet. Med. Sci. 53, 333–335 (1991).PubMedGoogle Scholar
  399. 399.
    G. H. Shelton, M. L. Linenberger, C. K. Grant, and J. L. Abkowitz, Hematologic manifestations of feline immunodeficiency virus infection, Blood 76, 1104–1109 (1990).PubMedGoogle Scholar
  400. 400.
    D. S. Lin and D. D. Bowman, Macrophage functions in cats experimentally infected with feline immunodeficiency virus and toxoplasma gondii, Vet. Immunol. Immunopathol. 33, 69–78 (1992).PubMedCrossRefGoogle Scholar
  401. 401.
    P. Kubes, B. Heit, G. van Marle, J. B. Johnston, D. Knight, A. Khan, and C. Power, In vivo impairment of neutrophil recruitment during lentivirus infection, J. Immunol. 171, 4801–4808 (2003).PubMedGoogle Scholar
  402. 402.
    M. A. Hanlon, J. M. Marr, K. A. Hayes, L. E. Mathes, P. C. Stromberg, S. Ringler, S. Krakowka, and L. J. Lafrado, Loss of neutrophil and natural killer cell function following feline immunodeficiency virus infection, Viral Immunol. 6, 119–124 (1993).PubMedGoogle Scholar
  403. 403.
    A. L. Parodi, F. Femenia, A. Moraillon, F. Crespeau, and J. J. Fontaine, Histopathological changes in lymph nodes of cats experimentally infected with the feline immunodeficiency virus (FIV), J. Comp. Pathol. 111, 165–174 (1994).PubMedCrossRefGoogle Scholar
  404. 404.
    D. A. Gunn-Moore, G. R. Pearson, D. A. Harbour, and C. V. Whiting, Encephalitis associated with giant cells in a cat with naturally occurring feline immunodeficiency virus infection demonstrated by in situ hybridization, Vet. Pathol. 33, 699–703 (1996).PubMedGoogle Scholar
  405. 405.
    J. A. Beatty, J. J. Callanan, A. Terry, O. Jarrett, and J. C. Neil, Molecular and immunophenotypical characterization of a feline immunodeficiency virus (FIV)-associated lymphoma: a direct role for FIV in B-lymphocyte transformation?, J. Virol. 72, 767–771 (1998).PubMedGoogle Scholar
  406. 406.
    J. A. Beatty, C. E. Lawrence, J. J. Callanan, C. K. Grant, E. A. Gault, J. C. Neil, and O. Jarrett, Feline immunodeficiency virus (FIV)-associated lymphoma: a potential role for immune dysfunction in tumourigenesis, Vet. Immunol. Immunopathol. 65, 309–322 (1998).PubMedCrossRefGoogle Scholar
  407. 407.
    J. A. Beatty, A. Terry, J. MacDonald, E. Gault, S. Cevario, S. J. O’Brien, E. Cameron, and J. C. Neil, Feline immunodeficiency virus integration in B-cell lymphoma identifies a candidate tumor suppressor gene on human chromosome 15q15, Cancer Res. 62, 7175–7180 (2002).PubMedGoogle Scholar
  408. 408.
    Y. Endo, K. W. Cho, K. Nishigaki, Y. Momoi, Y. Nishimura, T. Mizuno, Y. Goto, T. Watari, H. Tsujimoto, and A. Hasegawa, Molecular characteristics of malignant lymphomas in cats naturally infected with feline immunodeficiency virus, Vet. Immunol. Immunopathol. 57, 153–167 (1997).PubMedCrossRefGoogle Scholar
  409. 409.
    A. Poli, F. Abramo, F. Baldinotti, M. Pistello, L. Da Prato, and M. Bendinelli, Malignant lymphoma associated with experimentally induced feline immunodeficiency virus infection, J. Comp. Path. 10, 319–328 (1994).Google Scholar
  410. 410.
    A. A. Lackner, P. Vogel, R. A. Ramos, J. D. Kluge, and M. Marthas, Early events in tissues during infection with pathogenic (SIVmac239) and nonpathogenic (SIVmac1A11) molecular clones of simian immunodeficiency virus, Am. J. Pathol. 145, 428–439 (1994).PubMedGoogle Scholar
  411. 411.
    H. L. Ioachim, C. W. Lerner, and M. L. Tapper, The lymphoid lesions associated with the acquired immunodeficiency syndrome, J. Am. Surg. Pathol. 7, 543–553 (1983).CrossRefGoogle Scholar
  412. 412.
    P. N. Fultz, H. M. McClure, D. C. Anderson, and W. M. Switzer, Identification and biologic characterization of an acutely lethal variant of simian immunodeficiency virus from sooty mangabeys (SIV/SMM), AIDS Res. Hum. Retroviruses 5, 397–409 (1989).PubMedGoogle Scholar
  413. 413.
    M. L. Bonyhadi, L. Rabin, S. Salimi, D. A. Brown, J. Kosek, J. M. McCune, and H. Kaneshima, HIV induces thymus depletion in vivo, Nature 363, 728–732 (1993).PubMedCrossRefGoogle Scholar
  414. 414.
    F. Miedema, Immunological abnormalities in the natural history of HIV infection: mechanisms and clinical relevance, Immunodefic. Rev. 3, 173–193 (1992).PubMedGoogle Scholar
  415. 415.
    E. M. Poeschla and D. J. Looney, CXCR4 is required by a nonprimate lentivirus: heterologous expression of feline immunodeficiency virus in human, rodent, and feline cells, J. Virol. 72, 6858–6866 (1998).PubMedGoogle Scholar
  416. 416.
    S. Lombardi, C. Massi, E. Indino, C. La Rosa, P. Mazzetti, M. L. Falcone, P. Rovero, A. Fissi, O. Pieroni, P. Bandecchi, F. Esposito, F. Tozzini, M. Bendinelli, and C. Garzelli, Inhibition of feline immunodeficiency virus infection in vitro by envelope glycoprotein synthetic peptides, Virology 220, 274–284 (1996).PubMedCrossRefGoogle Scholar
  417. 417.
    D. C. Bragg, R. B. Meeker, B. A. Duff, R. V. English, and M. B. Tompkins, Neurotoxicity of FIV and FIV envelope protein in feline cortical cultures, Brain Res. 816, 431–417 (1999).PubMedCrossRefGoogle Scholar
  418. 418.
    C. M. Johnson, N. A. Benson, and G. P. Papadi, Apoptosis and CD4+ lymphocyte depletion following feline immunodeficiency virus infection of a T-lymphocyte cell line, Vet. Pathol. 33, 195–203 (1996).PubMedCrossRefGoogle Scholar
  419. 419.
    T. Mizuno, Y. Goto, K. Baba, K. Masuda, K. Ohno, and H. Tsujimoto, TNF-α-induced cell death in feline immunodeficiency virus-infected cells is mediated by the caspase cascade, Virology 287, 446–455 (2001).PubMedCrossRefGoogle Scholar
  420. 420.
    K. Ohno, Y. Okamoto, T. Miyazawa, T. Mikami, T. Watari, R. Goitsuka, H. Tsujimoto, and A. Hasegawa, Induction of apoptosis in a T lymphoblastoid cell line infected with feline immunodeficiency virus, Arch. Virol. 135, 153–158 (1994).PubMedCrossRefGoogle Scholar
  421. 421.
    K. Ohno, T. Nakano, Y. Matsumoto, T. Watari, R. Goitsuka, H. Nakayama, H. Tsujimoto, and A. Hasegawa, Apoptosis induced by tumor necrosis factor in cells chronically infected with feline immunodeficiency virus, J. Virol. 67, 2429–2433 (1993).PubMedGoogle Scholar
  422. 422.
    E. Holznagel, R. Hofmann-Lehmann, C. M. Leutenegger, K. Allenspach, S. W. Huettner, U. Forster, E. Niederer, H. Joller, B. J. Willett, U. Hummel, G. L. Rossi, J. Schupbach, and H. Lutz, The role of in vitro-induced lymphocyte apoptosis in feline immunodeficiency virus infection: correlation with different markers of disease progression, J. Virol. 72, 9025–9033 (1998).PubMedGoogle Scholar
  423. 423.
    S. A. Bishop, T. J. Gruffydd-Jones, D. A. Harbour, and C. R. Stokes, Programmed cell death (apoptosis) as a mechanism of cell death in peripheral blood mononuclear cells from cats infected with feline immunodeficiency virus (FIV), Clin. Exp. Immunol. 93, 65–71 (1993).PubMedCrossRefGoogle Scholar
  424. 424.
    Y. Momoi, T. Mizumno, Y. Nishimura, Y. Endo, K. Ohno, T. Watari, R. Goitsuka, H. Tsujimoto, and A. Hasegawa, Detection of apoptosis induced in peripheral blood lymphocytes from cats infected with feline immunodeficiency virus, Arch. Virol. 141, 1651–1659 (1996).PubMedCrossRefGoogle Scholar
  425. 425.
    A. Guiot, D. Rigal, and G. Chappuis, Spontanious programmed cell death (PCD) process of lymphocytes of FIV-infected cats: cellular targets and modulation, Vet. Immunol. Immunopathol. 58, 93–106 (1997).PubMedCrossRefGoogle Scholar
  426. 426.
    G. Sarli, S. L. Della, L. Zaccaro, M. Bendinelli, G. Piedimonte, and P. Marcato, Apoptotic fraction in lymphoid tissue of FIV-infected SPF cats, Vet. Immunol. Immunopathol. 64, 33–44 (1998).PubMedCrossRefGoogle Scholar
  427. 427.
    H. Garg, A. Joshi, and W. A. Tompkins, Feline immunodeficiency virus envelope glycoprotein mediates apoptosis in activated PBMC by a mechanism dependent on gp41 function, Virology 330, 424–436 (2004).PubMedCrossRefGoogle Scholar
  428. 428.
    J. Yamazaki, N. Hasebe, S. Nagafuchi, K. Baba, H. Tsujimoto, R. Kano, and A. Hasegawa, Expression of apoptosis-related gene mRNAs in feline T-cells infected with feline immunodeficiency virus (FIV), Vet. Microbiol. 101, 1–8 (2004).PubMedCrossRefGoogle Scholar
  429. 429.
    T. Mizuno, Y. Goto, K. Baba, Y. Momoi, Y. Endo, Y. Nishimura, K. Masuda, K. Ohno, and H. Tsujimoto, Quantitative analysis of Fas and Fas ligand mRNAs in a feline T-lymphoid cell line after infection with feline immunodeficiency virus and primary peripheral blood mononuclear cells obtained from cats infected with the virus., Vet. Immunol. Immunopathol. 93, 117–123 (2003).PubMedCrossRefGoogle Scholar
  430. 430.
    G. Piedimonte, R. Crinelli, L. D. Salda, D. Corsi, M. G. Pennisi, L. Kramer, A. Casabianca, G. Sarli, M. Bendinelli, P. S. Marcato, and M. Magnani, Protein degradation and apoptotic death in lymphocytes during FIV infection: Activation of the ubiquitinproteasome proteolytic system, Exper. Cell Res. 248, 381–390 (1999).CrossRefGoogle Scholar
  431. 431.
    E. Mortola, Y. Endo, T. Mizuno, K. Ohno, T. Watari, H. Tsujimoto, and A. Hasegawa, Effect of interleukin-12 and interleukin-10 on the virus replication and apoptosis in Tcells infected with feline immunodeficiency virus, J. Vet. Med. Sci. 60, 1181–1185 (1998).PubMedCrossRefGoogle Scholar
  432. 432.
    M. E. Bull, T. W. Vahlenkamp, J. L. Dow, E. W. Collisson, B. J. Winslow, A. P. Phadke, M. B. Tompkins, and W. A. Tompkins, Spontaneous T-cell apoptosis in feline immunodeficiency virus (FIV)-infected cats is inhibited by IL2 and anti-B7.1 antibodies, Vet. Immunol. Immunopathol. 99, 25–37 (2004).PubMedCrossRefGoogle Scholar
  433. 433.
    I. S. Choi, H. S. Yoo, and E. W. Collisson, Evaluation of expression patterns of feline CD28 and CTLA-4 in feline immunodeficiency virus (FIV)-infected and FIV antigen-induced PBMC, J. Vet. Sci. 1, 97–103 (2004).Google Scholar
  434. 434.
    M. B. Tompkins, M. E. Bull, J. L. Dow, J. M. Ball, E. W. Collisson, B. J. Winslow, A. P. Phadke, T. W. Vahlenkamp, and W. A. Tompkins, Feline immunodeficiency virus infection is characterized by B7+CTLA4+ T-cell apoptosis, J. Infect. Dis. 185, 1077–1093 (2002).PubMedCrossRefGoogle Scholar
  435. 435.
    T. W. Vahlenkamp, M. E. Bull, J. L. Dow, J. M. Ball, E. W. Collisson, B. J. Winslow, A. P. Phadke, W. A. Tompkins, and M. B. Tompkins, B7+CTLA4+ T-cells engage in T-T interactions that mediate apoptosis: a model for lentivirus-induced T-cell depletion, Vet. Immunol. Immunopathol. 98, 203–214 (2004).PubMedCrossRefGoogle Scholar
  436. 436.
    Q. Leng, Z. Bentwich, E. Magen, A. Kalinkovich, and G. Borkow, CTLA-4 upregulation during HIV infection: association with anergy and possible target for therapeutic intervention, AIDS 16, 519–529 (2002).PubMedCrossRefGoogle Scholar
  437. 437.
    D. E. Lewis, L. Yang, W. Luo, X. Wang, and J. R. Rodgers, HIV-specific cytotoxic T lymphocyte precursors exist in a CD28-CD8+ T-cell subset and increase with loss of CD4 T-cells, AIDS 13, 1029–1033, (1999).PubMedCrossRefGoogle Scholar
  438. 438.
    E. N. Mugnaini, A. Spurkland, T. Egeland, M. Sannes, and J. E. Brinchmann, Demonstration of identical expanded clones within both CD8+CD28+ and CD8+CD28-T-cell subsets in HIV type 1-infected individuals, Eur. J. Immunol. 28, 1738–1742 (1998).PubMedCrossRefGoogle Scholar
  439. 439.
    O. K. Haffar, M. D. Smithgall, J. G. Wong, J. Bradshaw, and P. S. Linsley, Human immunodeficiency virus type 1 infection of CD4+ T-cells down-regulates the expression of CD28: effect on T-cell activation and cytokine production, Clin. Immunol. Immunopathol. 77, 262–270 (1995).PubMedCrossRefGoogle Scholar
  440. 440.
    J. E. Brinchmann, J. H. Dobloug, B. H. Heger, L. L. Haaheim, M. Sannes, and T. Egeland, Expression of costimulatory molecule CD28 on T-cells in human immunodeficiency virus type 1 infection: functional and clinical correlations, J. Infect. Dis. 169, 730–738 (1994).PubMedGoogle Scholar
  441. 441.
    W. E. Johnson, J. D. Lifson, S. M. Lang, R. P. Johnson, and R. C. Desrosiers, Importance of B-cell responses for immunological control of variant strains of simian immunodeficiency virus, J. Virol. 77, 375–381 (2003).PubMedCrossRefGoogle Scholar
  442. 442.
    J. E. Schmitz, M. J. Kuroda, S. Santra, V. G. Sasseville, M. A. Simon, M. A. Lifton, P. Racz, K. Tenner-Racz, M. Dalesandro, B. J. Scallon, J. Ghrayeb, M. A. Forman, M. D. C., E. P. Rieber, N. L. Letvin, and K. A. Reimann, Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes, Science 283, 857–860 (1999).PubMedCrossRefGoogle Scholar
  443. 443.
    J. E. Schmitz, M. J. Kuroda, S. Santra, M. A. Simon, M. A. Lifton, W. Lin, R. Khunkhun, M. Piatak, J. Lifson, G. Grosschupff, R. S. Gelman, P. Racz, K. Tenner-Racz, K. A. Mansfield, N. L. Letvin, D. C. Montefiori, and K. A. Reimann, Effect of humoral immune responses on controlling viremia during primary infection of rhesus monkeys with simian immunodeficiency virus, J. Virol. 77, 2165–2173 (2003).PubMedCrossRefGoogle Scholar
  444. 444.
    T. P. O’Connor, S. Tanguay, R. Steinman, R. A. Smith, M. C. Barr, J. K. Yamamoto, N. C. Pedersen, P. R. Andersen, and Q. J. Tonelli, Development and evaluation of immunoassay for detection of antibodies to the feline T-lymphotropic lentivirus (feline immunodeficiency virus). J. Clin. Microbiol. 27, 474–479 (1989).PubMedGoogle Scholar
  445. 445.
    M. J. Hosie and O. Jarrett, Serological responses of cats to feline immunodeficiency virus, AIDS 4, 215–220 (1990).PubMedCrossRefGoogle Scholar
  446. 446.
    S. Lombardi, M. Bendinelli, and C. Garzelli, Detection of B epitopes on the p24 gag protein of feline immunodeficiency virus by monoclonal antibodies, AIDS Res. Hum. Retroviruses 9, 141–146 (1993).PubMedGoogle Scholar
  447. 447.
    A. Trkola, H. Kuster, C. Leemann, A. Oxenius, C. Fagard, H. Furrer, M. Battegay, P. Vernazza, E. Bernasconi, R. Weber, B. Hirschel, S. Bonhoeffer, H. F. Gunthard, and S. H. C. Study, Humoral immunity to HIV-1: kinetics of antibody responses in chronic infection reflects capacity of immune system to improve viral set point, Blood 104, 1784–1792 (2004).PubMedCrossRefGoogle Scholar
  448. 448.
    P. W. Parren, J. P. Moore, D. R. Burton, and Q. J. Sattentau, The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity AIDS, AIDS 13, S137–S162 (1999).PubMedGoogle Scholar
  449. 449.
    D. R. Burton, R. A. Williamson, and P. W. Parren, Antibody and virus: binding and neutralization, Virology 270, 1–3 (2000).PubMedCrossRefGoogle Scholar
  450. 450.
    A. Avrameas, A. Strosberg, A. Moraillon, P. Sonigo, and G. Pancino, Serological diagnosis of feline immunodeficiency virus infection based on synthetic peptides from Env glycoproteins, Res Virol. 144, 209–218 (1993).PubMedGoogle Scholar
  451. 451.
    S. Lombardi, C. Garzelli, C. La Rosa, L. Zaccaro, S. Specter, G. Malvaldi, F. Tozzini, F. Esposito, and M. Bendinelli, Identification of a linear neutralization site within the third variable region of the feline immunodeficiency virus envelope, J. Virol. 67, 4742–4749 (1993).PubMedGoogle Scholar
  452. 452.
    G. Pancino, C. Chappey, W. Saurin, and P. Sonigo, B epitopes and selection pressures in feline immunodeficiency virus envelope glycoproteins, J. Virol. 67, 664–672 (1993).PubMedGoogle Scholar
  453. 453.
    C. Massi, S. Lombardi, E. Indino, D. Matteucci, C. La Rosa, F. Esposito, C. Garzelli, and M. Bendinelli, Most potential linear B cell epitopes of Env glycoproteins of feline immunodeficiency virus are immunogenically silent in infected cats, AIDS Res. Hum. Retroviruses 13, 1121–1129 (1997).PubMedGoogle Scholar
  454. 454.
    J. Richardson, I. Fossati, A. Moraillon, S. Castelot, P. Sonigo, and G. Pancino, Neutralization sensitivity and accessibility of continuous B cell epitopes of the feline immunodeficiency virus envelope, J. Gen. Virol. 77, 759–771 (1996).PubMedGoogle Scholar
  455. 455.
    K. H. Siebelink, G. F. Rimmelzwaan, M. L. Bosch, R. H. Meloen, and A. D. Osterhaus, A single amino acid substitution in hypervariable region 5 of the envelope protein of feline immunodeficiency virus allows escape from virus neutralization, J. Virol. 67, 2202–2208 (1993).PubMedGoogle Scholar
  456. 456.
    K. H. Siebelink, W. Huisman, J. A. Karlas, G. F. Rimmelzwaan, M. L. Bosch, and A. D. Osterhaus, Neutralization of feline immunodeficiency virus by polyclonal feline antibody: simultaneous involvement of hypervariable regions 4 and 5 of the surface glycoprotein, J. Virol. 69, 5124–5127 (1995).PubMedGoogle Scholar
  457. 457.
    G. Freer, S. Giannecchini, A. Tissot, M. F. Bachmann, P. Rovero, P. F. Serres, and M. Bendinelli, Dissection of seroreactivity against the tryptophan-rich motif of the feline immunodeficiency virus transmembrane glycoprotein, Virology 322, 360–369 (2004).PubMedCrossRefGoogle Scholar
  458. 458.
    M. Bendinelli, M. Pistello, D. Del Mauro, G. Cammarota, F. Maggi, A. Leonildi, S. Giannecchini, C. Bergamini, and D. Matteucci, During readaptation in vivo, a tissue culture-adapted strain of feline immunodeficiency virus reverts to broad neutralization resistance at different times in individual hosts but through changes at the same position of the surface glycoprotein, J. Virol. 75, 4584–4593 (2001).PubMedCrossRefGoogle Scholar
  459. 459.
    G. Cammarota, D. Matteucci, M. Pistello, E. Nicoletti, S. Giannecchini, and M. Bendinelli, Reduced sensitivity to strain-specific neutralization of laboratory-adapted feline immunodeficiency virus after one passage in vivo: association with amino acid substitutions in the V4 region of the surface glycoprotein, AIDS Res. Hum. Retroviruses 12, 173–175 (1996).PubMedGoogle Scholar
  460. 460.
    S. Giannecchini, D. Matteucci, A. Ferrari, M. Pistello, and M. Bendinelli, Feline immunodeficiency virus-infected cat sera associated with the development of broad neutralization resistance in vivo drive similar reversions in vitro, J. Virol. 75, 8868–8873 (2001).PubMedCrossRefGoogle Scholar
  461. 461.
    M. Pistello, D. Matteucci, S. Giannecchini, F. Bonci, O. Sichi, S. Presciuttini, and M. Bendinelli, Evolution of two amino acid positions governing broad neutralization resistance in a strain of feline immunodeficiency virus over 7 years of persistence in cats, Clin. Diagn. Lab. Immunol. 10, 1109–1116 (2003).PubMedCrossRefGoogle Scholar
  462. 462.
    K. H. J. Siebelink, E. Tijhaar, R. C. Huisman, W. Huisman, A. De Ronde, I. H. Darby, M. J. Francis, G. F. Rimmelzwaan, and A. D. Osterhaus, Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines, J. Virol. 69, 3704–3711 (1995).PubMedGoogle Scholar
  463. 463.
    D. R. Burton, R. C. Desrosiers, R. W. Doms, W. C. Koff, P. D. Kwong, J. P. Moore, G. J. Nabel, J. Sodroski, I. A. Wilson, and R. T. Wyatt, HIV vaccine design and the neutralizing antibody problem, Nat. Immunol. 5, 233–236 (2004).PubMedCrossRefGoogle Scholar
  464. 464.
    M. B. Zwick, R. Jensen, S. Church, M. Wang, G. Stiegler, R. Kunert, H. Katinger, and D. R. Burton, Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1, J. Virol. 79, 1252–1261 (2005).PubMedCrossRefGoogle Scholar
  465. 465.
    J. Richardson, A. Moraillon, F. Crespeau, S. Baud, P. Sonigo, and G. Pancino, Delayed infection after immunization with a peptide from the transmembrane glycoprotein of the feline immunodeficiency virus, J. Virol. 72, 2406–2415 (1998).PubMedGoogle Scholar
  466. 466.
    N. L. Haigwood and L. Stamatatos, Role of neutralizing antibodies in HIV infection, AIDS 17Suppl. 4, S67–71 (2003).PubMedCrossRefGoogle Scholar
  467. 467.
    R. A. Rasmussen, R. Hofmann-Lehmann, P. L. Li, J. Vlasak, J. E. Schmitz, K. A. Reimann, M. J. Kuroda, N. L. Letvin, D. C. Montefiori, H. M. McClure, and R. M. Ruprecht, Neutralizing antibodies as a potential secondary protective mechanism during chronic SHIV infection in CD8+ T-cell-depleted macaques, AIDS 16, 829–838 (2002).PubMedCrossRefGoogle Scholar
  468. 468.
    R. Pu, S. Okada, E. R. Little, B. Xu, W. V. Stoffs, and J. K. Yamamoto, Protection of neonatal kittens against feline immunodeficiency virus infection with passive maternal antiviral antibodies, AIDS 9, 235–242 (1995).PubMedGoogle Scholar
  469. 469.
    K. K. Van Rompay, C. J. Berardi, S. Dillard-Telm, R. P. Tarara, D. R. Canfield, C. R. Valverde, D. C. Montefiori, K. S. Cole, R. C. Montelaro, C. J. Miller, and M. L. Marthas, Passive immunization of newborn rhesus macaques prevents oral simian immunodeficiency virus infection, J. Infect. Dis. 177, 1247–1259 (1998).PubMedGoogle Scholar
  470. 470.
    F. Ferrantelli, R. A. Rasmussen, K. A. Buckley, P. L. Li, T. Wang, D. C. Montefiori, H. Katinger, G. Stiegler, D. C. Anderson, H. M. McClure, and R. M. Ruprecht, Complete protection of neonatal rhesus macaques against oral exposure to pathogenic simianhuman immunodeficiency virus by human anti-HIV monoclonal antibodies, J. Infect. Dis. 189, 2149–2153 (2004).CrossRefGoogle Scholar
  471. 471.
    Q. J. Sattentau, Neutralization of HIV-1 by antibody, Curr. Opin. Immunol. 8, 540–545 (1996).PubMedCrossRefGoogle Scholar
  472. 472.
    W. Huisman, J. A. Karlas, K. H. Siebelink, R. C. Huisman, A. de Ronde, M. J. Francis, G. F. Rimmelzwaan, and A. D. Osterhaus, Feline immunodeficiency virus subunit vaccines that induce virus neutralising antibodies but no protection against challenge infection, Vaccine 16, 181–187 (1998).PubMedCrossRefGoogle Scholar
  473. 473.
    F. Baldinotti, D. Matteucci, P. Mazzetti, C. Giannelli, P. Bandecchi, F. Tozzini, and M. Bendinelli, Serum neutralization of feline immunodeficiency virus is markedly dependent on passage history of the virus and host system, J. Virol. 68, 4572–4579 (1994).PubMedGoogle Scholar
  474. 474.
    D. Del Mauro, D. Matteucci, S. Giannecchini, F. Maggi, M. Pistello, and M. Bendinelli, Autologous and heterologous neutralization analyses of primary feline immunodeficiency virus isolates, J. Virol. 72, 2199–2207 (1998).PubMedGoogle Scholar
  475. 475.
    M. J. Burkhard, C. K. Mathiason, T. Bowdre, and E. A. Hoover, Feline immunodeficiency virus Gag-and Env-specific immune responses after vaginal versus intravenous infection, AIDS Res. Hum. Retroviruses 17, 1767–1778 (2001).PubMedCrossRefGoogle Scholar
  476. 476.
    T. Hohdatsu, S. Fujimori, M. Maeki, N. Suma, K. Motokawa, S. Okada, and H. Koyama, Virus neutralizing antibody titer to feline immunodeficiency virus isolates of subtypes A, B and D in experimentally or naturally infected cats, J. Vet. Med. Sci. 59, 377–381 (1997).PubMedCrossRefGoogle Scholar
  477. 477.
    Y. Inoshima, T. Miyazawa, M. Kohmoto, Y. Ikeda, E. Sato, T. Hohdatsu, C. K. Mathiason-Dubard, E. A. Hoover, and T. Mikami, Cross virus neutralizing antibodies against feline immunodeficiency virus genotypes A, B, C, D and E, Arch. Virol. 143, 157–162 (1998).PubMedCrossRefGoogle Scholar
  478. 478.
    J. A. Levy, The search for the CD8+ cell anti-HIV factor (CAF), Trends Immunol. 24, 628–632 (2003).PubMedCrossRefGoogle Scholar
  479. 479.
    J. D. Lifson, J. L. Rossio, M. J. Piatak, T. Parks, L. Li, R. Kiser, V. Coalter, B. Fisher, B. M. Flynn, S. Czajak, V. M. Hirsch, K. A. Reimann, J. E. Schmitz, J. Ghrayeb, N. Bischofberger, M. A. Nowak, R. C. Desrosiers, and D. Wodarz, Role of CD8(+) lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment, J. Virol. 75, 10187–10199 (2001).PubMedCrossRefGoogle Scholar
  480. 480.
    J. N. Flynn, C. A. Cannon, J. C. Neil, and O. Jarrett, Vaccination with a feline immunodeficiency virus multiepitopic peptide induces cell-mediated and humoral immune responses in cats, but does not confer protection, J. Virol. 71, 7586–7592 (1997).PubMedGoogle Scholar
  481. 481.
    G. A. Dean, A. LaVoy, and M. J. Burkhard, Peptide mapping of feline immunodeficiency virus by IFN-gamma ELISPOT, Vet. Immunol. Immunopathol. 100, 49–59 (2004).PubMedCrossRefGoogle Scholar
  482. 482.
    J. A. Beatty, B. J. Willett, E. A. Gault, and O. Jarrett, A longitudinal study of feline immunodeficiency virus-specific cytotoxic T lymphocytes in experimentally infected cats, using antigen-specific induction, J. Virol. 70, 6199–6206 (1996).PubMedGoogle Scholar
  483. 483.
    S. Finerty, C. R. Stokes, T. J. Gruffydd-Jones, T. J. Hillman, N. A. Reeves, C. V. Whiting, W. M. Schaaper, K. Dalsgaard, and D. A. Harbour, Mucosal immunization with experimental feline immunodeficiency virus (FIV) vaccines induces both antibody and T-cell responses but does not protect against rectal FIV challenge, Vaccine 18, 3254–3265 (2000).PubMedCrossRefGoogle Scholar
  484. 484.
    J. N. Flynn, J. A. Beatty, C. A. Cannon, E. B. Stephens, M. J. Hosie, J. C. Neil, and O. Jarrett, Involvement of gag-and env-specific cytotoxic T lymphocytes in protective immunity to feline immunodeficiency virus, AIDS Res. Hum. Retroviruses 11, 1107–1113 (1995).PubMedGoogle Scholar
  485. 485.
    S. Giannecchini, P. Isola, O. Sichi, D. Matteucci, M. Pistello, L. Zaccaro, D. Del Mauro, and M. Bendinelli, AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: failure to protect and possible enhancement of challenge infection by four cell-based vaccines prepared with autologous lymphoblasts, J. Virol. 76, 6882–6892 (2002).PubMedCrossRefGoogle Scholar
  486. 486.
    C. R. Jeng, R. V. English, T. Childers, M. B. Tompkins, and W. A. Tompkins, Evidence for CD8+ antiviral activity in cats infected with feline immunodeficiency virus, J. Virol. 70, 2474–2480 (1996).PubMedGoogle Scholar
  487. 487.
    R. Pu, J. Coleman, M. Omori, M. Arai, T. Hohdatsu, C. Huang, T. Tanabe, and J. K. Yamamoto, Dual-subtype FIV vaccine protects cats against in vivo swarms of both homologous and heterologous subtype FIV isolates, AIDS 15, 1225–1237 (2001).PubMedCrossRefGoogle Scholar
  488. 488.
    R. Pu, M. Omori, S. Okada, S. L. Rine, B. A. Lewis, E. Lipton, and J. K. Yamamoto, MHC-restricted protection of cats against FIV infection by adoptive transfer of immune cells from FIV-vaccinated donors, Cell. Immunol. 198, 30–43 (1999).PubMedCrossRefGoogle Scholar
  489. 489.
    J. Sirriyah, G. A. Dean, A. LaVoy, and M. J. Burkhard, Assessment of CD4+ and CD8+ IFN-gamma producing cells by ELISPOT in naive and FIV-infected cats, Vet. Immunol. Immunopathol. 102, 77–84 (2004).PubMedCrossRefGoogle Scholar
  490. 490.
    W. Song, E. W. Collisson, P. M. Billingsley, and W. C. Brown, Induction of feline immunodeficiency virus-specific cytolytic T-cell responses from experimentally infected cats, J. Virol. 66, 5409–5417 (1992).PubMedGoogle Scholar
  491. 491.
    W. Song, E. W. Collisson, J. Li, A. M. Wolf, J. H. Elder, C. K. Grant, and W. C. Brown, Feline immunodeficiency virus (FIV)-specific cytotoxic T lymphocytes from chronically infected cats are induced in vitro by retroviral vector-transduced feline T-cells expressing the FIV capsid protein, Virology 209, 390–399 (1995).PubMedCrossRefGoogle Scholar
  492. 492.
    J. N. Flynn, S. T. Dunham, A. Mueller, C. Cannon, and O. Jarrett, Involvement of cytolytic and non-cytolytic T-cells in the control of feline immunodeficiency virus infection, Vet. Immunol. Immunopathol. 85, 159–170 (2002).PubMedCrossRefGoogle Scholar
  493. 493.
    J. N. Flynn, C. A. Cannon, G. Reid, M. A. Rigby, J. C. Neil, and O. Jarrett, Induction of feline immunodeficiency virus-specific cell-mediated and humoral immune responses following immunization with a multiple antigenic peptide from the envelope V3 domain, Immunology 85, 171–175 (1995).PubMedGoogle Scholar
  494. 494.
    D. T. Evans, D. H. O’Connor, P. Jing, J. L. Dzuris, J. Sidney, J. da Silva, T. M. Allen, H. Horton, J. E. Venham, R. A. Rudersdorf, T. Vogel, C. D. Pauza, R. E. Bontrop, R. DeMars, A. Sette, A. L. Hughes, and D. I. Watkins, Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef, Nat. Med. 5, 1270–1276 (1999).PubMedCrossRefGoogle Scholar
  495. 495.
    P. J. Goulder, R. E. Phillips, R. A. Colbert, S. McAdam, G. Ogg, M. A. Nowak, P. Giangrande, G. Luzzi, B. Morgan, A. Edwards, A. J. McMichael, and S. Rowland-Jones, Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS, Nat. Med. 3, 212–217 (1997).PubMedCrossRefGoogle Scholar
  496. 496.
    P. J. Goulder and B. D. Walker, The great escape—AIDS viruses and immune control, Nat. Med. 5, 1233–1235 (1999).PubMedCrossRefGoogle Scholar
  497. 497.
    M. Omori, R. Pu, T. Tanabe, W. Hou, J. K. Coleman, M. Arai, and J. K. Yamamoto, Cellular immune responses to feline immunodeficiency virus (FIV) induced by dual-subtype FIV vaccine, Vaccine 23, 386–398 (2004).PubMedCrossRefGoogle Scholar
  498. 498.
    T. Hohdatsu, M. Okubo, and H. Koyama, Feline CD8+ T-cell non-cytolytic anti-feline immunodefieicncy virus activity mediated by a soluble factor(s), J. Gen. Virol. 79, 2729–2735 (1998).PubMedGoogle Scholar
  499. 499.
    M. Shimojima, Y. Nishimura, T. Miyazawa, Y. Tohya, and H. Akashi, Phenotypic changes in CD8+ peripheral blood lymphocytes in cats infected with feline immunodeficiency virus, Microbes Infect. 5, 1171–1176 (2003).PubMedCrossRefGoogle Scholar
  500. 500.
    S. T. Hohdatsu T., A. Yamazaki, K. Motokawa, H. Kusuhara, T. Kaneshima, and H. Koyama, CD8+ T-cells from feline immunodeficiency virus (FIV) infected cats suppress exogenous FIV replication of their peripheral blood mononuclear cells in vitro, Arch. Virol. 147, 1517–1529 (2002).PubMedCrossRefGoogle Scholar
  501. 501.
    J. N. Flynn, C. A. Cannon, D. Sloan, J. C. Neil, and O. Jarrett, Suppression of feline immunodeficiency virus replication in vitro by a soluble factor secreted by CD8+ T lymphocytes, Immunology 96, 220–229 (1999).PubMedCrossRefGoogle Scholar
  502. 502.
    I. S. Choi, R. Hokanson, and E. W. Collisson, Anti-feline immunodeficiency virus (FIV) soluble factor(s) produced from antigen-stimulated feline CD8(+) T lymphocytes suppresses FIV replication, J. Virol. 74, 676–683 (2000).PubMedCrossRefGoogle Scholar
  503. 503.
    T. Hohdatsu, A. Yamazaki, M. Yamada, H. Kusuhara, T. Kaneshima, and H. Koyama, Ability of CD8(+) T-cell anti-feline immunodeficiency virus activity correlated with peripheral CD4(+) T-cell counts and plasma viremia, Microbiol. Immunol. 47, 765–773 (2003).PubMedGoogle Scholar
  504. 504.
    A. P. Phadke, I. S. Choi, Z. Li, E. A. Weaver, and E. W. Collisson, The role of inducer cells in mediating in vitro suppression of feline immunodeficiency virus replication, Virology 320, 63–74 (2004).PubMedCrossRefGoogle Scholar
  505. 505.
    M. S. Wyand, K. H. Manson, M. Garcia-Moll, D. Montefiori, and R. C. Desrosiers, Vaccine protection by a triple deletion mutant of simian immunodeficiency virus, J. Virol. 70, 3724–3733 (1996).PubMedGoogle Scholar
  506. 506.
    M. D. Daniel, F. Kirchhoff, S. C. Czajak, P. K. Sehgal, and R. C. Desrosiers, Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene, Science 258, 1938–1941 (1992).PubMedCrossRefGoogle Scholar
  507. 507.
    K. Abel, L. Compton, T. Rourke, D. Montefiori, D. Lu, K. Rothaeusler, L. Fritts, K. Bost, and C. J. Miller, Simian-human immunodeficiency virus SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239 is independent of the route of immunization and is associated with a combination of cytotoxic T-lymphocyte and alpha interferon responses, J. Virol. 77, 3099–3118 (2003).PubMedCrossRefGoogle Scholar
  508. 508.
    J. B. Whitney and R. M. Ruprecht, Live attenuated HIV vaccines: pitfalls and prospects, Curr. Opin. Infect. Dis. 17, 17–26 (2004).PubMedCrossRefGoogle Scholar
  509. 509.
    T. W. Baba, Y. S. Jeong, D. Penninck, R. Bronson, M. F. Greene, and R. M. Ruprecht, Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques, Science 267, 1820–1825 (1995).PubMedCrossRefGoogle Scholar
  510. 510.
    T. W. Baba, V. Liska, A. H. Khimani, N. B. Ray, P. J. Dailey, D. Penninck, R. Bronson, M. F. Greene, H. M. McClure, L. N. Martin, and R. M. Ruprecht, Live attenuated, multiply deleted simain immunodeficiency virus causes AIDS in infant and adult macaques, Nature Med. 5, 194–203 (1999).PubMedCrossRefGoogle Scholar
  511. 511.
    R. R. Amara, F. Villinger, J. D. Altman, S. L. Lydy, et al., Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine, Science 292, 69–74 (2001).PubMedCrossRefGoogle Scholar
  512. 512.
    D. H. Barouch, S. Santra, J. E. Schmitz, M. J. Kuroda, et al., Control of viremia and prevention of clinical AIDS in rhesus macaques by cytokine-augmented DNA vaccination, Science 290, 486–491 (2000).PubMedCrossRefGoogle Scholar
  513. 513.
    R. R. Amara and H. L. Robinson, A new generation of HIV vaccines, Trends Mol. Med. 8, 489–495 (2002).PubMedCrossRefGoogle Scholar
  514. 514.
    E. W. Uhl, T. G. Heaton-Jones, R. Pu, and J. K. Yamamoto, FIV vaccine development and its importance to veterinary and human medicine: a review, Vet. Immunol. Immunopathol. 6714, 1–20 (2002).Google Scholar
  515. 515.
    J. Cohen, HIV/AIDS in China. Vaccine development with a distinctly Chinese flavor, Science 304, 1437 (2004).PubMedCrossRefGoogle Scholar
  516. 516.
    Y. Kono, K. Kobayashi, and Y. Fukunaga, Immunization of horses against equine infectious anemia (EIA) with an attenuated EIA virus, Natl. Inst. Anim. Health Q. (Tokyo) 10, 113–122 (1970).Google Scholar
  517. 517.
    J. K. Levy, P. C. Crawford, and M. R. Slater, Effect of vaccination against feline immunodeficiency virus on results of serologic testing in cats, J. Am. Vet. Med. Assoc. 225, 1558–1561 (2004).PubMedCrossRefGoogle Scholar
  518. 518.
    J. A. Karlas, K. H. Siebelink, M. A. Peer, W. Huisman, G. F. Rimmelzwaan, and A. D. Osterhaus, Accelerated viraemia in cats vaccinated with fixed autologous FIV-infected cells, Vet. Immunol. Immunopathol. 65, 353–365 (1998).PubMedCrossRefGoogle Scholar
  519. 519.
    J. A. Karlas, K. H. Siebelink, M. A. Peer, W. Huisman, A. M. Cuisinier, G. F. Rimmelzwaan, and A. D. Osterhaus, Vaccination with experimental feline immunodeficiency virus vaccines, based on autologous infected cells, elicits enhancement of homologous challenge infection, J. Gen. Virol. 80, 761–765 (1999).PubMedGoogle Scholar
  520. 520.
    M. J. Hosie, R. Osborne, G. Reid, J. C. Neil, and O. Jarrett, Enhancement after feline immunodeficiency virus vaccination, Vet. Immunol. Immunopathol. 35, 191–197 (1992).PubMedCrossRefGoogle Scholar
  521. 521.
    W. Hesselink, P. J. Sondermeijer, H. Pouwels, E. Verblakt, and C. Dhore, Vaccination of cats against feline immunodeficiency virus (FIV): a matter of challenge, Vet. Microbiol. 69, 109–110 (1999).PubMedCrossRefGoogle Scholar
  522. 522.
    M. J. Hosie, R. Osborne, J. K. Yamamoto, J. C. Neil, and O. Jarrett, Protection against homolgous but not heterologous challenge induced by inactivated feline immunodeficiency virus vaccines, J. Virol. 69, 1253–1255 (1995).PubMedGoogle Scholar
  523. 523.
    M. J. Hosie, T. Dunsford, D. Klein, B. J. Willett, C. Cannon, R. Osborne, J. MacDonald, N. Spibey, N. A. Mackay, O. Jarrett, and J. C. Neil, Vaccination with inactivated virus but not viral DNA reduces virus load following challenge with a heterologous and virulent isolate of feline immunodeficiency virus, J. Virol. 74, 9403–9411 (2000).PubMedCrossRefGoogle Scholar
  524. 524.
    S. Finerty, C. R. Stokes, T. J. Gruffydd-Jones, T. J. Hillman, F. J. Barr, and D. A. Harbour, Targeted lymph node immunization can protect cats from a mucosal challenge with feline immunodeficiency virus, Vaccine 20, 49–58 (2001).PubMedCrossRefGoogle Scholar
  525. 525.
    D. Matteucci, M. Pistello, P. Mazzetti, S. Giannecchini, D. Del Mauro, L. Zaccaro, P. Bancecchi, F. Tozzini, and M. Bendinelli, Vaccination protects against in vivo-grown feline immunodeficiency virus even in the absence of detectable neutralizing antibodies, J. Virol. 70, 617–622 (1996).PubMedGoogle Scholar
  526. 526.
    D. Matteucci, A. Poli, P. Mazzetti, S. Sozzi, F. Bonci, P. Isola, L. Zaccaro, S. Giannecchini, M. Calandrella, M. Pistello, S. Specter, and M. Bendinelli, Immunogenicity of an anticlade B feline immunodeficiency fixed-cell vrius vaccine in field cats, J. Virol. 74, 10911–10919 (2000).PubMedCrossRefGoogle Scholar
  527. 527.
    T. Hohdatsu, S. Okada, K. Motokawa, C. Aizawa, J. K. Yamamoto, and H. Koyama, Effect of dual-subtype vaccine against feline immunodeficiency virus infection, Vet. Microbiol. 58, 155–165 (1997).PubMedCrossRefGoogle Scholar
  528. 528.
    M. C. Tellier, R. Pu, D. Pollock, A. Vitsky, J. Tartaglia, E. Paoletti, and J. K. Yamamoto, Efficacy evaluation of prime-boost protocol: canarypoxvirus-based feline immunodeficiency virus (FIV) vaccine and inactivated FIV-infected cell vaccine against heterologous FIV challenge in cats, AIDS 12, 11–18 (1998).PubMedCrossRefGoogle Scholar
  529. 529.
    S. A. Bishop, C. R. Stokes, T. J. Gruffydd-Jones, C. V. Whiting, J. E. Humphries, R. Osborne, M. Papnastasopoulou, and D. A. Harbour, Vaccination with fixed feline immunodeficiency virus (FIV) infected cells: protection, breakthrough and specificity of response, Vaccine 14, 1243–1250 (1996).PubMedCrossRefGoogle Scholar
  530. 530.
    D. Matteucci, M. Pistello, P. Mazzetti, S. Giannecchini, D. Del Mauro, I. Lonetti, L. Zaccaro, C. Pollera, S. Specter, and M. Bendinelli, Studies of AIDS vaccination using an ex vivo feline immunodeficiency virus model: protection conferred by a fixed-cell vaccination against cell-free and cell-associated challenge differs in duration and is not easily boosted, J. Virol. 71, 8368–8376 (1997).PubMedGoogle Scholar
  531. 531.
    M. J. Hosie, T. H. Dunsford, A. de Ronde, B. J. Willett, C. A. Cannon, J. C. Neil, and O. Jarrett, Suppression of virus burden by immunization with feline immunodeficiency virus Env protein, Vaccine 14, 405–411 (1996).PubMedCrossRefGoogle Scholar
  532. 532.
    P. Mazzetti, S. Giannecchini, D. Del Mauro, D. Matteucci, P. Portincasa, A. Merico, C. Chezzi, and M. Bendinelli, AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: detailed analysis of the humoral immune response to a protective vaccine, J. Virol. 73, 1–10 (1999).PubMedGoogle Scholar
  533. 533.
    D. Matteucci, M. Pistello, P. Mazzetti, S. Giannecchini, P. Isola, A. Merico, L. Zaccaro, and A. Rizzuti, AIDS vaccination studies using feline immunodeficiency virus suppresses viraemia levels following intravaginal challenge with infected cells but not following intravenous challenge with cell-free virus, Vaccine 18, 119–130 (1999).PubMedCrossRefGoogle Scholar
  534. 534.
    S. Giannecchini, D. Del Mauro, D. Matteucci, and M. Bendinelli, AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: reevaluation of neutralizing antibody levels elicited by a protective and a nonprotective vaccine after removal of antisubstrate cell antibodies, J. Virol. 75, 4424–4429 (2001).PubMedCrossRefGoogle Scholar
  535. 535.
    J. N. Flynn, P. Keating, M. J. Hosie, M. Mackett, E. B. Stephens, J. A. Beatty, J. C. Neil, and O. Jarrett, Env-specific CTL predominate in cats protected from feline immunodeficiency virus infection by vaccination, J. Immunol. 157, 3658–3665 (1996).PubMedGoogle Scholar
  536. 536.
    M. C. Tellier, J. Soos, R. Pu, D. Pollock, and J. K. Yamamoto, Development of FIV-specific cytolytic T-lymphocyte responses in cats upon immunisation with FIV vaccines, Vet. Microbiol. 57, 1–11 (1997).PubMedCrossRefGoogle Scholar
  537. 537.
    M. J. Hosie and J. N. Flynn, Feline immunodefiiency virus vaccination: characterization of the immune correlates of protection, J. Virol. 70, 7561–7568 (1996).PubMedGoogle Scholar
  538. 538.
    W. L. Chan, A. Rodgers, R. D. Hancock, F. Taffs, P. Kitchin, G. Farrar, and F. Y. Liew, Protection in simian immunodeficiency virus-vaccinated monkeys correlates with anti-HLA class I antibody response, J. Exp. Med. 176, 1203–1207 (1992).PubMedCrossRefGoogle Scholar
  539. 539.
    E. J. Stott, Anti-cell antibody in macaques, Nature 353, 393 (1991).PubMedCrossRefGoogle Scholar
  540. 540.
    N. A. Doria-Rose, C. Ohlen, P. Polacino, C. C. Pierce, M. T. Hensel, L. Kuller, T. Mulvania, D. C. Anderson, P. D. Greenberg, S. L. Hu, and N. Haigwood, Multigene DNA priming-boosting vaccines protect macaques from acute CD4+-T-cell depletion after simian-human immunodeficiency virus SHIV89.6P mucosal challenge, J. Virol. 77, 11563–11577 (2003).PubMedCrossRefGoogle Scholar
  541. 541.
    R. L. Willey, R. Byrum, M. Piatak, Y. B. Kim, M. W. Cho, J. L. Rossio, J. Bess, T. Igarashi, Y. Endo, L. O. Arthur, J. D. Lifson, and M. A. Martin, Control of viremia and prevention of simian-human immunodeficiency virus-induced disease in rhesus macaques immunized with recombinant vaccinia viruses plus inactivated simian immunodeficiency virus and human immunodeficiency virus type 1 particles, J. Virol. 77, 1163–1174 (2003).PubMedCrossRefGoogle Scholar
  542. 542.
    E. J. Verschoor, M. J. Willemse, J. G. Stam, A. L. van Vliet, H. Pouwels, S. K. Chalmers, M. C. Horzinek, P. J. Sondermeijer, W. Hesselink, and A. de Ronde, Evaluation of subunit vaccines against feline immunodeficiency virus infection, Vaccine 14, 285–289 (1996).PubMedCrossRefGoogle Scholar
  543. 543.
    A. Cuisinier, A. Meyer, B. Chatrenet, A. S. Verdier, and A. Aubert, Attempt to modify the immune response developed against FIV gp120 protein by preliminary FIV DNA injection, Vaccine 17, 415–425 (1999).PubMedCrossRefGoogle Scholar
  544. 544.
    H. Lutz, R. Hofmann-Lehmann, K. Bauer-Pham, E. Holznagel, F. Tozzini, M. Bendinelli, G. Reubel, A. Aubert, D. Davis, D. Cox, and E. Young, FIV vaccine studies. I. Immune response to recombinant FIV env gene products and outcome after challenge infection, Vet. Immunol. Immunopathol. 46, 103–113 (1995).PubMedCrossRefGoogle Scholar
  545. 545.
    C. M. Leutenegger, R. Hofmann-Lehmann, E. Holznagel, A. M. Cuisinier, C. Wolfensberger, V. Duquesne, J. Cronier, K. Allenspach, A. Aubert, P. Ossent, and H. Lutz, Partial protection by vaccination with recombinant feline immunodeficiency virus surface glycoproteins, AIDS Res. Hum. Retroviruses 14, 275–283 (1998).PubMedGoogle Scholar
  546. 546.
    N. L. Letvin, Progress in the development of an HIV-1 vaccine, Science 280, 1875–1880 (1998).PubMedCrossRefGoogle Scholar
  547. 547.
    L. Chiarantini, D. Matteucci, M. Pistello, U. Mancini, P. Mazzetti, C. Massi, S. Giannecchini, I. Lonetti, M. Magnani, and M. Bendinelli, AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: homologous erythrocytes as a delivery system for preferential immunization with putative protective antigens, Clin. Diagn. Lab. Immunol. 5, 235–241 (1998).PubMedGoogle Scholar
  548. 548.
    S. Zolla-Pazner, Identifying epitopes of HIV-1 that induce protective antibodies, Nat. Rev. Immunol. 4, 199–210 (2004).PubMedCrossRefGoogle Scholar
  549. 549.
    M. J. Hosie, J. N. Flynn, M. A. Rigby, C. Cannon, T. Dunsford, N. A. Mackay, D. Argyle, B. J. Willett, T. Miyazawa, D. E. Onions, O. Jarrett, and J. C. Neil, DNA vaccination affords significant protection against feline immunodeficiency virus infection without inducing detectable antiviral antibodies, J. Virol. 72, 7310–7319 (1998).PubMedGoogle Scholar
  550. 550.
    F. S. Boretti, C. M. Leutenegger, C. N. Mislin, R. Hofmann-Lehmann, S. Koenig, M. Schroff, C. Junghans, D. Fehr, S. W. Huettner, A. Habel, J. N. Flynn, A. Aubert, N. C. Pedersen, B. Wittig, and H. Lutz, Protection against FIV challenge infection by genetic vaccination using minimalistic DNA constructs for FIV env gene and feline IL-12 expression, AIDS 14, 1749–1757 (2000).PubMedCrossRefGoogle Scholar
  551. 551.
    C. M. Leutenegger, F. S. Boretti, C. N. Mislin, J. N. Flynn, M. Schroff, A. Habel, C. Junghans, S. A. Koenig-Merediz, B. Sigrist, A. Aubert, N. C. Pedersen, B. Wittig, and H. Lutz, Immunization of cats against feline immunodeficiency virus (FIV) infection by using minimalistic immunogenic defined gene expression vector vaccines expressing FIV gp140 alone or with feline interleukin-12 (IL-12), IL-16, or a CpG motif, J. Virol. 74, 10447–10457 (2000).PubMedCrossRefGoogle Scholar
  552. 552.
    L. Deml, A. Bojak, S. Steck, M. Graf, J. Wild, R. Schirmbeck, H. Wolf, and R. Wagner, Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type 1 Gag protein, J. Virol. 75, 10991–11001 (2001).PubMedCrossRefGoogle Scholar
  553. 553.
    J. N. Flynn, M. J. Hosie, M. A. Rigby, N. Mackay, C. A. Cannon, T. Dunsford, J. C. Neil, and O. Jarrett, Factors influencing cellular immune responses to feline immunodefiency virus induced by DNA vaccination, Vaccine 18, 1118–1132 (2000).PubMedCrossRefGoogle Scholar
  554. 554.
    J. Richardson, A. Moraillon, S. Baud, A. M. Cuisinier, P. Sonigo, and G. Pancino, Enhancement of feline immunodeficiency virus (FIV) infection after DNA vaccination with the FIV envelope, J. Virol. 71, 9640–9649 (1997).PubMedGoogle Scholar
  555. 555.
    J. Richardson, S. Broche, S. Baud, T. Leste-Lasserre, F. Femenia, D. Levy, A. Moraillon, G. Pancino, and P. Sonigo, Lymphoid activation: a confounding factor in AIDS vaccine development?, J. Gen. Virol. 83, 2515–2521 (2002).PubMedGoogle Scholar
  556. 556.
    A. M. Cuisinier, V. Mallet, A. Meyer, C. Caldora, and A. Aubert, DNA vaccination using expression vectors carrying FIV structural genes induces immune response against feline immunodeficiency virus, Vaccine 15, 1085–1094 (1997).PubMedCrossRefGoogle Scholar
  557. 557.
    P. Gonin, A. Fournier, W. Oualikene, A. Moraillon, and M. Eloit, Immunization trial of cats with a replication-defective adenovirus type 5 expressing the ENV gene of feline immunodeficiency virus, Vet. Microbiol. 45, 393–401 (1995).PubMedCrossRefGoogle Scholar
  558. 558.
    M. J. Burkhard, L. Valenski, S. Leavell, G. A. Dean, and W. A. Tompkins, Evaluation of FIV protein-expressing VEE-replicon vaccine vectors in cats, Vaccine 21, 258–268 (2002).PubMedCrossRefGoogle Scholar
  559. 559.
    E. J. Tijhaar, W. Huisman, R. C. Huisman, K. H. Siebelink, J. A. Karlas, A. de Ronde, R. van Herwijnen, F. R. Mooi, and A. D. Osterhaus, Salmonella typhimurium aroA recombinants and immune-stimulating complexes as vaccine candidates for feline immunodeficiency virus, J. Gen. Virol. 78, 3265–3275 (1997).PubMedGoogle Scholar
  560. 560.
    R. Stevens, K. E. Howard, S. Nordone, M. J. Burkhard, and G. A. Dean, Oral immunization with recombinant listeria monocytogenes controls virus load after vaginal challenge with feline immunodeficiency virus, J. Virol. 78, 8210–8218 (2004).PubMedCrossRefGoogle Scholar
  561. 561.
    A. Kumar, S. Mukherjee, J. Shen, S. Buch, Z. Li, I. Adany, Z. Liu, W. Zhuge, M. Piatak, J. D. Lifson, H. McClure, and O. Narayan, Immunization of macaques with live simian human immunodeficiency virus (SHIV) vaccines conferred protection against AIDS induced by homologous and heterologous SHIVs and simian immunodeficiency virus, Virology 301, 189–205 (2002).PubMedCrossRefGoogle Scholar
  562. 562.
    A. Harmache, C. Vitu, F. Guiguen, P. Russon, G. Bertoni, M. Pepin, R. Vigne, and M. Susan, Priming with tat-deleted caprine arthritis encphalitis virus (CAEV) proviral DNA or live virus protects goats from challenge with pathogenic CAEV, J. Virol. 72, 6796–6804 (1998).PubMedGoogle Scholar
  563. 563.
    F. Li, J. K. Craigo, L. Howe, J. D. Steckbeck, S. Cook, C. J. Issel, and R. C. Montelaro, A live attenuated equine infectious anemia virus proviral vaccine with a modified S2 gene provides protection from detectable infection by intravenous virulent virus challenge of experimentally inoculated horses, J. Virol. 77, 7244–7253 (2003).PubMedCrossRefGoogle Scholar
  564. 564.
    M. Kohmoto, T. Miyazawa, E. Sato, K. Uetsuka, Y. Nishimura, Y. Ikeda, G. Inada, K. Doi, and T. Mikami, Cats are protected against feline immunodeficiency virus infection following vaccination with a homologous AP-1 binding site-deleted mutant, Arch. Virol. 143, 1839–1845 (1998).PubMedCrossRefGoogle Scholar
  565. 565.
    S. VandeWoude, C. A. Hageman, S. J. O’Brien, and E. A. Hoover, Nonpathogenic lion and puma lentiviruses impart resistance to superinfection by virulent feline immunofeciency virus, J.A.I.D.S. 29, 1–10 (2002).Google Scholar
  566. 566.
    R. C. Desrosiers, Prospects for an AIDS vaccine, Nat. Med. 10, 221–223 (2004).PubMedCrossRefGoogle Scholar
  567. 567.
    M. L. Raabe, C. J. Issel, S. J. Cook, R. F. Cook, B. Woodson, and R. C. Montelaro, Immunization with a recombinant envelope protein (rgp90) of EIAV produces a spectrum of vaccine efficacy ranging from lack of clinical disease to severe enhancement, Virology 245, 151–162 (1998).PubMedCrossRefGoogle Scholar
  568. 568.
    R. Merat, H. Raoul, T. Leste-Lasserre, P. Sonigo, and G. Pancino, Variable constraints on the principal immunodominant domain of the transmembrane glycoprotein of human immunodeficiency virus type 1, J. Virol. 73, 5698–5706 (1999).PubMedGoogle Scholar
  569. 569.
    W. Huisman, E. J. Schrauwen, S. D. Pas, J. A. Karlas, G. F. Rimmelzwaan, and A. D. Osterhaus, Antibodies specific for hypervariable regions 3 to 5 of the feline immunodeficiency virus envelope glycoprotein are not solely responsible for vaccine-induced acceleration of challenge infection in cats, J. Gen. Virol. 85, 1833–1841 (2004).PubMedCrossRefGoogle Scholar
  570. 570.
    S. I. Staprans, A. P. Barry, G. Silvestri, J. T. Safrit, N. Kozyr, B. Sumpter, H. Nguyen, H. McClure, D. Montefiori, J. I. Cohen, and M. B. Feinberg, Enhanced SIV replication and accelerated progression to AIDS in macaques primed to mount a CD4 T-cell response to the SIV envelope protein, Proc. Natl. Acad. Sci. USA 101, 13026–13031 (2004).PubMedCrossRefGoogle Scholar
  571. 571.
    R. C. Cronn, K. M. Remington, B. D. Preston, and T. W. North, Inhibition of reverse transcriptase from feline immunodeficiency virus by analogs of 2′-deoxyadenosine-5′-triphosphate, Biochem. Pharmacol. 44, 1375–1381 (1992).PubMedCrossRefGoogle Scholar
  572. 572.
    H. Egberink, M. Borst, H. Niphuis, J. Balzarini, H. Neu, H. Schellekens, E. De Clercq, M. Horzinek, and M. Koolen, Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine, Proc. Natl. Acad. Sci. USA 87, 3087–3091 (1990).PubMedCrossRefGoogle Scholar
  573. 573.
    K. Hartmann, J. Balzarini, J. Higgins, E. De Clercq, and N. C. Pedersen, In vitro activity of acyclic nucleoside phosphonate derivatives against feline immunodeficiency vius in Crandell feline kidney cells and feline peripheral blood lymphocytes, Antiviral Chem. Chemother. 6, 13–19 (1994).Google Scholar
  574. 574.
    T. W. North and R. A. LaCasse, Testing HIV-1 drugs in the FIV model, Nat. Med. 1, 410–411 (1995).PubMedCrossRefGoogle Scholar
  575. 575.
    T. W. Vahlenkamp, A. De Ronde, J. Balzarini, L. Naesens, E. De Clercq, M. J. van Eijk, M. C. Horzinek, and H. F. Egberink, (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine is a potent inhibitor of feline immunodeficiency virus infection, Antimicrob. Agents Chemother. 39, 746–749 (1995).PubMedGoogle Scholar
  576. 576.
    L. M. Stolk and J. F. Luers, Increasing number of anti-HIV drugs but no definite cure. Review of anti-HIV drugs, Pharm. World Sci. 26, 133–136 (2004).PubMedCrossRefGoogle Scholar
  577. 577.
    J. M. Gobert, K. M. Remington, Y. Q. Zhu, and T. W. North, Multiple-drug-resistant mutants of feline immunodeficiency virus selected with 2′,3′-dideoxyinosine alone and in combination with 3′-azido-3′-deoxythymidine, Antimicrob. Agents Chemother. 38, 861–864 (1994).PubMedGoogle Scholar
  578. 578.
    Y. Q. Zhu, K. M. Remington, and T. W. North, Mutants of feline immunodeficiency virus resistant to 2′,3′-dideoxy-2′,3′-didehydrothymidine, Antimicrob. Agents Chemother. 40, 1983–1987 (1996).PubMedGoogle Scholar
  579. 579.
    H. K. Medlin, Y. Q. Zhu, K. M. Remington, T. R. Phillips, and T. W. North, Selection and characterization of a mutant of feline immunodeficiency virus resistant to 2′,3′-dideoxycytidine, Antimicrob. Agents Chemother. 40, 953–957 (1996).PubMedGoogle Scholar
  580. 580.
    N. R. Smyth, M. Bennett, R. M. Gaskell, C. McCracken, C. A. Hart, and J. L. Howe, Effect of 3′azido-2′,3′-deoxythymidine (AZT) on experimental feline immunodeficiency virus infection in domestic cats, Res.Vet. Sci. 57, 220–224 (1994).PubMedGoogle Scholar
  581. 581.
    K. Hartmann, A. Donath, B. E. Beer, H. F. Egberink, M. C. Horzinek, H. Lutz, G. Hoffmann-Fezer, I. Thum, and S. Thefeld, Use of two virustatica (AZT, PMEA) in the treatment of FIV and of FeLV seropositive cats with clinical symptoms, Vet. Immunol. Immunopathol. 35, 167–175 (1992).PubMedCrossRefGoogle Scholar
  582. 582.
    K. Hartmann, A. Donath, and W. Kraft, AZT in the teatment of feline immunodeficiency virus infection, Part 1, Feline Pract. 23, 16–21 (1995).Google Scholar
  583. 583.
    K. Hartmann, A. Donath, and W. Kraft, AZT in the teatment of feline immunodeficiency virus infection, Part 2, Feline Pract. 23, 13–20 (1995).Google Scholar
  584. 584.
    K. A. Hayes, L. J. Lafrado, J. G. Erickson, J. M. Marr, and L. E. Mathes, Prophylactic ZDV therapy prevents early viremia and lymphocyte decline but not primary infection in feline immunodeficiency virus-inoculated cats, J. Acquir. Immune Defic. Syndr. 6, 127–134 (1993).PubMedGoogle Scholar
  585. 585.
    K. A. Hayes, J. G. Wilkinson, R. Frick, S. Francke, and L. E. Mathes, Early suppression of viremia by ZDV does not alter the spread of feline immunodeficiency virus infection in cats, J. Acquir. Immune Defic. Syndr. 9, 114–122 (1995).Google Scholar
  586. 586.
    J. Meers, G. M. del Fierro, R. B. Cope, H. S. Park, W. K. Greene, and W. F. Robinson, Feline immunodeficiency virus infection: plasma, but not peripheral blood mononuclear cell virus titer is influenced by zidovudine and cyclosporine, Arch. Virol. 132, 67–81 (1993).PubMedCrossRefGoogle Scholar
  587. 587.
    K. A. Hayes, A. J. Phipps, S. Francke, and L. E. Mathes, Antiviral therapy reduces viral burden but does not prevent thymic involution in young cats infected with feline immunodeficiency virus, Antimicrob. Agents Chemother. 44, 2399–2405 (2000).PubMedCrossRefGoogle Scholar
  588. 588.
    M. Arai, D. D. Earl, and J. K. Yamamoto, Is AZT/3TC therapy effective against FIV infection or immunopathogenesis?, Vet. Immunol. Immunopathol. 85, 189–204 (2002).PubMedCrossRefGoogle Scholar
  589. 589.
    K. Hartmann, M. Kuffer, J. Balzarini, L. Naesens, M. Goldberg, V. Erfle, F. D. Goebel, E. De Clercq, J. Jindrich, A. Holy, N. Bischofberger, and W. Kraft, Efficacy of the acyclic nucleoside phosphonates (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine (FPMPA) and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) against feline immunodeficiency virus, J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 17, 120–128 (1998).PubMedGoogle Scholar
  590. 590.
    M. S. Philpott, J. P. Ebner, and E. A. Hoover, Evaluation of 9-(2-phosphonylmethoxyethyl) adenine therapy for feline immunodeficiency virus using a quantitative polymerase chain reaction, Vet. Immunol. Immunopathol. 35, 155–166 (1992).PubMedCrossRefGoogle Scholar
  591. 591.
    L. R. Bisset, H. Lutz, J. Boni, R. Hofmann-Lehmann, R. Luthy, and J. Schupbach, Combined effect of zidovudine (ZDV), lamivudine (3TC) and abacavir (ABC) antiretroviral therapy in suppressing in vitro FIV replication, Antiviral Res. 53, 35–45 (2002).PubMedCrossRefGoogle Scholar
  592. 592.
    T. Lee, V. D. Le, D. Lim, Y. C. Lin, G. M. Morris, A. L. Wong, A. J. Olson, J. E. Elder, and C. H. Wong, Development of a new type of protease inhibitors, efficacious against FIV and HIV variants, J. Am. Chem. Soc. 121, 1145–1155 (1999).CrossRefGoogle Scholar
  593. 593.
    M. Li, G. M. Morris, T. Lee, G. S. Laco, C. H. Wong, A. J. Olson, J. H. Elder, A. Wlodawer, and A. Gustchina, Structural studies of FIV and HIV-1 proteases complexed with an efficient inhibitor of FIV protease, Proteins 38, 29–40 (2000).PubMedCrossRefGoogle Scholar
  594. 594.
    S. De Rozieres, C. H. Swan, D. A. Sheeter, K. J. Clingerman, Y. C. Lin, S. Huitron-Resendiz, S. J. Henriksen, B. E. Torbett, and J. H. Elder, Assessment of FIV-C infection of cats as a function of treatment with the protease inhibitor, TL-3, Retrovirology 1, 38 (2004).PubMedCrossRefGoogle Scholar
  595. 595.
    R. J. Medinas, D. M. Lambert, and W. A. Tompkins, C-Terminal gp40 peptide analogs inhibit feline immunodeficiency virus: cell fusion and virus spread, J. Virol. 76, 9079–9086 (2002).PubMedCrossRefGoogle Scholar
  596. 596.
    C. T. Wild, D. C. Shugars, T. K. Greenwell, C. B. McDanal, and T. J. Matthews, Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection, Proc. Natl. Acad. Sci. USA 91, 9770–9774 (1994).PubMedCrossRefGoogle Scholar
  597. 597.
    S. G. Peisajovich and Y. Shai, Viral fusion proteins: multiple regions contribute to membrane fusion, Biochem. Biophsy. Acta. 1614, 122–129 (2003).CrossRefGoogle Scholar
  598. 598.
    A. Mergia, J. Blackwell, and S. Chari, Inhibition of FIV replication by a ribozyme that targets the Rev response element, AIDS Res. Hum. Retroviruses 13, 1333–1339 (1997).PubMedCrossRefGoogle Scholar
  599. 599.
    K. De Mari, L. Maynard, A. Sanquer, B. Lebreux, and H. M. Eun, Therapeutic effects of recombinant feline interferon-omega on feline leukemia virus (FeLV)-infected and FeLV/feline immunodeficiency virus (FIV)-coinfected symptomatic cats, J. Vet. Intern. Med. 18, 477–482 (2004).PubMedCrossRefGoogle Scholar
  600. 600.
    M. Arai, J. Darman, A. Lewis, and J. K. Yamamoto, The use of human hematopoietic growth factors (rhGM-CSF and rhEPO) as a supportive therapy for FIV-infected cats, Vet. Immunol. Immunopathol. 77, 71–92 (2000).PubMedCrossRefGoogle Scholar
  601. 601.
    C. R. Gregory, J. E. Barlough, R. Clark, S. M. Griffey, J. D. Patz, P. Jardieu, and N. C. Pedersen, Effects of insulin-like growth factor-1 and AZT in cats experimentally infected with FIV, Feline Pract. 25, 23–31 (1997).Google Scholar
  602. 602.
    C. H. Pontzer, J. K. Yamamoto, F. W. Bazer, T. L. Ott, and H. M. Johnson, Potent antifeline immunodeficiency virus and anti-human immunodeficiency virus effect of IFNtau, J. Immunol. 158, 4351–4357 (1997).PubMedGoogle Scholar
  603. 603.
    C. M. Leutenegger, J. B. Huder, C. N. Mislin, F. Lahrtz, R. Hofmann-Lehmann, N. C. Pedersen, and H. Lutz, Molecular characterization of feline interleukin 16: chemotactic activity and effect on feline immunodeficiency virus infection and/or replication, AIDS Res. Hum. Retroviruses 16, 569–575 (2000).PubMedCrossRefGoogle Scholar
  604. 604.
    S. L. Pett and A. D. Kelleher, Cytokine therapies in HIV-1 infection: present and future, Expert Rev. Anti Infect. Ther. 1, 83–96 (2003).PubMedCrossRefGoogle Scholar
  605. 605.
    J. D. Siliciano and R. F. Siliciano, A long-term latent reservoir for HIV-1: discovery and clinical implications, J. Antimicrob. Chemother. 54, 6–9 (2004).PubMedCrossRefGoogle Scholar
  606. 606.
    M. A. Curran and G. P. Nolan, Nonprimate lentiviral vectors, Curr. Top. Microbiol. Immunol. 261, 75–105 (2002).PubMedGoogle Scholar
  607. 607.
    D. T. Saenz and E. M. Poeschla, FIV: from lentivirus to lentivector, J. Gene Med. 6, S95–S104 (2004).PubMedCrossRefGoogle Scholar
  608. 608.
    N. Loewen, M. Fautsch, and M. Peretz, Genetic modification of human trabecular meshwork with lentiviral vectors, Hum. Gene Ther. 12, 2109–2119 (2001).PubMedCrossRefGoogle Scholar
  609. 609.
    J. J. Song, B. Lee, J. W. Chang, J. Kim, Y. K. Kwon, and H. Lee, Optimization of vesicular stomatitis virus-G pseudotyped feline immunodeficiency virus vector for minimized cytotoxicity with efficient gene transfer, Virus Res. 93, 25–30 (2003).PubMedCrossRefGoogle Scholar
  610. 610.
    M. A. Curran, S. M. Kaiser, P. L. Achacoso, and G. P. Nolan, Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors, Mol. Ther. 1, 31–38 (2000).PubMedCrossRefGoogle Scholar
  611. 611.
    N. Loewen, D. Leske, and Y. Chen, Comparison of wild type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium, J. Gene Med. 5, 1009–1017 (2003).PubMedCrossRefGoogle Scholar
  612. 612.
    N. Loewen, R. Barraza, T. Whitwam, D. T. Saenz, I. Kemler, and E. M. Poeschla, FIV vectors, Methods Mol. Biol. 229, 251–271 (2003).PubMedGoogle Scholar
  613. 613.
    M. C. Barr, P. P. Calle, M. E. Roelke, and F. W. Scott, Feline immunodeficiency virus infection in nondomestic felids, J. Zoo. Wildl. Med. 20, 265–272 (1989).Google Scholar
  614. 614.
    M. C. Barr, L. Zou, F. Long, W. A. Hoose, and R. J. Avery, Proviral organization and sequence analysis of feline immunodeficiency virus isolated from a Pallas cat, Virology 228, 84–91 (1997).PubMedCrossRefGoogle Scholar
  615. 615.
    M. Carpenter, E. Brown, and M. Culver, Genetic and phylogenetic divergence of feline immunodeficiency virus in the puma (Puma concolor), J. Virol. 70, 6682–6693 (1996).PubMedGoogle Scholar
  616. 616.
    R. J. Langley, V. M. Hirsch, S. J. O’Brien, D. Adger-Johnson, R. M. Goeken, and R. Olmsted, Nucleotide sequence analysis of puma lentivirus (PLV-14): genomic organization and relationship to other lentiviruses, Virology 202, 853–864 (1994).PubMedCrossRefGoogle Scholar
  617. 617.
    S. VandeWoude, S. J. O’Brien, K. Langelier, W. D. Hardy, J. P. Slattery, E. E. Zuckerman, and E. A. Hoover, Growth of lion and puma lentiviruses in domestic cat cells and comparisons with FIV, Virology 233, 185–192 (1997).PubMedCrossRefGoogle Scholar
  618. 618.
    J. L. Troyer, J. Pecon-Slattery, M. E. Roelke, L. Black, C. Packer, and S. J. O’Brien, Patterns of feline immunodeficiency virus multiple infection and genome divergence in a free-ranging population of African lions, J. Virol. 78, 3777–3791 (2004).PubMedCrossRefGoogle Scholar
  619. 619.
    M. A. Carpenter and S. J. O’Brien, Coadaptation and immunodeficiency virus: lessons from the Felidae, Curr. Opin. Genet. Dev. 5, 739–745 (1995).PubMedCrossRefGoogle Scholar
  620. 620.
    C. Packer, S. Alitzer, M. Appel, E. Brown, J. S. Martenson, S. J. O’Brien, M. Roelke-Parker, R. Hofmann-Lehmann, and H. Lutz, Viruses of the Serengeti: patterns of infection and mortality in lions, J. Anim. Ecol. 68, 1161–1178 (1999).CrossRefGoogle Scholar
  621. 621.
    S. Goldstein, I. Ourmanov, C. R. Brown, B. E. Beer, W. R. Elkins, R. Plishka, A. Buckler-White, and V. M. Hirsch, Wide range of viral load in healthy African green monkeys naturally infected with simian immunodeficiency virus, J. Virol. 74, 11744–11753 (2000).PubMedCrossRefGoogle Scholar
  622. 622.
    V. M. Hirsch, G. Dapolito, R. M. Goeken, and B. Campbell, Phylogeny and natural history of the primate lentiviruses, SIV and HIV, Curr. Opin. Genet. Dev. 5, 798–806 (1997).CrossRefGoogle Scholar
  623. 623.
    R. Shankarappa, J. B. Margolick, S. J. Gange, A. G. Rodrigo, D. Upchurch, H. Farzadegan, P. Gupta, C. R. Rinaldo, G. H. Learn, X. He, X. L. Huang, and J. I. Mullins, Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection, J. Virol. 73, 10489–10502 (1999).PubMedGoogle Scholar
  624. 624.
    E. Pelletier, W. Saurin, R. Cheynier, N. L. Letvin, and S. Wain-Hobson, The tempo and mode of SIV quasispecies development in vivo calls for massive viral replication and clearance, Virology 20, 644–652 (1995).CrossRefGoogle Scholar
  625. 625.
    M. C. Muller-Trutwin, S. Corber, M. D. Tavares, V. M. Herve, E. Nerrienet, M. C. Georges-Courbot, W. Saurin, P. Sonigo, and F. Barre-Sinoussi, The evolutionary rate of nonpathogenic simian immunodeficiency virus (SIVagm) is in agreement with a rapid and continuous replication in vivo, Virology 223, 89–102 (1996).PubMedCrossRefGoogle Scholar
  626. 626.
    T. Leitner and J. Albert, The molecular clock of HIV-1 unveiled through analysis of a known transmission history, Proc. Natl. Acad. Sci. USA 96, 10752–10757 (1999).PubMedCrossRefGoogle Scholar
  627. 627.
    S. VandeWoude, S. J. O’Brien, and E. A. Hoover, Infectivity of lion and puma lentiviruses for domestic cats, J. Gen. Virol. 78, 795–800 (1997).PubMedGoogle Scholar
  628. 628.
    S. VandeWoude, C. L. Hageman, and E. A. Hoover, Domestic cats infected with lion or puma lentivirus develop anti-feline immunodeficiency virus immune responses, J. Acquir. Immune Defic. Syndr. 34, 20–31 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ellen E. Sparger
    • 1
  1. 1.School of Veterinary MedicineUniversity of California Davis

Personalised recommendations