SIV as a Model for AIDS Pathogenesis Studies

  • Ulrike Sauermann
  • Sieghart Sopper
Part of the Infectious Diseases and Pathogenesis book series (IAPA)


HIV vaccine trials are conducted in nonhuman primate models. Macaques infected with the simian immunodeficiency virus (SIV) and its genetically engineered derivatives, such as chimeras between HIV-1 and SIV (SHIV), are thus indispensable for the proof-of-concept testing and the definition of potential correlates of immune protection in HIV-vaccine design. SIVinfected macaques are also the animal model system of choice to perform etiopathological investigations. In contrast to humans, the monkeys are selected for age, sex, and provenance. They are infected under controlled experimental conditions with a pretitrated dose of a well-characterized viral isolate or a viral clone. The macaque model of AIDS is therefore most suited to study virus dissemination and host responses during the acute phase of infection, which is very difficult to study in HIV-infected humans. This phase is especially important since its outcome determines the disease course in HIV-1 infected humans and SIV-infected monkeys. Furthermore, organs usually not accessible for investigations in humans can be analyzed at any point during the infection. This animal model also provides the opportunity to intervene experimentally with the disease process. For example, much information has been gathered by depleting various lymphocyte subsets or by labeling lymphocytes in order to monitor their turnover. In addition, by selecting specific viral mutants or animals according to predefined criteria it is possible to decipher important viral and host factors influencing the course of the disease.


Rhesus Macaque Cynomolgus Macaque Coreceptor Usage Sooty Mangabey Primary Viremia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Anderson and T. J. Hope, Recent insights into HIV accessory proteins, Curr. Infect. Dis. Rep. 5, 439–450 (2003).PubMedGoogle Scholar
  2. 2.
    H. Budka, Neuropathology of human immunodeficiency virus infection, Brain Pathol. 1, 163–175 (1991).PubMedGoogle Scholar
  3. 3.
    L. Chakrabarti, M. Hurtrel, M. A. Maire, R. Vazeux, D. Dormont, L. Montagnier, and B. Hurtrel, Early viral replication in the brain of SIV-infected rhesus monkeys, Am. J. Pathol. 139, 1273–1280 (1991).PubMedGoogle Scholar
  4. 4.
    P. R. Clapham and A. McKnight, Cell surface receptors, virus entry and tropism of primate lentiviruses, J. Gen. Virol. 83, 1809–1829 (2002).PubMedGoogle Scholar
  5. 5.
    M. A. Cosenza, M. L. Zhao, Q. Si, and S. C. Lee, Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis, Brain Pathol. 12, 442–455 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Czub, E. Koutsilieri, S. Sopper, M. Czub, C. Stahl-Hennig, J. G. Muller, V. Pedersen, W. Gsell, J. L. Heeney, M. Gerlach, G. Gosztonyi, P. Riederer, and V. ter Meulen, Enhancement of central nervous system pathology in early simian immunodeficiency virus infection by dopaminergic drugs, Acta Neuropathol. (Berl) 101, 85–91 (2001).Google Scholar
  7. 7.
    M. D. Daniel, F. Kirchhoff, S. C. Czajak, P. K. Sehgal, and R. C. Desrosiers, Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene, Science 258, 1938–1941 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    M. D. Daniel, N. L. Letvin, N. W. King, M. Kannagi, P. K. Sehgal, R. D. Hunt, P. J. Kanki, M. Essex, and R. C. Desrosiers, Isolation of T-cell tropic HTLV-III-like retrovirus from macaques, Science 228, 1201–1204 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Demuth, S. Czub, U. Sauer, E. Koutsilieri, P. Haaft, J. Heeney, C. Stahl-Hennig, V. ter Meulen, and S. Sopper, Relationship between viral load in blood, cerebrospinal fluid, brain tissue and isolated microglia with neurological disease in macaques infected with different strains of SIV, J. Neurovirol. 6, 187–201 (2000).PubMedGoogle Scholar
  10. 10.
    D. C. Douek, L. J. Picker, and R. A. Koup, T-cell dynamics in HIV-1 infection, Annu. Rev. Immunol. 21, 265–304 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Dykhuizen, J. L. Mitchen, D. C. Montefiori, J. Thomson, L. Acker, H. Lardy, and C. D. Pauza, Determinants of disease in the simian immunodeficiency virus-infected rhesus macaque: characterizing animals with low antibody responses and rapid progression, J. Gen. Virol. 79 (Pt 10), 2461–2467 (1998).PubMedGoogle Scholar
  12. 12.
    O. T. Fackler and A. S. Baur, Live and let die: Nef functions beyond HIV replication, Immunity. 16, 493–497 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    F. Ferrantelli, R. A. Rasmussen, R. Hofmann-Lehmann, W. Xu, H. M. McClure, and R. M. Ruprecht, Do not underestimate the power of antibodies-lessons from adoptive transfer of antibodies against HIV, Vaccine 20Suppl 4, A61–A65 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Forte, M. E. Harmon, M. J. Pineda, and J. Overbaugh, Early-and intermediate-stage variants of simian immunodeficiency virus replicate efficiently in cells lacking CCR5, J. Virol. 77, 9723–9727 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    H. S. Fox, M. R. Weed, S. Huitron-Resendiz, J. Baig, T. F. Horn, P. J. Dailey, N. Bischofberger, and S. J. Henriksen, Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus-infected monkeys, J. Clin. Invest 106, 37–45 (2000).PubMedGoogle Scholar
  16. 16.
    Z. Grossman, M. Meier-Schellersheim, A. E. Sousa, R. M. Victorino, and W. E. Paul, CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause?, Nat. Med. 8, 319–323 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    J. M. Harouse, C. Buckner, A. Gettie, R. Fuller, R. Bohm, J. Blanchard, and C. Cheng-Mayer, CD8+ T-cell-mediated CXC chemokine receptor 4-simian/human immunodeficiency virus suppression in dually infected rhesus macaques, Proc. Natl. Acad. Sci. U.S.A. 100, 10977–10982 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    M. D. Hazenberg, J. W. Stuart, S. A. Otto, J. C. Borleffs, C. A. Boucher, R. J. de Boer, F. Miedema, and D. Hamann, T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART), Blood 95, 249–255 (2000).PubMedGoogle Scholar
  19. 19.
    M. K. Hellerstein and J. M. McCune, T-cell turnover in HIV-1 disease, Immunity. 7, 583–589 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    V. M. Hirsch and J. D. Lifson, Simian immunodeficiency virus infection of monkeys as a model system for the study of AIDS pathogenesis, treatment, and prevention, Adv. Pharmacol. 49, 437–477 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Hoch, S. M. Lang, M. Weeger, C. Stahl-Hennig, C. Coulibaly, U. Dittmer, G. Hunsmann, D. Fuchs, J. Muller, S. Sopper, et al., Vpr deletion mutant of simian immunodeficiency virus induces AIDS in rhesus monkeys, J. Virol. 69, 4807–4813 (1995).PubMedGoogle Scholar
  22. 22.
    E. Koutsilieri, C. Scheller, S. Sopper, M. E. Gotz, M. Gerlach, V. ter Meulen, and P. Riederer, Selegiline completely restores choline acetyltransferase activity deficits in simian immunodeficiency infection, Eur. J. Pharmacol. 411, R1–R2 (2001).PubMedCrossRefGoogle Scholar
  23. 23.
    S. D. Lawn, S. T. Butera, and T. M. Folks, Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection, Clin. Microbiol. Rev. 14, 753–777, table (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    J. A. Levy, The search for the CD8+ cell anti-HIV factor (CAF), Trends Immunol. 24, 628–632 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    J. D. Lifson, M. A. Nowak, S. Goldstein, J. L. Rossio, A. Kinter, G. Vasquez, T. A. Wiltrout, C. Brown, D. Schneider, L. Wahl, A. L. Lloyd, J. Williams, W. R. Elkins, A. S. Fauci, and V. M. Hirsch, The extent of early viral replication is a critical determinant of the natural history of simian immunodeficiency virus infection, J. Virol. 71, 9508–9514 (1997).PubMedGoogle Scholar
  26. 26.
    L. N. Martin, M. Murphey-Corb, K. F. Soike, B. Davison-Fairburn, and G. B. Baskin, Effects of initiation of 3′-azido,3′-deoxythymidine (zidovudine) treatment at different times after infection of rhesus monkeys with simian immunodeficiency virus, J. Infect. Dis. 168, 825–835 (1993).PubMedGoogle Scholar
  27. 27.
    J. M. McCune, The dynamics of CD4+ T-cell depletion in HIV disease, Nature 410, 974–979 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    H. Mohri, S. Bonhoeffer, S. Monard, A. S. Perelson, and D. D. Ho, Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science 279, 1223–1227 (1998).PubMedCrossRefGoogle Scholar
  29. 29.
    B. R. Mothe, H. Horton, D. K. Carter, T. M. Allen, M. E. Liebl, P. Skinner, T. U. Vogel, S. Fuenger, K. Vielhuber, W. Rehrauer, N. Wilson, G. Franchini, J. D. Altman, A. Haase, L. J. Picker, D. B. Allison, and D. I. Watkins, Dominance of CD8 responses specific for epitopes bound by a single major histocompatibility complex class I molecule during the acute phase of viral infection, J. Virol. 76, 875–884 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    T. Muhl, M. Krawczak, P. ten Haaft, G. Hunsmann, and U. Sauermann, MHC class I alleles influence set-point viral load and survival time in simian immunodeficiency virus-infected rhesus monkeys, J. Immunol. 169, 3438–3446 (2002).PubMedGoogle Scholar
  31. 31.
    D. H. O’Connor, T. M. Allen, T. U. Vogel, P. Jing, I. P. DeSouza, E. Dodds, E. J. Dunphy, C. Melsaether, B. Mothe, H. Yamamoto, H. Horton, N. Wilson, A. L. Hughes, and D. I. Watkins, Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection, Nat. Med. 8, 493–499 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    D. H. O’Connor, B. R. Mothe, J. T. Weinfurter, S. Fuenger, W. M. Rehrauer, P. Jing, R. R. Rudersdorf, M. E. Liebl, K. Krebs, J. Vasquez, E. Dodds, J. Loffredo, S. Martin, A. B. McDermott, T. M. Allen, C. Wang, G. G. Doxiadis, D. C. Montefiori, A. Hughes, D. R. Burton, D. B. Allison, S. M. Wolinsky, R. Bontrop, L. J. Picker, and D. I. Watkins, Major histocompatibility complex class I alleles associated with slow simian immunodeficiency virus disease progression bind epitopes recognized by dominant acute-phase cytotoxic-Tlymphocyte responses, J. Virol. 77, 9029–9040 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    V. Piguet and D. Trono, The Nef protein of primate lentiviruses, Rev. Med. Virol. 9, 111–120 (1999).PubMedCrossRefGoogle Scholar
  34. 34.
    R. W. Price, B. Brew, J. Sidtis, M. Rosenblum, A. C. Scheck, and P. Cleary, The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex, Science 239, 586–592 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    D. M. Rausch, M. P. Heyes, E. A. Murray, and L. E. Eiden, Zidovudine treatment prolongs survival and decreases virus load in the central nervous system of rhesus macaques infected perinatally with simian immunodeficiency virus, J. Infect. Dis. 172, 59–69 (1995).PubMedGoogle Scholar
  36. 36.
    M. Rosenzweig, M. A. DeMaria, D. M. Harper, S. Friedrich, R. K. Jain, and R. P. Johnson, Increased rates of CD4(+) and CD8(+) T lymphocyte turnover in simian immunodeficiency virus-infected macaques, Proc. Natl. Acad. Sci. U.S.A. 95, 6388–6393 (1998).PubMedCrossRefGoogle Scholar
  37. 37.
    U. Sauermann, C. Stahl-Hennig, N. Stolte, T. Muhl, M. Krawczak, M. Spring, D. Fuchs, F. J. Kaup, G. Hunsmann, and S. Sopper, Homozygosity for a conserved Mhc class II DQDRB haplotype is associated with rapid disease progression in simian immunodeficiency virus-infected macaques: results from a prospective study, J. Infect. Dis. 182, 716–724 (2000).PubMedCrossRefGoogle Scholar
  38. 38.
    J. E. Schmitz, M. J. Kuroda, S. Santra, V. G. Sasseville, M. A. Simon, M. A. Lifton, P. Racz, K. Tenner-Racz, M. Dalesandro, B. J. Scallon, J. Ghrayeb, M. A. Forman, D. C. Montefiori, E. P. Rieber, N. L. Letvin, and K. A. Reimann, Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes, Science 283, 857–860 (1999).PubMedCrossRefGoogle Scholar
  39. 39.
    J. E. Schmitz, M. J. Kuroda, S. Santra, M. A. Simon, M. A. Lifton, W. Lin, R. Khunkhun, M. Piatak, J. D. Lifson, G. Grosschupff, R. S. Gelman, P. Racz, K. Tenner-Racz, K. A. Mansfield, N. L. Letvin, D. C. Montefiori, and K. A. Reimann, Effect of humoral immune responses on controlling viremia during primary infection of rhesus monkeys with simian immunodeficiency virus, J. Virol. 77, 2165–2173 (2003).PubMedCrossRefGoogle Scholar
  40. 40.
    G. Silvestri, D. L. Sodora, R. A. Koup, M. Paiardini, S. P. O’Neil, H. M. McClure, S. I. Staprans, and M. B. Feinberg, Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia, Immunity. 18, 441–452 (2003).PubMedCrossRefGoogle Scholar
  41. 41.
    S. M. Smith, G. B. Baskin, and P. A. Marx, Estrogen protects against vaginal transmission of simian immunodeficiency virus, J. Infect. Dis. 182, 708–715 (2000).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Sopper, E. Koutsilieri, C. Scheller, S. Czub, P. Riederer, and M. ter Meulen V., Macaque animal model for HIV-induced neurological disease, J. Neural Transm. 109, 747–766 (2002).PubMedCrossRefGoogle Scholar
  43. 43.
    S. Sopper, D. Nierwetberg, A. Halbach, U. Sauer, C. Scheller, C. Stahl-Hennig, K. Matz-Rensing, F. Schafer, T. Schneider, M. ter Meullen V. and J. G. Muller, Impact of simian immunodeficiency virus (SIV) infection on lymphocyte numbers and T-cell turnover in different organs of rhesus monkeys, Blood 101, 1213–1219 (2003).PubMedCrossRefGoogle Scholar
  44. 44.
    S. Sopper, U. Sauer, S. Hemm, M. Demuth, J. Muller, C. Stahl-Hennig, G. Hunsmann, M. ter Meulen V., and R. Dorries, Protective role of the virus-specific immune response for development of severe neurologic signs in simian immunodeficiency virus-infected macaques, J. Virol. 72, 9940–9947 (1998).PubMedGoogle Scholar
  45. 45.
    S. Sopper, U. Sauer, J. G. Muller, C. Stahl-Hennig, and M. ter Meulen V., Early activation and proliferation of T-cells in simian immunodeficiency virus-infected rhesus monkeys, AIDS Res. Hum. Retroviruses 16, 689–697 (2000).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Stevenson, HIV-1 pathogenesis, Nat. Med. 9, 853–860 (2003).PubMedCrossRefGoogle Scholar
  47. 47.
    R. S. Veazey, M. DeMaria, L. V. Chalifoux, D. E. Shvetz, D. R. Pauley, H. L. Knight, M. Rosenzweig, R. P. Johnson, R. C. Desrosiers, and A. A. Lackner, Gastrointestinal tract as a major site of CD4+ T-cell depletion and viral replication in SIV infection, Science 280, 427–431 (1998).PubMedCrossRefGoogle Scholar
  48. 48.
    D. Vodros, R. Thorstensson, R. W. Doms, E. M. Fenyo, and J. D. Reeves, Evolution of co-receptor use and CD4-independence in envelope clones derived from SIVsm-infected macaques, Virology 316, 17–28 (2003).PubMedCrossRefGoogle Scholar
  49. 49.
    M. Zeitz, R. Ullrich, T. Schneider, S. Kewenig, K. Hohloch, and E. O. Riecken, HIV/SIV enteropathy, Ann. N.Y. Acad. Sci. 859, 139–148 (1998).PubMedCrossRefGoogle Scholar
  50. 50.
    N. Leuchte, N. Berry, B. Köhler, N. Almond, R. LeGrand, R. Thorstensson, F. Titti, and U. Sauermann, MhcDRB sequences from cynomolgus macaques (Macaca fascicularis) of different origin, Tissue Antigens 63, 529–537 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ulrike Sauermann
    • 1
  • Sieghart Sopper
    • 2
  1. 1.German Primate CenterGöttingenGermany
  2. 2.Bayerische Julius-Maximilians-UniversitätWürzburgGermany

Personalised recommendations