Chemokines and Their Receptors and the Neuropathogenesis of HIV-1 Infection

  • Howard E. Gendelman
  • Eric R. Anderson
  • Loyda Melendez
  • Jialin Zheng
Part of the Infectious Diseases and Pathogenesis book series (IAPA)


Infection of the central nervous system (CNS) by the human immunodeficiency virus (HIV) causes a broad spectrum of behavioral, motor, and cognitive dysfunctions. In its most severe form, HIV-1-associated dementia or HAD, occurs late in viral infection, often associated with profound immunosuppression. Disease is perpetuated by cellular and viral neurotoxins produced from brain mononuclear phagocytes (MP; macrophages and microglia) without direct infection of neurons. Such MP neurotoxins are, in measure, homeostatic immune products that negatively affect neuronal function when produced in abundance. Induction of disease through metabolic events perpetrated by pro-inflammatory cytokines, chemokines, platelet-activating factor, arachidonic acid and its metabolites, nitric oxide, quinolinc acid, glutamate viral structural, and regulatory proteins makes the neuropathogenesis of HIV infection unique.


Chemokine Receptor Functional Chemokine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achim, C. L., Wang, R., Miners, D. K., and Wiley, C. A., 1994, Brain viral burden in HIV infection, J Neuropathol Exp Neurol. 53:284–294.PubMedGoogle Scholar
  2. Adamson, D. C., Wildemann, B., Sasaki, M., Glass, J. D., McArthur, J. C., Christov, V. I., Dawson, T. M., and Dawson, V. L., 1996, Immunologic NO synthase: Elevation in severe AIDS dementia and induction by HIV-1 gp41, Science. 274:1917–1926.PubMedGoogle Scholar
  3. Albright, A. V., Shieh, J. T., Itoh, T., Lee, B., Pleasure, D., O’Connor, M. J., Doms, R. W., and Gonzalez-Scarano, F., 1999, Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates, J Virol. 73:205–213.PubMedGoogle Scholar
  4. Anderson, E., Zink, W., Xiong, H., and Gendelman, H. E., 2002, HIV-1-associated dementia: a metabolic encephalopathy perpetrated by virus-infected and immune-competent mononuclear phagocytes, J Acquir Immune Defic Syndr. 31Suppl 2:S43–54.PubMedGoogle Scholar
  5. Aquaro, S., Balestra, E., Cenci, A., Francesconi, M., Calio, R., and Perno, C. F., 1997, HIV infection in macrophage: role of long-lived cells and related therapeutical strategies, J Biol Regul Homeost Agents. 11:69–73.PubMedGoogle Scholar
  6. Aquaro, S., Calio, R., Balestra, E., Bagnarelli, P., Cenci, A., Bertoli, A., Tavazzi, B., Di Pierro, D., Francesconi, M., Abdelahad, D., and Perno, C. F., 1998, Clinical implications of HIV dynamics and drug resistance in macrophages, J Biol Regul Homeost Agents. 12:23–27.PubMedGoogle Scholar
  7. Aquaro, S., Panti, S., Caroleo, M. C., Balestra, E., Cenci, A., Forbici, F., Ippolito, G., Mastino, A., Testi, R., Mollace, V., Calio, R., and Perno, C. F., 2000, Primary macrophages infected by human immunodeficiency virus trigger CD95-mediated apoptosis of uninfected astrocytes, J Leukoc Biol. 68:429–435.PubMedGoogle Scholar
  8. Baggiolini, M., Dewald, B., and Moser, B., 1997, Human chemokines: an update, Annu Rev Immunol. 15:675–705.PubMedGoogle Scholar
  9. Bajetto, A., Bonavia, R., Barbero, S., Piccioli, P., Costa, A., Florio, T., and Schettini, G., 1999, Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1, J Neurochem. 73:2348–2357.PubMedGoogle Scholar
  10. Banisadr, G., Dicou, E., Berbar, T., Rostene, W., Lombet, A., and Haour, F., 2000, Characterization and visualization of [125I] stromal cell-derived factor-1alpha binding to CXCR4 receptors in rat brain and human neuroblastoma cells, J Neuroimmunol. 110:151–160.PubMedGoogle Scholar
  11. Batchelor, P. E., Liberatore, G. T., Wong, J. Y., Porritt, M. J., Frerichs, F., Donnan, G. A., and Howells, D. W., 1999, Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, J Neurosci. 19:1708–1716.PubMedGoogle Scholar
  12. Bazan, H. A., Alkhatib, G., Broder, C. C., and Berger, E. A., 1998, Patterns of CCR5, CXCR4, and CCR3 usage by envelope glycoproteins from human immunodeficiency virus type 1 primary isolates, J Virol. 72:4485–4491.PubMedGoogle Scholar
  13. Bazan, J., Bacon, K., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D., Zlotnik, A., and Schall, T., 1997, A new class of membrane-bound chemokine with a CX3C motif, Nature. 385:640–644.PubMedGoogle Scholar
  14. Berger, J. R., and Major, E. O., 1999, Progressive multifocal leukoencephalopathy, Semin Neurol. 19:193–200.PubMedGoogle Scholar
  15. Bernasconi, S., Cinque, P., Peri, G., Sozzani, S., Crociati, A., Torri, W., Vicenzi, E., Vago, L., Lazzarin, A., Poli, G., and Mantovani, A., 1996, Selective elevation of monocyte chemo-tactic protein-1 in the cerebrospinal fluid of AIDS patients with cytomegalovirus encephalitis, J Infect Dis. 174:1098–1101.PubMedGoogle Scholar
  16. Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A., 2001, CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity, Nat Neurosci. 4:702–710.PubMedGoogle Scholar
  17. Bleul, C. C., Farzan, M., Choe, h., Parolin, C., Clark-Lewis, I., Sodroski, J., and Springer, T. A., 1996a, The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry, Nature. 382:829–833.PubMedGoogle Scholar
  18. Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A., and Springer, T. A., 1996b, A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1), J Exp Med. 184:1101–1109.PubMedGoogle Scholar
  19. Boehme, S. A., Lio, F. M., Maciejewski-Lenoir, D., Bacon, K. B., and Conlon, P. J., 2000, The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia, J Immunol. 165:397–403.PubMedGoogle Scholar
  20. Boutet, A., Salim, H., Leclerc, P., and Tardieu, M., 2001, Cellular expression of functional chemokine receptor CCR5 and CXCR4 in human embryonic neurons, Neurosci Lett. 311:105–108.PubMedGoogle Scholar
  21. Boven, L. A., Middel, J., Breij, E. C., Schotte, D., Verhoef, J., Soderland, C., and Nottet, H. S., 2000, Interactions between HIV-infected monocyte-derived macrophages and human brain microvascular endothelial cells result in increased expression of CC chemokines, J Neurovirol. 6:382–389.PubMedGoogle Scholar
  22. Brack-Werner, R., 1999, Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis, Aids. 13:1–22.PubMedGoogle Scholar
  23. Brenneman, D. E., Westbrook, G. L., Fitzgerald, S. P., Ennist, D. L., Elkins, K. L., Ruff, M. R., and Pert, C. B., 1988, Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide, Nature. 335:639–642.PubMedGoogle Scholar
  24. Brew, B., Bhalla, R., Paul, M., et al., 1990, Cerebrospinal fluid neopterin in human immunodeficiency virus type 1 infection, Ann Neurol. 28:556–560.PubMedGoogle Scholar
  25. Brew, B. J., Evans, L., Byrne, C., Pemberton, L., and Hurren, L., 1996a, The relationship between AIDS dementia complex and the presence of macrophage tropic and nonsyncytium inducing isolates of human immunodeficiency virus type 1 in the cerebrospinal fluid, J Neurovirol. 2:152–157.PubMedGoogle Scholar
  26. Brew, B. J., and Miller, J., 1996, Human immunodeficiency virus type 1-related transient neurological deficits, Am J Med. 101:257–261.PubMedGoogle Scholar
  27. Brew, B. J., Wesselingh, S. L., Gonzales, M., Heyes, M. P., and Price, R. W., 1996b, How HIV leads to neurological disease, Med J Aust. 164:233–234.PubMedGoogle Scholar
  28. Broder, C. C., and Collman, R. G., 1997, Chemokine receptors and HIV, J Leuk Biol. 62:20–29.Google Scholar
  29. Caroleo, M. C., Costa, N., Bracci-Laudiero, L., and Aloe, L., 2001, Human monocyte/macrophages activate by exposure to LPS overexpress NGF and NGF receptors, J Neuroimmunol. 113:193–201.PubMedGoogle Scholar
  30. Carpenter, C. C., Cooper, D. A., Fischl, M. A., Gatell, J. M., Gazzard, B. G., Hammer, S. M., Hirsch, M. S., Jacobsen, D. M., Katzenstein, D. A., Montaner, J. S., Richman, D. D., Saag, M. S., Schechter, M., Schooley, R. T., Thompson, M. A., Vella, S., Yeni, P. G., and Volberding, P. A., 2000, Antiretroviral therapy in adults: updated recommendations of the International AIDS Society-USA Panel, JAMA. 283:381–390.PubMedGoogle Scholar
  31. Chakrabarti, L., Hurtrel, M., Maire, M. A., Vazeux, R., Dormont, D., Montagnier, L., and Hurtrel, B., 1991, Early viral replication in the brain of SIV-infected rhesus monkeys, Am J Pathol. 139:1273–1280.PubMedGoogle Scholar
  32. Chang, J., Jozwiak, R., Wang, B., Ng, T., Ge, Y. C., Bolton, W., Dwyer, D. E., Handle, C., Osborn, R., Cunnlngham, A. C., and Saksena, N. D., 1998, Unique HIV type 1 V3 region sequences derived from six different regions of brain: region-specific evolution within hostdetermined quasispecics, AIDS Res Hum Retroviruses. 14:25–30.PubMedGoogle Scholar
  33. Chapman, G. A., Moores, K., Harrison, D., Campbell, C. A., Stewart, B. R., and Strijbos, P. J., 2000a, Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage, J Neurosci (Online). 20:RC87.Google Scholar
  34. Chapman, G. A., Moores, K. E., Gohil, J., Berkhout, T. A., Patel, L., Green, P., Macphee, C. H., and Stewart, B. R., 2000b, The role of fractalkine in the recruitment of monocytes to the endothelium, Eur J Pharmacol. 392:189–195.PubMedGoogle Scholar
  35. Chauhan, A., Turchan, J., Pocernich, C., Bruce-Keller, A., Roth, S., Butterfield, D. A., Major, E., and Nath, A., 2003, Intracellular human immunodeficency virus tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport, J Biol Chem. 278:13512–13519.PubMedGoogle Scholar
  36. Cho, C., and Miller, R. J., 2002, Chemokine receptors and neural function, J Neurovirol. 8:573–584.PubMedGoogle Scholar
  37. Choe, H., Farzan, M., Konkel, M., Martin, K., Sun, Y., Marcon, L., Cayabyab, M., Berman, M., Dorf, M. E., Gerard, N., Gerard, C., and Sodroski, J., 1998a, The orphan seventransmembrane receptor apj supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus type 1, J Virol. 72:6113–6118.PubMedGoogle Scholar
  38. Choe, H., Martin, K. A., Farzan, M., Sodroski, J., Gerard, N. P., and Gerard, C., 1998b, Structural interactions between chemokine receptors, gp120 Env and CD4, Semin Immunol. 10:249–257.PubMedGoogle Scholar
  39. Chung, I., Zelivyanskaya, M., and Gendelman, H. E., 2002, Mononuclear phagocyte biophysiology influences brain transendothelial and tissue migration: implication for HIV-1-associated dementia, J Neuroimmunol. 122:40–54.PubMedGoogle Scholar
  40. Cinque, P., Vago, L., Mengozzi, M., Torri, V., Ceresa, D., Vicenzi, E., Transidico, P., Vagani, A., Sozzani, S., Mantovani, A., Lazzarin, A., and Poli, G., 1998, Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication, Aids. 12:1327–1332.PubMedGoogle Scholar
  41. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P., 1995, Identification of RANTES, MIP-1alpha, and MIP-1beta as the major HIV-suppressive factors produced by CD8+ T-cells, Science. 270:1811–1815.PubMedGoogle Scholar
  42. Collman, R. G., Yi, Y., Liu, Q. H., and Freedman, B. D., 2000, Chemokine signaling and HIV-1 fusion mediated by macrophage CXCR4: implications for target cell tropism, J Leukoc Biol. 68:318–323.PubMedGoogle Scholar
  43. Conant, K., Garzino-Demo, A., Nath, A., McArthur, J. C., Halliday, W., Power, C., Gallo, R. C., and Major, E. O., 1998, Induction of monocyte chemoattractant protein-1 in HIV-1 Tatstimulated astrocytes and elevation in AIDS dementia, Proc Natl Acad Sci USA. 95:3117–3121.PubMedGoogle Scholar
  44. Cotter, R., Williams, C., Ryan, L., Erichsen, D., Lopez, A., Peng, H., and Zheng, J., 2002, Fractalkine (CX3CL1) and brain inflammation: implications for HIV-1-associated dementia, J Neurovirol. 8:585–598.PubMedGoogle Scholar
  45. Cotter, R., Zheng, J., Che, M., Niemann, D., Liu, Y., He, J., Thomas, E., and Gendelman, H. E., 2001, Regulation of HIV-1 infection, b-chemokine production, and CCR5 expression in CD40L-stimulated macrophages: immune control of viral entry, J Virol 75:4308–4320.PubMedGoogle Scholar
  46. Cotter, R., Zheng, J., Niemann, D., Thomas, E., and Gendelman, H., 1999a, in XIth International Congress of Virology International Union of Microbiological Societies, Sydney, Australia, (VP33.14).Google Scholar
  47. Cotter, R. L., Burke, W. J., Thomas, V. S., Potter, J. F., Zheng, J., and Gendelman, H. E., 1999b, Insights into the neurodegenerative process of Alzheimer’s disease: a role for mononuclear phagocyte-associated inflammation and neurotoxicity, J Leukoc Biol. 65:416–427.PubMedGoogle Scholar
  48. Coughlan, C. M., McManus, C. M., Sharron, M., Gao, Z., Murphy, D., Jaffer, S., Choe, W., Chen, W., Hesselgesser, J., Gaylord, H., Kalyuzhny, A., Lee, V. M., Wolf, B., Doms, R. W., and Kolson, D. L., 2000, Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons, Neuroscience. 97:591–600.PubMedGoogle Scholar
  49. Davis, C. B., Dikic, I., Unutmaz, D., Hill, C. M., Arthos, J., Siani, M. A., Thompson, D. A., Schlessinger, J., and Littman, D. R., 1997, Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5, J Exp Med. 186:1793–1798.PubMedGoogle Scholar
  50. Davis, L. E., Hjelle, B. L., Miller, V. E., Palmer, D. L., Llewellyn, A. L., Merlin, T. L., Young, S. A., Mills, R. G., Wachsman, W., and Wiley, C. A., 1992, Early viral brain invasion in iatrogenic human immunodeficiency virus infection, Neurology. 42:1736–1739.PubMedGoogle Scholar
  51. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., and Landau, N. R., 1996, Identification of a major co-receptor for primary isolates of HIV-1, Nature. 381:661–666.PubMedGoogle Scholar
  52. Desbaillets, I., Tada, M., de Tribolet, N., Diserens, A. C., Hamou, M. F., and Van Meir, E. G., 1994, Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro, Int J Cancer. 58:240–247.PubMedGoogle Scholar
  53. Di Stefano, M., Wilt, S., Gray, F., Dubois-Dalcq, M., and Chiodi, F., 1996, HIV type 1 V3 sequences and the development of dementia during AIDS, AIDS Res Hum Retrovir. 12:471–482.PubMedGoogle Scholar
  54. Dooms, H., Van Belle, T., Desmedt, M., Rottiers, P., and Grooten, J., 2000, Interleukin-15 redirects the outcome of a tolerizing T-cell stimulus from apoptosis to anergy, Blood. 96:1006–1012.PubMedGoogle Scholar
  55. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., and Dome, R. W., 1996, A dual-tropic primary HIV-1 isolate that use fusin and the b chemokine receptor CKR5, CKR3, and CKR-2b as fusion cofactors, Cell. 85:1149–1158.PubMedGoogle Scholar
  56. Dorf, M. E., Berman, M. A., Tanabe, S., Heesen, M., and Luo, Y., 2000, Astrocytes express functional chemokine receptors, J Neuroimmunol. 111:109–121.PubMedGoogle Scholar
  57. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A., 1996, HIV-1 entry into CD4+ cells is mediated by the chemokines receptor CC-CKR-5, Nature. 381:667–673.PubMedGoogle Scholar
  58. Edinger, A. L., Blanpain, C., Kunstman, K. J., Wolinsky, S. M., Parmentier, M., and Doms, R. W., 1999, Functional dissection of CCR5 coreceptor function through the use of CD4-independent simian immunodeficiency virus strains, J Virol. 73:4062–4073.PubMedGoogle Scholar
  59. Elkabes, S., DiCicco-Bloom, E. M., and Black, I. B., 1996, Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function, J Neurosci. 16:2508–2521.PubMedGoogle Scholar
  60. Endres, M. J., Clapham, P. R., Marsh, M., Ahuja, M., Turner, J. D., McKnight, A., Thomas, J. F., Stoebenau-Haggarty, B., Choe, S., Vance, P. J., Wells, T. N. C., Powers, C. A., Sutterwala, S. S., Doms, R. W., Landau, N. R., and Hoxie, J. A., 1996, CD4-independent infection by HIV-2 is mediated by fusin/CXCR4, Cell. 87:745–756.PubMedGoogle Scholar
  61. Erichsen, D., Lopez, A. L., Peng, H., Bauer, M., Williams, D. A., Morgello, S., Cotter, R. L., Ryan, L. A., Ghorpade, A., Gendelman, H. E., and Zheng, J., 2003, Neuronal injury regulates fractalkine production: relevance to HIV-1 associated dementia, J. Neuroimmunol. 138:144–156.PubMedGoogle Scholar
  62. Everall, I. P., Glass, J. D., McArthur, J., Spargo, E., and Lantos, P., 1994, Neuronal density in the superior frontal and temporal gyri does not correlate with the degree of human immunodeficiency virus-associated dementia, Acta Neuropathol. 88:538–544.PubMedGoogle Scholar
  63. Farzan, M., Choe, H., Martin, K., Marcon, L., Hofmann, W., Karlsson, G., Sun, Y., Barrett, P., Marchand, N., Sullivan, N., Gerard, N., Gerard, C., and Sodroski, J., 1997a, Two orphan seven transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection, J Exp Med. 186:405–411.PubMedGoogle Scholar
  64. Farzan, M., Choe, H., Martin, K. A., Sun, Y., Sidelko, M., Mackay, C. R., Gerard, N. P., Sodroski, J., and Gerard, C., 1997b, HIV-1 entry and macrophage inflammatory protein-1betamediated signaling are independent functions of the chemokine receptor CCR5, J Biol Chem. 272:6854–6857.PubMedGoogle Scholar
  65. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A., 1996, HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor, Science. 272:872–877.PubMedGoogle Scholar
  66. Fiala, M., Gan, X. H., Zhang, L., House, S. D., Newton, T., Graves, M. C., Shapshak, P., Stins, M., Kim, K. S., Witte, M., and Chang, S. L., 1998, Cocaine enhances monocyte migration across the blood-brain barrier, Cocaine’s connection to AIDS dementia and vasculitis, Adv Exp Med Biol. 437:199–205.PubMedGoogle Scholar
  67. Fischer-Smith, T., Croul, S., Sverstiuk, A. E., Capini, C., L’Heureux, D., Regulier, E. G., Richardson, M. W., Amini, S., Morgello, S., Khalili, K., and Rappaport, J., 2001, CNS invasion by CD14 +/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection, J Neurovirol. 7:528–541.PubMedGoogle Scholar
  68. Fox, H. S., Weed, M. R., Huitron-Resendiz, S., Baig, J., Horn, T. F., Dailey, P. J., Bischofberger, N., and Henriksen, S. J., 2000, Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus-infected monkeys, J Clin Invest. 106:37–45.PubMedGoogle Scholar
  69. Gabuzda, D., He, J., Ohagen, A., and Vallat, A., 1998, Chemokine receptors in HIV-1 infection of the central nervous system, Immunology. 10:203–213.Google Scholar
  70. Gabuzda, D., and Wang, J., 1999, Chemokine receptors and virus entry in the central nervous system, J Neurovirol. 5:643–658.PubMedGoogle Scholar
  71. Gabuzda, D., Wang, J., and Gorry, P., 2002, HIV-1-associated dementia, In: Chemokines and the nervous system, Eds., R. M. Ransohoff, K. Suzuki, A. E. I. Proudfoot, W. F. Hickey, and J. K. Harrison. Amsterdam: Elsevier Science, pp. 345–360.Google Scholar
  72. Gabuzda, D. H., Ho, D. D., Monte, M. S. D. L., Rota, T. R., and Sobel, R. A., 1986, Immunohistochemical identification of HTLV-III antigen in brains of patients with AIDS, Ann Neurol. 20:289–295.PubMedGoogle Scholar
  73. Garden, G. A., 2002, Microglia in human immunodeficiency virus-associated neurodegeneration, Glia. 40:240–251.PubMedGoogle Scholar
  74. Gelbard, H., Nottet, H., Dzenko, K., Jett, M., Genis, P., White, R., Wang, L., Choi, Y.-B., Zhang, D., Lipton, S., Swindells, S., Epstein, L., and Gendelman, H., 1994, Platelet-activating factor: a candidate human immunodeficiency virus type-1 infection neurotoxin, J Virol. 68:4628–4635.PubMedGoogle Scholar
  75. Gelbard, H. A., Dzenko, K., Diloreto, D., Cerro, C. D., Cerro, M. D., and Epstein, L. G., 1993, Neurotoxic effects of tumor necrosis factor in primary human neuronal cultures are mediated by activation of the glutamate AMPA recetor subtypes implications for AIDS neuropathogenesis, Dev. Neurosci. 15:417–422.PubMedGoogle Scholar
  76. Gelbard, H. A., and Epstein, L. G., 1995, HIV-1 encephalopathy in children, Curr Opin Pediatr. 7:655–662.PubMedGoogle Scholar
  77. Gendelman, H., and Gendelman, S., 1992, Neurological aspects of human immunodeficiency virus infection, In: Neuropathogenic Viruses and Immunity, Ed., S. Specter, et al. New York: Plenum Press, pp. 229–254.Google Scholar
  78. Gendelman, H. E., 1997, The neuropathogenesis of HIV-1-dementia, In: The neurology of AIDS, Eds., H. E. Gendelman, S. A. Lipton, L. G. Epstein, and S. Swindells. New York: Chapman and Hall, pp. 1–10.Google Scholar
  79. Gendelman, H. E., and Folks, D. G., 1999, Innate and acquired immunity in neurodegenerative disorders, J Leuk Biol. 65:407–409.Google Scholar
  80. Gendelman, H. E., Genis, P., Jett, M., Zhai, Q. H., and Nottet, H. S., 1994, An experimental model system for HIV-1-induced brain injury, Adv Neuroimmunol. 4:189–193.PubMedGoogle Scholar
  81. Gendelman, H. E., Narayan, O., Kennedy-Stoskopf, S., Clements, J. E., and Pezeshkpour, G. H., 1984, Slow virus-macrophage interactions, Characterization of a transformed cell line of sheep alveolar macrophages that express a marker for susceptibility to ovinecaprine lentivirus infections, Lab Invest. 51:547–555.PubMedGoogle Scholar
  82. Gendelman, H. E., Narayan, O., Kennedy-Stoskopf, S., Kennedy, P. G., Ghotbi, Z., Clements, J. E., Stanley, J., and Pezeshkpour, G., 1986, Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages, J Virol. 58:67–74.PubMedGoogle Scholar
  83. Gendelman, H. E., Narayan, O., Molineaux, S., Clements, J. E., and Ghotbi, Z., 1985, Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow, Proc Natl Acad Sci USA. 82:7086–7090.PubMedGoogle Scholar
  84. Gendelman, H. E., Persidsky, Y., Ghorpade, A., Limoges, J., Stins, M., Fiala, M., and Morrisett, R., 1997, The neuropathogenesis of the AIDS dementia complex, Aids. 11:S35–45.PubMedGoogle Scholar
  85. Gendelman, H. E., Zheng, J., Coulter, C. L., Ghorpade, A., Che, M., Thylin, M., Rubocki, R., Persidsky, Y., Hahn, F., Reinhard, J., Jr., and Swindells, S., 1998, Suppression of inflammatory neurotoxins by highly active antiretroviral therapy in human immunodeficiency virus-associated dementia, J Infect Dis. 178:1000–1007.PubMedGoogle Scholar
  86. Genis, P., Jett, M., Bernton, E., Boyle, T., Gelbard, H., Dzenko, K., Keane, R., Resnick, L., Mizrachi, Y., Volsky, D., Epstein, L., and Gendelman, H., 1992, Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease, J Exp Med. 176:1703–1718.PubMedGoogle Scholar
  87. Ghorpade, A., and Gendelman, H. E., 2003, Non-neuronal cells and their interactions in AIDS-associated dementia. In: Non-neuronal cells in the nervous system: function and dysfunction., in press.Google Scholar
  88. Ghorpade, A., Nukuna, A., Che, M., Haggerty, S., Persidsky, Y., Carter, E., Carhart, L., Shafer, L., and Gendelman, H. E., 1998a, Human immunodeficiency virus neurotropism: an analysis of viral replication and cytopathicity for divergent strains in monocytes and microglia, J Virol. 72:3340–3350.PubMedGoogle Scholar
  89. Ghorpade, A., Persidskaia, R., Suryadevara, R., Che, M., Liu, X., Persidsky, Y., and Gendelman, H. E., 2001, Mononuclear phagocyte differentiation, activation and viral infection regulate matrix metalloproteinase expression: implications for HIV-1-associated dementia, J Virol. 75:6572–6583.PubMedGoogle Scholar
  90. Ghorpade, A., Xia, M. Q., Hyman, B. T., Persidsky, Y., Nukuna, A., Bock, P., Che, M., Limoges, J., Gendelman, H. E., and Mackay, C. R., 1998b, Role of the b-chemokine receptors CCR3 and CCR5 in human immunodeficiency virus type 1 infection of monocytes and microglia, J Virol. 72:3351–3361.PubMedGoogle Scholar
  91. Giulian, D., Yu, J., Xia, L., Tom, D., Li, J., Lin, S. N., Schwarz, R., and Noonan, C., 1996, Study of receptor-mediated neurotoxins released by HIV-1 infected mononuclear phagocytes found in human brain, J Neurosci. 16:3139–3153.PubMedGoogle Scholar
  92. Glass, J. D., Fedor, H., Wesselingh, S. L., and McArthur, J. C., 1995, Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia, Ann Neurol. 38:755–762.PubMedGoogle Scholar
  93. Gorry, P., Ohagen, A., Holm, G., Birch, C., Bell, J., Kunstman, K., Wolinsky, S., and Gabuzda, D., 2001, In 8th Conference on Retroviruses and Opportunistic Infections Foundation for Retrovirology and Human Health, Chicago.Google Scholar
  94. Guntermann, C., Murphy, B. J., Zheng, R., Qureshi, A., Eagles, P. A., and Nye, K. E., 1999, Human immunodeficiency virus-1 infection requires pertussis toxin sensitive Gprotein-coupled signalling and mediates cAMP downregulation, Biochem Biophys Res Commun. 256:429–435.PubMedGoogle Scholar
  95. Harrison, J. K., Jiang, Y., Chen, S., Xia, Y., Maciejewski, D., McNamara, R. K., Streit, W. J., Salafranca, M. N., Adhikari, S., Thompson, D. A., Botti, P., Bacon, K. B., and Feng, L., 1998, Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia, Proc Natl Acad Sci. 95:10896–10901.PubMedGoogle Scholar
  96. Haskell, C. A., Cleary, M. D., and Charo, I. F., 1999, Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction. Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation, J Biol Chem. 274:10053–10058.PubMedGoogle Scholar
  97. Haskell, C. A., Cleary, M. D., and Charo, I. F., 2000, Unique role of the chemokine domain of fractalkine in cell capture. Kinetics of receptor dissociation correlate with cell adhesion, J Biol Chem. 275:34183–34189.PubMedGoogle Scholar
  98. Haydon, P. G., 2001, GLIA: listening and talking to the synapse, Nat Rev Neurosci. 2:185–193.PubMedGoogle Scholar
  99. He, J., Chen, Y., Farzan, M., Choe, H., Ohagen, A., Gartner, S., Busciglio, J., Yang, X., Hofmann, W., Newman, W., Mackay, C. R., Sodroski, J., and Gabuzda, D., 1997, CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia, Nature. 385:645–649.PubMedGoogle Scholar
  100. Heese, K., Hock, C., and Otten, U., 1998, Inflammatory signals induce neurotrophin expression in human microglial cells, J Neurochem. 70:699–707.PubMedGoogle Scholar
  101. Hesselgesser, J., Halks-Miller, M., DelVecchio, V., Peiper, S. C., Hoxie, J., Kolson, D. L., Taub, D., and Horuk, R., 1997, CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons, Curr Biol. 7:112–121.PubMedGoogle Scholar
  102. Hesselgesser, J., and Horuk, R., 1999, Chemokine and chemokine receptor expression in the central nervous system, J Neurovirol. 5:13–26.PubMedGoogle Scholar
  103. Hesselgesser, J., Liang, M., Hoxie, J., Greenberg, M., Brass, L. F., Orsini, M. J., Taub, D., and Horuk, R., 1998a, Identification and characterization of the CXCR4 chemokine receptor in human T-cell lines: ligand binding, biological activity, and HIV-1 infectivity, J Immunol. 160:877–883.PubMedGoogle Scholar
  104. Hesselgesser, J., Taub, D., Baskar, P., Greenberg, M., Hoxie, J., Kolson, D. L., and Horuk, R., 1998b, Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1alpha mediated by the chemokine receptor CXCR4, Curr Biol. 8:595–598.PubMedGoogle Scholar
  105. Heyes, M. P., Brew, B. B., Martin, A., Price, R. W., Salazar, A., Sidtis, J. J., Yergey, J. A., Mouradian, M. M., Sadler, A. E., Keilp, J., Rubinow, R., and Markey, S. P., 1991, Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status, Ann Neurol. 29:202–209.PubMedGoogle Scholar
  106. Horuk, R., Hesselgesser, J., Zhou, Y., Faulds, D., Halks-Miller, M., Harvey, S., Taub, D., Samson, M., Parmentier, M., Rucker, J., Doranz, B. J., and Doms, R. W., 1998, The CC chemokine I-309 inhibits CCR8-dependent infection by diverse HIV-1 strains, J Biol Chem. 273:386–391.PubMedGoogle Scholar
  107. Horuk, R., Martin, A. W., Wang, Z., Schweitzer, L., Gerassimides, A., Guo, H., Lu, Z., Hesselgesser, J., Perez, H. D., Kim, J., Parker, J., Hadley, T. J., and Peiper, S. C., 1997, Expression of chemokine receptors by subsets of neurons in the central nervous system, J Immunol. 158:2882–2890.PubMedGoogle Scholar
  108. Imai, T., Hieshima, K., Haskell, C., Baba, M., Nagira, M., Nishimura, M., Kakizaki, M., Takagi, S., Nomiyama, H., Schall, T. J., and Yoshie, O., 1997, Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion, Cell. 91:521–530.PubMedGoogle Scholar
  109. Imai, Y., Kimura, T., Murakami, A., Yajima, N., Sakamaki, K., and Yonehara, S., 1999, The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis, Nature. 398:777–785.PubMedGoogle Scholar
  110. Janssen, R., Cornblath, D., Epstein, L., Foa, R., McArthur, J., Price, R., Asbury, A., Beckett, A., Benson, D., Bridge, T., Levanthal, C., Satz, P., Saykin, A., Sidtis, J., and Tross, S., 1991, Nomenclature and research case definitions for neurological manifestations of human immunodeficiency virus type 1 (HIV-1) infection, Neurology. 41:778–785.Google Scholar
  111. Jiang, Z., Piggee, C., Heyes, M. P., Murphy, C., Quearry, B., Bauer, M., Zheng, J., Gendelman, H. E., and Markey, S. P., 2001, Glutamate is a mediator of neurotoxicity in secretions of activated HIV-1-infected macrophages, J Neuroimmunol. 117:97–107.PubMedGoogle Scholar
  112. Jones, M., Olafson, K., Del Bigio, M. R., Peeling, J., and Nath, A., 1998, Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) Tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement, J Neuropathol Exp Neurol. 57:563–570.PubMedGoogle Scholar
  113. Jung, S., Aliberti, J., Graemmel, P., Sunshine, M. J., Kreutzberg, G. W., Sher, A., and Littman, D. R., 2000, Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion, Mol Cell Biol. 20:4106–4114.PubMedGoogle Scholar
  114. Kaul, M., and Lipton, S. A., 1999, Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis, Proc Natl Acad Sci USA. 96:8212–8216.PubMedGoogle Scholar
  115. Kelder, W., McArthur, J. C., Nance-Sproson, T., McClernon, D., and Griffin, D. E., 1998, Bchemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia, Ann Neurol. 44:831–835.PubMedGoogle Scholar
  116. Kerr, S. J., Armati, P. J., Guillemin, G. J., and Brew, B. J., 1998, Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex, AIDS. 12:355–363.PubMedGoogle Scholar
  117. Kieburtz, K., and Schiffer, R., 1989, Neurologic manifestations of human immunodeficiency virus infections, Neurol Clin. 7:447–468.PubMedGoogle Scholar
  118. Kitai, R., Zhao, M. L., Zhang, N., Hua, L. L., and Lee, S. C., 2000, Role of MIP-1beta and RANTES in HIV-1 infection of microglia: inhibition of infection and induction by IFNbeta, J Neuroimmunol. 110:230–239.PubMedGoogle Scholar
  119. Klein, R., Williams, K., Alvarez-Hernandez, X., Westmoreland, S., Force, T., Lackner, A., and Luster, A., 1999, Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes: implications for the neuropathogenesis of AIDS, J Immunol. 163:1636–1646.PubMedGoogle Scholar
  120. Koenig, S., Gendelman, H. E., Orenstein, J. M., Canto, M. C. D., Pezeshkpour, G. H., Yungbluth, M., Janotta, F., Aksamit, A., Martin, M. A., and Fauci, A. S., 1986, Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy, Science. 233:1089–1093.PubMedGoogle Scholar
  121. Kornbluth, R. S., Kee, K., and Richman, D. D., 1998, CD40 ligand (CD154) stimulation of macrophages to produce HIV-1-suppressive beta-chemokines, Proc Natl Acad Sci USA. 95:5205–5210.PubMedGoogle Scholar
  122. Kouba, M., Vanetti, M., Wang, X., Schafer, M., and Hollt, V., 1993, Cloning of a novel putative G-protein-coupled receptor (NLR) which is expressed in neuronal and lymphatic tissue, FEBS Lett. 321:173–178.PubMedGoogle Scholar
  123. Krebs, F. C., Ross, H., McAllister, J., and Wigdahl, B., 2000, HIV-1-associated central nervous system dysfunction, Adv Pharmacol. 49:315–385.PubMedGoogle Scholar
  124. Kullander, K., Kylberg, A., and Ebendal, T., 1997, Specificity of neurotrophin-3 determined by loss-of-function mutagenesis, J Neurosci Res. 50:496–503.PubMedGoogle Scholar
  125. Kure, K., Weidenheim, K. M., Lyman, W. D., and Dickson, D. W., 1990, Morphology and distribution of HIV-1 gp41-positive microglia in subacute AIDS encephalitis. Pattern of involvement resembling a multisystem degeneration, Acta Neuropathol. 80:393–400.PubMedGoogle Scholar
  126. Kutsch, O., Oh, J., Nath, A., and Benveniste, E. N., 2000, Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 tat in astrocytes, J Virol. 74:9214–9221.PubMedGoogle Scholar
  127. Lackner, A. A., Vogel, P., Rames, R. A., Kluge, D., and Marthas, M., 1994, Early events in tissues during infection with pathogenic (SIVmac239) and nonpathogenic (SIVmac1A11) molecular clones of simian immunodeficiency virus, Am J Pathol. 145:428–439.PubMedGoogle Scholar
  128. Lavi, E., Strizki, J. M., Ulrich, A. M., Zhang, W., Fu, L., Wang, Q., O’Connor, M., Hoxie, J. A., and Gonzalez-Scarano, F., 1997, CXCR-4 (fusin), a co-receptor for the type 1 human immunodeficiency virus (HIV-1) is expressed in the human brain in a variety of cell types, including microglia and neurons, Am J Pathol. 151:1035–1042.PubMedGoogle Scholar
  129. Lazarini, F., Casanova, P., Tham, T. N., De Clercq, E., Arenzana-Seisdedos, F., Baleux, F., and Dubois-Dalcq, M., 2000, Differential signalling of the chemokine receptor CXCR4 by stromal cell-derived factor 1 and the HIV glycoprotein in rat neurons and astrocytes, Eur J Neurosci. 12:117–125.PubMedGoogle Scholar
  130. Lazarov-Spiegler, O., Rapalino, O., Agranov, G., and Schwartz, M., 1998a, Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration?, Mol Med Today. 4:337–342.PubMedGoogle Scholar
  131. Lazarov-Spiegler, O., Solomon, A. S., and Schwartz, M., 1998b, Peripheral nerve-stimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optic nerve, Glia. 24:329–337.PubMedGoogle Scholar
  132. Lazarov-Spiegler, O., Solomon, A. S., Zeev-Brann, A. B., Hirschberg, D. L., Lavie, V., and Schwartz, M., 1996, Transplantation of activated macrophages overcomes central nervous system regrowth failure, Faseb J. 10:1296–1302.PubMedGoogle Scholar
  133. Letendre, S. L., Lanier, E. R., and McCutchan, J. A., 1999, Cerebrospinal fluid beta chemokine concentrations in neurocognitively impaired individuals infected with human immunodeficiency virus type 1, J Infect Dis. 180:310–319.PubMedGoogle Scholar
  134. Limoges, J., Persidsky, Y., Poluektova, L., Rasmussen, J., Ratanasuwan, W., Zelivyanskaia, M., McClernon, D., Lanier, E., and Gendelman, H., 2000, Evaluation of antiretroviral drug efficacy for HIV-1 encephalitis in SCID mice, Neurol. 54:379–389.Google Scholar
  135. Lipton, S., 1994, HIV coat protein gp120 induces soluble neurotoxins in culture medium, Neurosci Res Commun. 15:31–37.Google Scholar
  136. Lipton, S. A., and Gendelman, H. E., 1995, Dementia associated with the acquired immunodeficiency syndrome, New Engl J Med. 16:934–940.Google Scholar
  137. Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., MacDonald, M. E., Stuhlmann, H., Koup, R. A., and Landau, N. R., 1996a, Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection, Cell. 86:367–377.PubMedGoogle Scholar
  138. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X., 1996b, Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C, Cell. 86:147–157.PubMedGoogle Scholar
  139. Liu, Y., Tang, X. P., McArthur, J. C., Scott, J., and Gartner, S., 2000, Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain, J Neurovirol. 6Suppl 1:S70–81.PubMedGoogle Scholar
  140. Luster, A. D., 1998, Chemokines-chemotactic cytokines that mediate inflammation, N Eng J Med. 338:436–445.Google Scholar
  141. Ma, M., Geiger, J. D., and Nath, A., 1994, Characterization of a novel binding site for the human immunodeficiency virus type 1 envelope protein gp120 on human fetal astrocytes, J Virol. 68:6824–6828.PubMedGoogle Scholar
  142. Ma, M., and Nath, A., 1997, Molecular determinants for cellular uptake of tat protein of human immunodeficiency virus type 1 in brain cells, J Virol. 71:2495–2499.PubMedGoogle Scholar
  143. Mackay, C. R., 1996, Chemokine receptors and T-cell chemotaxis, J Exp Med. 184:799–802.PubMedGoogle Scholar
  144. Magnuson, D. S., Knudsen, B. E., Geiger, J. D., Brownstone, R. M., and Nath, A., 1995, Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity, Ann Neurol. 37:373–380.PubMedGoogle Scholar
  145. Marder, K., Albert, S., Dooneief, G., Stern, Y., Ramachandran, G., and Epstein, L., 1996, Clinical confirmation of the American Academy of Neurology algorithm for HIV-1-associated cognitive/motor disorder, Neurol. 47:1247–1253.Google Scholar
  146. McArthur, J. C., Sacktor, N., and Selnes, O., 1999, Human immunodeficiency virus-associated dementia, Semin Neurol. 19:129–150.PubMedGoogle Scholar
  147. McManus, C. M., Weidenheim, K., Woodman, S. E., Nunez, J., Hesselgesser, J., Nath, A., and Berman, J. W., 2000, Chemokine and chemokine-receptor expression in human glial elements: induction by the HIV protein, tat, and chemokine autoregulation, Am J Pathol. 156:1441–1453.PubMedGoogle Scholar
  148. Meucci, O., Fatatis, A., Simen, A. A., Bushell, T. J., Gray, P. W., and Miller, R. J., 1998, Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity, Proc Natl Acad Sci. 95:14500–14505.PubMedGoogle Scholar
  149. Meucci, O., Fatatis, A., Simen, A. A., and Miller, R. J., 2000, Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival, Proc Natl Acad Sci USA. 97:8075–8080.PubMedGoogle Scholar
  150. Michael, N. L., 2002, Chomokine receptors as HIV-1 coreceptors. In: chemokine receptors and AIDS, Ed., T. R. O’Brien. New York: Marcel Dekker, pp. 75–91.Google Scholar
  151. Miller, R. J., and Meucci, O., 1999, AIDS and the brain: is there a chemokine connection?, Trends Neurosci. 22:471–479.PubMedGoogle Scholar
  152. Minami, M., and Satoh, M., 2000, [Chemokines as mediators for intercellular communication in the brain], Nippon Yakurigaku Zasshi. 115:193–200.PubMedGoogle Scholar
  153. Moses, A. V., Bloom, F. E., Pauza, C. D., and Nelson, J. A., 1993, HIV infection of human brain capillary endothelial cells occurs via a CD4/galactosylceramide-independent mechanism, Proc Natl Acad Sci USA. 90:10474–10478.PubMedGoogle Scholar
  154. Nath, A., Conant, K., Chen, P., Scott, C., and Major, E. O., 1999, Transient exposure to HIV-1 tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon, J Biol Chem. 274:17098–17102.PubMedGoogle Scholar
  155. Nath, A., and Geiger, J., 1998, Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms, Prog Neurobiol. 54:19–33.PubMedGoogle Scholar
  156. Nath, A., Hartloper, V., Furer, M., and Fowke, K. R., 1995, Infection of human fetal astrocytes with HIV-1: viral tropism and the role of cell to cell contact in viral transmission, J Neuropathol Exp Neurol. 54:320–330.PubMedGoogle Scholar
  157. Nath, A., Psooy, K., Martin, C., Knudsen, B., Magnuson, D. S., Haughey, N., and Geiger, J. D., 1996, Identification of a human immunodeficiency virus type 1 tat epitope that is neuroexcitatory and neurotoxic, J Virol. 70:1475–1480.PubMedGoogle Scholar
  158. Navia, B. A., Cho, E. S., Petito, C. K., and Price, R. W., 1986a, The AIDS dementia complex: II. neuropathology, Ann Neurol. 19:525–535.PubMedGoogle Scholar
  159. Navia, B. A., Jordan, B. D., and Price, R. W., 1986b, The AIDS dementia complex: I. clinical features, Ann Neurol. 19:517–524.PubMedGoogle Scholar
  160. New, D. R., Ma, M., Epstein, L. G., Nath, A., and Gelbard, H. A., 1997, Human immunodeficiency virus type-1 tat protein induces death by apoptosis in primary human neuron cultures, J Neurovirol. 3:168–173.PubMedGoogle Scholar
  161. New, D. R., Maggirwar, S. B., Epstein, L. G., Dewhurst, S., and Gelbard, H. A., 1998, HIV-1 tat induces neuronal death via tumor necrosis factor alpha and activation of non-NMDA receptors by a NFkB-independent mechanism, J Biol Chem. 273:17852–17858.PubMedGoogle Scholar
  162. Nottet, H., and Gendelman, H., 1995, Unraveling the neuroimmune mechanisms for the HIV-1-associated cognitive/motor complex, Immunol Today. 16:441–448.PubMedGoogle Scholar
  163. Nottet, H. S., Jett, M., Flanagan, C. R., Zhai, Q. H., Persidsky, Y., Rizzino, A., Bernton, E. W., Genis, P., Baldwin, T., Schwartz, J. H., LaBenz, C. J., and Gendelman, H. E., 1995, A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-alpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes, J Immunol. 154:3567–3581.PubMedGoogle Scholar
  164. Nottet, H. S., Persidsky, Y., Sasseville, V. G., Nukuna, A. N., Bock, P., Zhai, Q. H., Sharer, L. R., McComb, R. D., Swindells, S., Soderland, C., and Gendelman, H. E., 1996, Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain, J Immunol. 156:1284–1295.PubMedGoogle Scholar
  165. Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J.-L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J.-M., Clark-Lewis, I., Legler, D. F., Loetscher, M., Baggiolini, M., and Moser, B., 1996, The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1, Nature. 382:833–835.PubMedGoogle Scholar
  166. O’Brien, T. R., Michael, N. L., Sheppard, H. W., and Buchbinder, S., 2002, HIV-1 infection in patients with the CCR5-D32 homozygous genotype. In: Chemokine receptors and AIDS, Ed., T. R. O’Brien. New York: Marcel Dekker, pp. 215–225.Google Scholar
  167. Ohagen, A., Ghosh, S., He, J., Huang, K., Chen, Y., Yuan, M., Osathanondh, R., Gartner, S., Shi, B., Shaw, G., and Gabuzda, D., 1999, Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope, J Virol. 73:897–906.PubMedGoogle Scholar
  168. Pandey, V., and Bolsover, S. R., 2000, Immediate and neurotoxic effects of HIV protein gp120 act through CXCR4 receptor, Biochem Biophys Res Commun. 274:212–215.PubMedGoogle Scholar
  169. Perno, C. F., Aquaro, S., Rosenwirth, B., Balestra, E., Peichl, P., Billich, A., Villani, N., and Calio, R., 1994, In vitro activity of inhibitors of late stages of the replication of HIV in chronically infected macrophages, J Leukoc Biol. 56:381–386.PubMedGoogle Scholar
  170. Perno, C. F., Newcomb, F. M., Davis, D. A., Aquaro, S., Humphrey, R. W., Calio, R., and Yarchoan, R., 1998, Relative potency of protease inhibitors in monocytes/macrophages acutely and chronically infected with human immunodeficiency virus, J Infect Dis. 178:413–422.PubMedGoogle Scholar
  171. Perno, C. F., Yarchoan, R., Cooney, D. A., Hartman, N. R., Gartner, S., Popovic, M., Hao, Z., Gerrard, T. L., Wilson, Y. A., Johns, D. G. et al., 1988, Inhibition of human immunode-ficiency virus (HIV-1/HTLV-IIIBa-L) replication in fresh and cultured human peripheral blood monocytes/macrophages by azidothymidine and related 2′,3′-dideoxynucleosides, J Exp Med. 168:1111–1125.PubMedGoogle Scholar
  172. Perry, S. W., Hamilton, J. A., Tjoelker, L. W., Dbaibo, G., Dzenko, K. A., Epstein, L. G., Hannun, Y., Whittaker, J. S., Dewhurst, S., and Gelbard, H. A., 1998, Platelet-activating factor receptor activation. An initiator step in HIV-1 neuropathogenesis, J Biol Chem. 273:17660–17664.PubMedGoogle Scholar
  173. Persidsky, Y., 1999, Model systems for studies of leukocyte migration across the blood-brain barrier, J Neurovirol. 5:579–590.PubMedGoogle Scholar
  174. Persidsky, Y., Ghorpade, A., Rasmussen, J., Limoges, J., Liu, X. J., Stins, M., Fiala, M., Way, D., Kim, K. S., Witte, M. H., Weinand, M., Carhart, L., and Gendelman, H. E., 1999, Microglial and astrocyte chemokines regulate monocyte migration through the bloodbrain barrier in human immunodeficiency virus-1 encephalitis, Am J Pathol. 155:1599–1611.PubMedGoogle Scholar
  175. Persidsky, Y., Limoges, J., McComb, R., Bock, P., Baldwin, T., Tyor, W., Patil, A., Nottet, H. S., Epstein, L., Gelbard, H., Flanagan, E., Reinhard, J., Pirruccello, S. J., and Gendelman, H. E., 1996, Human immunodeficiency virus encephalitis in SCID mice, Am J Pathol. 149:1027–1053.PubMedGoogle Scholar
  176. Persidsky, Y., Stins, M., Way, D., and et al., 1997, A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis, J Immunol. 158:499–510.Google Scholar
  177. Petito, C. K., and Cash, K. S., 1992, Blood-brain barrier abnormalities in the acquired immunodeficiency syndrome: immunohistochemical localization of serum proteins in postmortem brain, Ann. Neurol. 32:658–666.PubMedGoogle Scholar
  178. Poltorak, M., and Freed, W. J., 1991, BN rats do not reject F344 brain allografts even after systemic sensitization, Ann Neurol. 29:377–388.PubMedGoogle Scholar
  179. Premack, B. A., and Schall, T. J., 1996, Chemokine receptors: gateways to inflammation and infection, Nat Med. 2:1174–1178.PubMedGoogle Scholar
  180. Price, D. L., Sisodia, S. S., and Borchelt, D. R., 1998, Genetic neurodegenerative diseases: the human illness and transgenic models, Science. 282:1079–1083.PubMedGoogle Scholar
  181. Price, J., 1993, Organizing the cerebrum, Nature. 362:590–591.PubMedGoogle Scholar
  182. Price, R. W., 2000, The two faces of HIV infection of cerebrospinal fluid, Trends Microbiol. 8:387–391.PubMedGoogle Scholar
  183. Pulliam, L., Gascon, R., Stubblebine, M., Mcguire, D., and McGrath, M. S., 1997, Unique monocyte subset in patients with AIDS dementia, Lancet. 349:692–695.PubMedGoogle Scholar
  184. Ranki, A., Nyberg, M., Ovod, V., Haltia, M., Elovaara, I., Raininko, R., Haapasalo, H., and Krohn, K., 1995, Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia, AIDS. 9:1001–1008.PubMedGoogle Scholar
  185. Rao, K., Lund, R. D., Kunz, H. W., and Gill, T. J., III, 1989, The role of MHC and non-MHC antigens in the rejection of intracerebral allogeneic neural grafts, Transplantation. 48:1018–1021.PubMedGoogle Scholar
  186. Rapalino, O., Lazarov-Spiegler, O., Agranov, E., Velan, G. J., Yoles, E., Fraidakis, M., Solomon, A., Gepstein, R., Katz, A., Belkin, M., Hadani, M., and Schwartz, M., 1998, Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats, Nature Med. 4:814–821.PubMedGoogle Scholar
  187. Rappaport, A., Shaked, M., Landau, M., and Dolev, E., 2001, Sweet’s syndrome in association with Crohn’s disease: report of a case and review of the literature, Dis Colon Rectum. 44:1526–1529.PubMedGoogle Scholar
  188. Reddy, R. T., Achim, C. L., Sirko, D. A., Tehranchi, S., and Group, H. N. R., 1996, Sequence analysis of the V3 loop in brain and spleen of patients with HIV encephalitis, AIDS Res Hum Retro. 12:477–482.Google Scholar
  189. Richard, R. M., Snyderman and Haribabu, B., 2002, Chemokine receptor expression and regulatory mechanisms. In: Chemokine receptors and AIDS, Ed., T. R. O’Brien. New York: Marcel Dekker, pp. 31–51.Google Scholar
  190. Rizzardi, G. P., and Pantaleo, G., 2002, Pathogenesis of HIV-1 infection. In: Chemokine Receptors and AIDS, Ed., T. R. O’Brien. New York: Marcel Dekker, pp. 51–75.Google Scholar
  191. Rucker, J., Edinger, A. L., Sharron, M., Samson, M., Lee, B., Berson, J. F., Yi, Y., Margulies, B., Collman, R. G., Doranz, B. J., Parmentier, M., and Doms, R. W., 1997, Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses, J Virol. 71:8999–9007.PubMedGoogle Scholar
  192. Ryan, L., Zheng, J., Brester, M., Bohac, D., Hahn, F., Gendelman, H. E., and Swindells, S., 2001a, In: 8th Conference on Retroviruses and Opportunistic Infections. Foundation for Retrovirology and Human Health, Chicago.Google Scholar
  193. Ryan, L. A., Cotter, R. L., Zink, W. E., Gendelman, H. E., and Zheng, J., 2002, Macrophages, chemokines and neuronal injury in HIV-1 associated dementia, Cell Molec Biol. 48:137–150.Google Scholar
  194. Ryan, L. A., Zheng, J., Brester, M., Bohac, D., Hahn, F., Anderson, J., Ratanasuwan, W., Gendelman, H. E., and Swindells, S., 2001b, Plasma levels of soluble cd14 and tumor necrosis factor-alpha type II receptor correlate with cognitive dysfunction during human immunodeficiency virus type 1 infection, J Infect Dis. 184:699–706.PubMedGoogle Scholar
  195. Sabri, F., Tresoldi, E., Di Stefano, M., Polo, S., Monaco, M. C., Verani, A., Fiore, J. R., Lusso, P., Major, E., Chiodi, F., and Scarlatti, G., 1999, Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors, Virology. 264:370–384.PubMedGoogle Scholar
  196. Sacktor, N., Lyles, R. H., Skolasky, R., Kleeberger, C., Selnes, O. A., Miller, E. N., Becker, J. T., Cohen, B., and McArthur, J. C., 2001, HIV-associated neurologic disease incidence changes: multicenter AIDS cohort study, 1990–1998, Neurology. 56:257–260.PubMedGoogle Scholar
  197. Sanders, V. J., Everall, I. P., Johnson, R. W., and Masliah, E., 2000, Fibroblast growth factor modulates HIV coreceptor CXCR4 expression by neural cells. NRC group, J Neurosci Res. 59:671–679.PubMedGoogle Scholar
  198. Sanders, V. J., Pittman, C. A., White, M. G., Wang, G., Wiley, C. A., and Achim, C. L., 1998, Chemokines and receptors in HIV encephalitis, AIDS. 12:1021–1026.PubMedGoogle Scholar
  199. Schall, T. J., and Bacon, K. B., 1994, Chemokines, leukocyte trafficking, and inflammation, Curr Opin Immunol. 6:865–873.PubMedGoogle Scholar
  200. Schweighardt, B., Shieh, J. T., and Atwood, W. J., 2001, CD4/CXCR4-independent infection of human astrocytes by a T-tropic strain of HIV-1, J Neurovirol. 7:155–162.PubMedGoogle Scholar
  201. Segal, R. A., and Greenberg, M. E., 1996, Intracellular signaling pathways activated by neurotrophic factors, Annu Rev Neurosci. 19:463–489.PubMedGoogle Scholar
  202. Sharpless, N. E., Verdin, E., Kufta, C. V., Chen, I. S. Y., and Dubois-Dalcq, M., 1992, Human immunodeficiency virus type 1 tropism for brain microglial cells is determined by a region of the env glycoprotein that controls macrophage tropism, Virol. 66:2588–2593.Google Scholar
  203. Shi, B., Girolami, U. D., He, J., Wang, S., Lorenzo, A., Busciglio, J., and Gabuzda, D., 1996, Apoptosis induced by HIV-1 infection of the central nervous system, J Clini Investi. 98:1979–1990.Google Scholar
  204. Shi, B., Rainha, J., Lorenzo, A., Busciglio, J., and Gabuzda, D., 1998, Neuronal apoptosis induced by HIV-1 tat protein and TNF-A: potentiation of neurotoxicity mediated by oxidative stress and implications for HIV-1 dementia, J Neurovirol. 4:281–290.PubMedGoogle Scholar
  205. Shibata, A., Zelivyanskaya, M., Limoges, J., Carlson, K. A., Gorantla, S., Branecki, C., Bishu, S., Xiong, H., and Gendelman, H. E., 2003, Peripheral nerve induces macrophage neurotrophic activities: regulation of neuronal process outgrowth, intracellular singnaling and synaptic function. J Neuroimmunol. 142:112–129.PubMedGoogle Scholar
  206. Shieh, J. T. C., Albright, A. V., Sharron, M., Gartner, S., Strizki, J., Doms, R. W., and Gonzalez-Scarano, F., 1998, Chemokine receptor utilization by human immundeficiency virus type 1 isolates that replicate in microglia, J Virol. 72:4243–4249.PubMedGoogle Scholar
  207. Shields, P. L., and Adams, D. H., 2002, Chemokines and chemokine receptor interactions and functions. In: Chemokine receptors and AIDS, Ed., T. R. O’Brien. New York: Marcel Dekker, pp. 1–31.Google Scholar
  208. Shiraishi, K., Fukuda, S., Mori, T., Matsuda, K., Yamaguchi, T., Tanikawa, C., Ogawa, M., Nakamura, Y., and Arakawa, H., 2000, Identification of fractalkine, a CX3C-type chemokine, as a direct target of p53, Cancer Res. 60:3722–3726.PubMedGoogle Scholar
  209. Smith, A., 1991, Symbol modalities test. Los Angeles: Western Psychological Services.Google Scholar
  210. Smith, G. M., and Hale, J. H., 1997, Macrophage/microglia regulation of astrocytic tenascin: synergistic action of transforming growth factor-beta and basic fibroblast growth factor, J Neurosci. 17:9624–9633.PubMedGoogle Scholar
  211. Soontornniyomkij, V., Wang, G., Pittman, C. A., Wiley, C. A., and Achim, C. L., 1998, Expression of brain-derived neurotrophic factor protein in activated microglia of human immunodeficiency virus type 1 encephalitis, Neuropathol Appl Neurobiol. 24:453–460.PubMedGoogle Scholar
  212. Streilein, J. W., 1995, Unraveling immune privilege, Science. 270:1158–1159.PubMedGoogle Scholar
  213. Strizki, J. M., Albright, A. V., Sheng, H., O’Connor, M., Perrin, L., and Gonzalez-Scarano, F., 1996, Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: evidence of differential tropism, J Virol. 70:7654–7662.PubMedGoogle Scholar
  214. Talley, A. K., Dewhurst, S., Perry, S. W., Dollard, S. C., Gummuluru, S., Fine, S. M., New, D., Epstein, L. G., Gendelman, H. E., and Gelbard, H. A., 1995, Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant Nacetylcysteine and the genes bcl-2 and crmA, Mol Cell Biol. 15:2359–2366.PubMedGoogle Scholar
  215. Tong, N., Perry, S. W., Zhang, Q., James, H. J., Guo, H., Brooks, A., Bal, H., Kinnear, S. A., Fine, S., Epstein, L. G., Dairaghi, D., Schall, T. J., Gendelman, H. E., Dewhurst, S., Sharer, L. R., and Gelbard, H. A., 2000, Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system, J Immunol. 164:1333–1339.PubMedGoogle Scholar
  216. Tornatore, C., Meyers, K., Atwood, W., Conant, K., and Major, E., 1994, Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes, J Virol. 68:93–102.PubMedGoogle Scholar
  217. Tornatore, C., Nath, A., Amemiya, K., and Major, E. O., 1991, Persistent human immunodeficiency virus type 1 infection in human fetal glial cells reactivated by T-cell factor(s) or by the cytokines tumor necrosis factor alpha and interleukin-1 beta, J Virol. 65:6094–6100.PubMedGoogle Scholar
  218. Vallat, A.-V., Girolami, U. D., He, J., Mhashikar, A., Marasco, W., Shi, B., Gray, F., Bell, J., Keohane, C., Smith, T. W., and Gabuzda, D., 1998, Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brain of children with AIDS, Am J Path. 152:167–178.PubMedGoogle Scholar
  219. van der Meer, P., Ulrich, A. M., Gonzalez-Scarano, F., and Lavi, E., 2000, Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia, Exp Mol Pathol. 69:192–201.PubMedGoogle Scholar
  220. Vicenzi, E., Alfano, M., Ghezzi, S., Gatti, A., Veglia, F., Lazzarin, A., Sozzani, S., Mantovani, A., and Poli, G., 2000, Divergent regulation of HIV-1 replication in PBMC of infected individuals by CC chemokines: suppression by RANTES, MIP-1 alpha, and MCP-3, and enhancement by MCP-1, J Leukoc Biol. 68:405–412.PubMedGoogle Scholar
  221. Wang, J., Crawford, K., and Gabuzda, D., 2001, In: 8th Conference on Retroviruses and Opportunistic Infections Foundation for Retrovirology and Human Health, Chicago.Google Scholar
  222. Weiss, J., Downie, S., Lyman, W., and Berman, J., 1998, Astrocyte-drived monocytechemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier, J Immunol. 161:6896–6903.PubMedGoogle Scholar
  223. Weiss, J. M., Nath, A., Major, E. O., and Berman, J. W., 1999, HIV-1 tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes, J Immunol. 163:2953–2959.PubMedGoogle Scholar
  224. Weissman, D., Rabin, R., Arthos, J., Rubbert, A., Dybul, M., Swofford, R., Venkatesan, S., Farber, J., and Fauci, A., 1997, Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor, Nature. 389:981–985.PubMedGoogle Scholar
  225. Wiley, C. A., and Achim, C., 1994, Human immunodeficiency virus encephalitis is the pathological correlate of dementia in acquired immunodeficiency syndrome, Ann Neurol. 36:673–676.PubMedGoogle Scholar
  226. Wiley, C. A., Achim, C. L., Hammond, R., Love, S., Masliah, E., Radhakrishnan, L., Sanders, V., and Wang, G., 2000, Damage and repair of DNA in HIV encephalitis, J Neuropathol Exp Neurol. 59:955–965.PubMedGoogle Scholar
  227. Wiley, C. A., Masliah, E., Morey, M., Lemere, C., Teresa, R., Grafe, M., Hansen, L., and Terry, R., 1991, Neocortical damage during HIV infection, Ann Neurol. 29:651–657.PubMedGoogle Scholar
  228. Wiley, C. A., Schrier, R. D., Nelson, J. A., Lampert, P. W., and Oldstone, M. B. A., 1986, Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients, Proc Natl Acad Sci USA. 83:7089–7093.PubMedGoogle Scholar
  229. Williams, K. C., Corey, S., Westmoreland, S. V., Pauley, D., Knight, H., deBakker, C., Alvarez, X., and Lackner, A. A., 2001, Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS, J Exp Med. 193:905–915.PubMedGoogle Scholar
  230. Williams, K. C., and Hickey, W. F., 2002, Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS, Annu Rev Neurosci. 25:537–562.PubMedGoogle Scholar
  231. Winkler, C., Modi, W., Smith, M. W., Nelson, G., Wu, X., Carrington, M., Dean, M., Honjo, T., Tashiro, K., Yabe, D., Buchbinder, S., Vittinghoff, E., Goedert, J. J., O’Brien, T., Jacobson, L. P., Detels, R., Donfield, S., Willoughby, A., Vlahov, E. G. D., and Phair, J., 1998, Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant, Science. 279:389–393.PubMedGoogle Scholar
  232. Wu, D. T., Woodman, S. E., Weiss, J. M., McManus, C. M., D’Aversa, T. G., Hesselgesser, J., Major, E. O., Nath, A., and Berman, J. W., 2000, Mechanisms of leukocyte trafficking into the CNS, J Neurovirol. 6Suppl 1:S82–85.PubMedGoogle Scholar
  233. Xiong, H., Boyle, J., Winkelbauer, M., Gorantla, S., Zheng, J., Ghorpade, A., Persidsky, Y., Carlson, K. A., and Gendelman, H. E., 2003, Inhibition of long-term potentiation by interleukin-8: implications for human immunodeficiency virus-1-associated dementia, J Neurosci Res. 71:600–607.PubMedGoogle Scholar
  234. Xiong, H., Zeng, Y. C., Zheng, J., Thylin, M., and Gendelman, H. E., 1999a, Soluble HIV-1 infected macrophage secretory products mediate blockade of long-term potentiation: a mechanism for cognitive dysfunction in HIV-1-associated dementia, J Neuro Virol. 5:519–528.Google Scholar
  235. Xiong, H., Zheng, J., Thylin, M., and Gendelman, H. E., 1999b, Unraveling the mechanisms for neurotoxicity in HIV-1-associated dementia: inhibition of neuronal synaptic transmission by macrophage secretory products, AIDS Res Hum Retroviruses. 15:57–63.PubMedGoogle Scholar
  236. Zeev-Brann, A. B., Lazarov-Spiegler, O., Brenner, T., and Schwartz, M., 1998, Differential effects of central and peripheral nerves on macrophages and microglia, Glia. 23:181–190.PubMedGoogle Scholar
  237. Zeng, Y. C., Zheng, J., Gendelman, H. E., and Xiong, H., 2000, In: 7th Conference on Retroviruses and Opportunistic Infections Foundation for Retrovirology and Human Health, San Francisco.Google Scholar
  238. Zheng, J., and Gendelman, H. E., 1997, The HIV-1 associated dementia complex: a metabolic encephalopathy fueled by viral replication in mononuclear phagocytes, Curr Opin Neurol. 10:319–325.PubMedGoogle Scholar
  239. Zheng, J., Ghorpade, A., Niemann, D., Cotter, R. L., Thylin, M. R., Epstein, L., Swartz, J. M., Shepard, R. B., Liu, X., Nukuna, A., and Gendelman, H. E., 1999a, Lymphotropic virions affect chemokine receptor-mediated neural signaling and apoptosis: implications for human immunodeficiency virus type 1-associated dementia, J Virol. 73:8256–8267.PubMedGoogle Scholar
  240. Zheng, J., Lopez, A., Erichsen, D., Bauer, M., Cotter, R. L., Ryan, L. A., Williams, C., Ghorpade, A., Morgello, S., and Gendelman, H. E., 2001a, In: 8th Conference on Retroviruses and Opportunistic Infections Foundation for Retrovirology and Human Health, Chicago.Google Scholar
  241. Zheng, J., Niemann, D., Bauer, M., Leisman, G. B., Cotter, R. L., Ryan, L. A., Lopez, A., Williams, C., Ghorpade, A., and Gendelman, H. E., 2000, In: 7th Conference on Retroviruses and Opportunistic Infections Foundation for Retrovirology and Human Health, San Francisco.Google Scholar
  242. Zheng, J., Niemann, D., Bauer, M., Williams, C., Lopez, A., Erichsen, D., Ryan, L. A., Cotter, R. L., Ghorpade, A., Swindells, S., and Gendelman, H. E., 2001b, In: 8th Conference on Retroviruses and Opportunistic Infections Foundation for Retrovirology and Human Health, Chicago.Google Scholar
  243. Zheng, J., Thylin, M., Ghorpade, A., Cotter, R., Persidsky, Y., and Gendelman, H. E., 1998, CXCR4 mediates neuronal dysfunction by HIV-1 infected macrophage secretory product: importance for HIV-1 associated dementia, Soc Neurosci Abs. 24:776.6.Google Scholar
  244. Zheng, J., Thylin, M., Ghorpade, A., Xiong, H., Persidsky, Y., Cotter, R., Niemann, D., Che, M., Zeng, Y., Gelbard, H., Shepard, R., Swartz, J., and Gendelman, H., 1999b, Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia, J Neuroimmunol. 98:185–200.PubMedGoogle Scholar
  245. Zheng, J., Thylin, M. R., Cotter, R. L., Lopez, A. L., Ghorpade, A., Persidsky, Y., Xiong, H., Leisman, G. B., Che, M. H., and Gendelman, H. E., 2001c, HIV-1 infected and immune competent mononuclear phagocytes induce quantitative alterations in neuronal dendritic arbor: relevance for HIV-1-associated dementia, Neurotox. Res. 3:443–459.PubMedGoogle Scholar
  246. Zheng, J., Thylin, M. R., Ghorpade, A., Xiong, H., Persidsky, Y., Cotter, R., Niemann, D., Che, M., Zeng, Y. C., Gelbard, H. A., Shepard, R. B., Swartz, J. M., and Gendelman, H. E., 1999c, Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia, J Neuroimmunol. 98:185–200.PubMedGoogle Scholar
  247. Zheng, J., Thylin, M. R., Persidsky, Y., Williams, C. E., Cotter, R. L., Zink, W., Ryan, L., Ghorpade, A., Lewis, K., and Gendelman, H. E., 2001d, HIV-1 infected immune competent mononuclear phagocytes influence the pathways to neuronal demise, Neurotox Res. 3:461–484.PubMedGoogle Scholar
  248. Zhu, S., Cerutis, D., Anderson, J., and Toews, M., 1996, Regulation of hamster alpha 1 Badrenoceptors expressed in CHO cells, Eur J Pharmacol. 299:205–212.PubMedGoogle Scholar
  249. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., and Littman, D. R., 1998, Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development, Nature. 393:595–599.PubMedGoogle Scholar
  250. Zujovic, V., Benavides, J., Vige, X., Carter, C., and Taupin, V., 2000, Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation, Glia. 29:305–315.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Howard E. Gendelman
    • 1
  • Eric R. Anderson
    • 2
  • Loyda Melendez
    • 2
  • Jialin Zheng
    • 3
  1. 1.Center for Neurovirology and Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience Pathology and Microbiology and Internal MedicineUniversity of Nebraska Medical CenterOmaha
  2. 2.Department of Microbiology and Specialized NeuroSciences ProgramUniversity of Puerto Rico Medical Sciences CampusSan Juan
  3. 3.Center for Neurovirology and Neurodegenerative Disorders, Departments of Pharmacology and Experimental NeuroScience and Pathology and Microbiology, and PharmacologyUniversity of Nebraska Medical CenterOmaha

Personalised recommendations