FIV as a Model for AIDS Vaccine Studies

  • Stephen Dunham
  • Oswald Jarrett
Part of the Infectious Diseases and Pathogenesis book series (IAPA)


Many experimental strategies have been adopted in experiments to protect cats from FIV infection by vaccination, and some have been successful. The interest in developing a vaccine arose both because FIV is a common cause of morbidity and mortality in pet cats and because the feline virus provides a model for its counterpart in man, human immunodeficiency virus (HIV), for which an effective vaccine is urgently required to halt the current tragic pandemic of acquired immunodeficiency syndrome (AIDS). Shortly after the discovery of FIV and its characterization as a lentivirus, attempts were made to produce a vaccine and success was soon achieved with relatively simple inactivated virus or inactivated virus-infected cell vaccines.82 Further development of this approach led to the introduction in 2002 of the first commercial vaccine against FIV.59 With an estimated prevalence of the infection of up to 25% in populations of pet cats, an effective FIV vaccine could have a significant influence on animal welfare. In addition, this success poses the question of whether a similar strategy might produce an effective vaccine against HIV.


Virus Neutralize Antibody Inactivate Virus Vaccine Infected Cell Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Addie D. D., Dennis J. M., Toth S., Callanan J. J., Reid S., and Jarrett O. Long-term impact on a closed household of pet cats of natural infection with feline coronavirus, feline leukaemia virus and feline immunodeficiency virus. Vet. Rec. 2000;146:419–424.PubMedGoogle Scholar
  2. 2.
    Baba T. W., Trichel A. M., An L., Liska V., Martin L. N., Murphey-Corb M., and Ruprecht R. M. Infection and AIDS in adult macaques after nontraumatic oral exposure to cell-free SIV. Science 1996;272:1486–1489.PubMedCrossRefGoogle Scholar
  3. 3.
    Beatty J. A., Willett B. J., Gault E. A., and Jarrett O. A longitudinal study of feline immunodeficiency virus-specific cytotoxic T lymphocytes in experimentally infected cats, using antigen-specific induction. J. Virol. 1996;70:6199–6206.PubMedGoogle Scholar
  4. 4.
    Bendinelli M., Pistello M., Del Mauro D., Cammarota G., Maggi F., Leonildi A., Giannecchini S., Bergamini C., and Matteucci D. During readaptation in vivo, a tissue culture-adapted strain of feline immunodeficiency virus reverts to broad neutralization resistance at different times in individual hosts but through changes at the same position of the surface glycoprotein. J. Virol. 2001;75:4584–4593.PubMedCrossRefGoogle Scholar
  5. 5.
    Bishop S. A., Stokes C. R., Gruffydd-Jones T. J., Whiting C. V., and Harbour D. A. Vaginal and rectal infection of cats with feline immunodeficiency virus. Vet. Microbiol. 1996;51:217–227.PubMedCrossRefGoogle Scholar
  6. 6.
    Boretti F. S., Leutenegger C. M., Mislin C., Hofmann-Lehmann R., Konig S., Schroff M., Junghans C., Fehr D., Huettner S. W., Habel A., Flynn J. N., Aubert A., Pedersen N. C., Wittig B., and Lutz H. Protection against FIV challenge infection by genetic vaccination using minimalistic DNA constructs for FIV env gene and feline IL-12 expression. AIDS 2000;14:1749–1757.PubMedCrossRefGoogle Scholar
  7. 7.
    Bucci J. G., English R. V., Jordan H. L., Childers T. A., Tompkins M. B., and Tompkins W. A. Mucosally transmitted feline immunodeficiency virus induces a CD8+ antiviral response that correlates with reduction of cell-associated virus. J. Infect. Dis. 1998;177:18–25.PubMedGoogle Scholar
  8. 8.
    Burkhard M. J., Valenski L., Leavell S., Dean G. A., and Tompkins W. A. Evaluation of FIV protein-expressing VEE-replicon vaccine vectors in cats. Vaccine 2002;21:258–268.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen R., Le Rouzic E., Kearney J. A., Mansky L. M., and Benichou S. Vpr-mediated incorporation of UNG2 into HIV-1 particles is required to modulate the virus mutation rate and for replication in macrophages. J. Biol. Chem. 2004;279:28419–28425.PubMedCrossRefGoogle Scholar
  10. 10.
    Chiarantini L., Matteucci D., Pistello M., Mancini U., Mazzetti P., Massi C., Giannecchini S., Lonetti I., Magnani M., and Bendinelli M. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: homologous erythrocytes as a delivery system for preferential immunization with putative protective antigens. Clin. Diagn. Lab. Immunol. 1998;5:235–241.PubMedGoogle Scholar
  11. 11.
    Cuisinier A. M., Mallet V., Meyer A., Caldora C., and Aubert A. DNA vaccination using expression vectors carrying FIV structural genes induces immune response against feline immunodeficiency virus. Vaccine 1997;15:1085–1094.PubMedCrossRefGoogle Scholar
  12. 12.
    Cuisinier A. M., Meyer A., Chatrenet B., Verdier A. S., and Aubert A. Attempt to modify the immune response developed against FIV gp120 protein by preliminary FIV DNA injection. Vaccine 1999;17:415–425.PubMedCrossRefGoogle Scholar
  13. 13.
    Del Mauro D., Matteucci D., Giannecchini S., Maggi F., Pistello M., and Bendinelli M. Autologous and heterologous neutralization analyses of primary feline immunodeficiency virus isolates. J. Virol. 1998;72:2199–2207.PubMedGoogle Scholar
  14. 14.
    Douek D. C., Brenchley J. M., Betts M. R., Ambrozak D. R., Hill B. J., Okamoto Y., Casazza J. P., Kuruppu J., Kunstman K., Wolinsky S., Grossman Z., Dybul M., Oxenius A., Price D. A., Connors M., and Koup R. A. HIV preferentially infects HIV-specific CD4+ T-cells. Nature 2002;417:95–98.PubMedCrossRefGoogle Scholar
  15. 15.
    Dunham S. P., Bruce J., MacKay S., Golder M. C., Jarrett O., and Neil J. Efficacy of feline immunodeficiency virus vaccines Fel-O-Vax and FIVGL8dIN DNA vaccine: Effect of route of challenge on outcome. Seventh International Feline Retrovirus Research Symposium, Pisa, Italy. 2004.Google Scholar
  16. 16.
    Dunham S. P., Flynn J. N., Rigby M. A., Macdonald J., Bruce J., Cannon C., Golder M. C., Hanlon L., Harbour D. A., Mackay N. A., Spibey N., Jarrett O., and Neil JC. Protection against feline immunodeficiency virus using replication defective proviral DNA vaccines with feline interleukin-12 and-18. Vaccine 2002;20:1483–1496.PubMedCrossRefGoogle Scholar
  17. 17.
    Fevereiro M., Roneker C., Laufs A., Tavares L., and de Noronha F. Characterization of two monoclonal antibodies against feline immunodeficiency virus gag gene products and their application in an assay to evaluate neutralizing antibody activity. J. Gen. Virol. 1991;72 (Pt 3):617–622.PubMedCrossRefGoogle Scholar
  18. 18.
    Finerty S., Stokes C. R., Gruffydd-Jones T. J., Hillman T. J., Barr F. J., and Harbour D. A. Targeted lymph node immunization can protect cats from a mucosal challenge with feline immunodeficiency virus. Vaccine 2001;20:49–58.PubMedCrossRefGoogle Scholar
  19. 19.
    Finerty S., Stokes C. R., Gruffydd-Jones T. J., Hillman T. J., Reeves N. A., Whiting C. V., Schaaper W. M., Dalsgaard K., and Harbour D. A. Mucosal immunization with experimental feline immunodeficiency virus (FIV) vaccines induces both antibody and T-cell responses but does not protect against rectal FIV challenge. Vaccine 2000;18:3254–3265.PubMedCrossRefGoogle Scholar
  20. 20.
    Flynn J. N., Cannon C. A., Neil J. C., and Jarrett O. Vaccination with a feline immunodeficiency virus multiepitopic peptide induces cell-mediated and humoral immune responses in cats, but does not confer protection. J. Virol. 1997;71:7586–7592.PubMedGoogle Scholar
  21. 21.
    Flynn J. N., Keating P., Hosie M. J., Mackett M., Stephens E. B., Beatty J. A., Neil J. C., and Jarrett O. Env-specific CTL predominate in cats protected from feline immunodeficiency virus infection by vaccination. J. Immunol. 1996;157:3658–3665.PubMedGoogle Scholar
  22. 22.
    Gemeniano M. C., Sawai E. T., and Sparger E. E. Feline immunodeficiency virus Orf-A localizes to the nucleus and induces cell cycle arrest. Virology 2004;325:167–174.PubMedCrossRefGoogle Scholar
  23. 23.
    Giannecchini S., Isola P., Sichi O., Matteucci D., Pistello M., Zaccaro L., Del Mauro D., and Bendinelli M. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: failure to protect and possible enhancement of challenge infection by four cell-based vaccines prepared with autologous lymphoblasts. J. Virol. 2002;76:6882–6892.PubMedCrossRefGoogle Scholar
  24. 24.
    Gonin P., Fournier A., Oualikene W., Moraillon A., and Eloit M. Immunization trial of cats with a replication-defective adenovirus type 5 expressing the ENV gene of feline immunodeficiency virus. Vet. Microbiol. 1995;45:393–401.PubMedCrossRefGoogle Scholar
  25. 25.
    Hohdatsu T., Pu R., Torres B. A., Trujillo S., Gardner M. B., and Yamamoto J. K. Passive antibody protection of cats against feline immunodeficiency virus infection. J. Virol. 1993;67:2344–2348.PubMedGoogle Scholar
  26. 26.
    Hosie M. J., Dunsford T., Klein D., Willett B. J., Cannon C., Osborne R., Macdonald J., Spibey N., Mackay N., Jarrett O., and Neil J. C. Vaccination with inactivated virus but not viral DNA reduces virus load following challenge with a heterologous and virulent isolate of feline immunodeficiency virus. J. Virol. 2000;74:9403–9411.PubMedCrossRefGoogle Scholar
  27. 27.
    Hosie M. J., Dunsford T. H., de Ronde A., Willett B. J., Cannon C. A., Neil J. C., and Jarrett O. Suppression of virus burden by immunization with feline immunodeficiency virus Env protein. Vaccine 1996;14:405–411.PubMedCrossRefGoogle Scholar
  28. 28.
    Hosie M. J., and Flynn J. N. Feline immunodeficiency virus vaccination: characterization of the immune correlates of protection. J. Virol. 1996;70:7561–7568.PubMedGoogle Scholar
  29. 29.
    Hosie M. J., Flynn J. N., Rigby M. A., Cannon C., Dunsford T., Mackay N. A., Argyle D., Willett B. J., Miyazawa T., Onions D. E., Jarrett O., and Neil J. C. DNA vaccination affords significant protection against feline immunodeficiency virus infection without inducing detectable antiviral antibodies. J. Virol. 1998;72:7310–7319.PubMedGoogle Scholar
  30. 30.
    Hosie, M. J., Klein, D., Binley, J. M., Dunsford, T. H., Jarrett, O., Neil, J. C., Knapp, E., Giannecchini, S., Matteucci, D., Bendinelli, M., Hoxie, J. A., and Willett, B. J. Vaccination with an inactivated virulent feline immunodeficiency virus engineered to express high levels of Env. J. Virol. 2005;79:1954–1957.PubMedCrossRefGoogle Scholar
  31. 31.
    Hosie M. J., Osborne R., Reid G., Neil J. C., and Jarrett O. Enhancement after feline immunodeficiency virus vaccination. Vet. Immunol. Immunopathol. 1992;35:191–197.PubMedCrossRefGoogle Scholar
  32. 32.
    Hosie M. J., Osborne R., Yamamoto J. K., Neil J. C., and Jarrett O. Protection against homologous but not heterologous challenge induced by inactivated feline immunodeficiency virus vaccines. J. Virol. 1995;69:1253–1255.PubMedGoogle Scholar
  33. 33.
    Hosie M. J., Willett B. J., Klein D., Dunsford T. H., Cannon C., Shimojima M., Neil J. C., and Jarrett O. Evolution of replication efficiency following infection with a molecularly cloned feline immunodeficiency virus of low virulence. J. Virol. 2002;76:6062–6072.PubMedCrossRefGoogle Scholar
  34. 34.
    Huisman W., Karlas J. A., Siebelink K. H., Huisman R. C., de Ronde A., Francis M. J., Rimmelzwaan G. F., and Osterhaus A. D. Feline immunodeficiency virus subunit vaccines that induce virus neutralising antibodies but no protection against challenge infection. Vaccine 1998;16:181–187.PubMedCrossRefGoogle Scholar
  35. 35.
    Huisman W., Schrauwen E. J., Pas S. D., Karlas J. A., Rimmelzwaan G. F., and Osterhaus A. D. Antibodies specific for hypervariable regions 3 to 5 of the feline immunodeficiency virus envelope glycoprotein are not solely responsible for vaccine-induced acceleration of challenge infection in cats. J. Gen. Virol. 2004;85:1833–1841.PubMedCrossRefGoogle Scholar
  36. 36.
    Inoshima Y., Miyazawa T., Kohmoto M., Ikeda Y., Sato E., Hohdatsu T., Mathiason-Dubard C., Hoover E. A., and Mikami T. Cross virus neutralizing antibodies against feline immunodeficiency virus genotypes A, B, C, D and E. Arch. Virol. 1998;143:157–162.PubMedCrossRefGoogle Scholar
  37. 37.
    Jordan H. L., Howard J., Barr M. C., Kennedy-Stoskopf S., Levy J. K., and Tompkins W. A. Feline immunodeficiency virus is shed in semen from experimentally and naturally infected cats. AIDS Res. Hum. Retroviruses 1998;14:1087–1092.PubMedGoogle Scholar
  38. 38.
    Karlas J. A., Siebelink K. H., Peer M. A., Huisman W., Cuisinier A. M., Rimmelzwaan G. F., and Osterhaus A. D. Vaccination with experimental feline immunodeficiency virus vaccines, based on autologous infected cells, elicits enhancement of homologous challenge infection. J Gen. Virol. 1999;80:761–765.PubMedGoogle Scholar
  39. 39.
    Lee D., Graham B. S., Chiu Y. L., Gilbert P. B., McElrath M. J., Belshe R. B., Buchbinder S. P., Sheppard H. W., Koblin B. A., Mayer K. H., Keefer M. C., Mulligan M. J., and Celum C. L. Breakthrough infections during phase 1 and 2 prime-boost HIV-1 vaccine trials with canarypox vectors (ALVAC) and booster dose of recombinant gp120 or gp160. J. Infect. Dis. 2004;190:903–907.PubMedCrossRefGoogle Scholar
  40. 40.
    Lerner D. L., Wagaman P. C., Phillips T. R., Prospero-Garcia O., Henriksen S. J., Fox H. S., Bloom F. E., and Elder J. H. Increased mutation frequency of feline immunodeficiency virus lacking functional deoxyuridine-triphosphatase. Proc. Natl. Acad. Sci. USA. 1995;92:7480–7484.PubMedCrossRefGoogle Scholar
  41. 41.
    Leutenegger C. M., Boretti F. S., Mislin C. N., Flynn J. N., Schroff M., Habel A., Junghans C., Koenig-Merediz S. A., Sigrist B., Aubert A., Pedersen N. C., Wittig B., and Lutz H. Immunization of cats against feline immunodeficiency virus (FIV) infection by using minimalistic immunogenic defined gene expression vector vaccines expressing FIV gp140 alone or with feline interleukin-12 (IL-12), IL-16, or a CpG Motif. J. Virol. 2000;74:10447–10457.PubMedCrossRefGoogle Scholar
  42. 42.
    Leutenegger C. M., Hofmann-Lehmann R., Holznagel E., Cuisinier A. M., Wolfensberger C., Duquesne V., Cronier J., Allenspach K., Aubert A., Ossent P., and Lutz H. Partial protection by vaccination with recombinant feline immunodeficiency virus surface glycoproteins. AIDS Res. Hum. Retroviruses 1998;14:275–283.PubMedGoogle Scholar
  43. 43.
    Lockridge K. M., Chien M., Dean G. A., Stefano C. K., Montelaro R. C., Luciw P. A., and Sparger E. E. Protective immunity against feline immunodeficiency virus induced by inoculation with vif-deleted proviral DNA. Virology 2000;273:67–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Lombardi S., Garzelli C., Pistello M., Massi C., Matteucci D., Baldinotti F., Cammarota G., Da Prato L., Bandecchi P., and Tozzini F. A neutralizing antibody-inducing peptide of the V3 domain of feline immunodeficiency virus envelope glycoprotein does not induce protective immunity. J. Virol. 1994;68:8374–8379.PubMedGoogle Scholar
  45. 45.
    Malkevitch N. V., and Robert-Guroff M. A call for replicating vector prime-protein boost strategies in HIV vaccine design. Expert. Rev. Vaccines 2004;3:S105–S117.PubMedCrossRefGoogle Scholar
  46. 46.
    Matteucci D., Baldinotti F., Mazzetti P., Pistello M., Bandecchi P., Ghilarducci R., Poli A., Tozzini F., and Bendinelli M. Detection of feline immunodeficiency virus in saliva and plasma by cultivation and polymerase chain reaction. J. Clin. Microbiol. 1993;31:494–501.PubMedGoogle Scholar
  47. 47.
    Matteucci D., Pistello M., Mazzetti P., Giannecchini S., Del Mauro D., Lonetti I., Zaccaro L., Pollera C., Specter S., and Bendinelli M. Studies of AIDS vaccination using an ex vivo feline immunodeficiency virus model: protection conferred by a fixed-cell vaccine against cell-free and cell-associated challenge differs in duration and is not easily boosted. J. Virol. 1997;71:8368–8376.PubMedGoogle Scholar
  48. 48.
    Matteucci D., Pistello M., Mazzetti P., Giannecchini S., Isola P., Merico A., Zaccaro L., Rizzuti A., and Bendinelli M. AIDS vaccination studies using feline immunodeficiency virus as a model: immunization with inactivated whole virus suppresses viraemia levels following intravaginal challenge with infected cells but not following intravenous challenge with cell-free virus. Vaccine 1999;18:119–130.PubMedCrossRefGoogle Scholar
  49. 49.
    Matteucci D., Poli A., Mazzetti P., Sozzi S., Bonci F., Isola P., Zaccaro L., Giannecchini S., Calandrella M., Pistello M., Specter S., and Bendinelli M. Immunogenicity of an anti-clade B feline immunodeficiency fixed-cell virus vaccine in field cats. J. Virol. 2000;74:10911–10919.PubMedCrossRefGoogle Scholar
  50. 50.
    Mazzetti P., Giannecchini S., Del Mauro D., Matteucci D., Portincasa P., Merico A., Chezzi C., and Bendinelli M. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: detailed analysis of the humoral immune response to a protective vaccine. J. Virol. 1999;73:1–10.PubMedGoogle Scholar
  51. 51.
    Moench T. R., Whaley K. J., Mandrell T. D., Bishop B. D., Witt C. J., and Cone R. A. The cat/feline immunodeficiency virus model for transmucosal transmission of AIDS: nonoxynol-9 contraceptive jelly blocks transmission by an infected cell inoculum. AIDS 1993;7:797–802.PubMedCrossRefGoogle Scholar
  52. 52.
    Osborne R., Rigby M., Siebelink K., Neil J. C., and Jarrett O. Virus neutralization reveals antigenic variation among feline immunodeficiency virus isolates. J. Gen. Virol. 1994;75 (Pt 12):3641–3645.PubMedGoogle Scholar
  53. 53.
    Pancino G., and Sonigo P. Retention of viral infectivity after extensive mutation of the highly conserved immunodominant domain of the feline immunodeficiency virus envelope. J. Virol. 1997;71:4339–4346.PubMedGoogle Scholar
  54. 54.
    Pedersen N. C., Ho E. W., Brown M. L., and Yamamoto J. K. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 1987;235:790–793.PubMedCrossRefGoogle Scholar
  55. 55.
    Pistello M., Cammarota G., Nicoletti E., Matteucci D., Curcio M., del Mauro D., and Bendinelli M. Analysis of the genetic diversity and phylogenetic relationship of Italian isolates of feline immunodeficiency virus indicates a high prevalence and heterogeneity of subtype B. J. Gen. Virol. 1997;78 (Pt 9):2247–2257.PubMedGoogle Scholar
  56. 56.
    Pistello M., Matteucci D., Bonci F., Isola P., Mazzetti P., Zaccaro L., Merico A., del Mauro D., Flynn N., and Bendinelli M. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: protection from an intraclade challenge administered systemically or mucosally by an attenuated vaccine. J. Virol. 2003;77:10740–10750.PubMedCrossRefGoogle Scholar
  57. 57.
    Pistello M., Matteucci D., Cammarota G., Mazzetti P., Giannecchini S., del Mauro D., Macchi S., Zaccaro L., and Bendinelli M. Kinetics of replication of a partially attenuated virus and of the challenge virus during a three-year intersubtype feline immunodeficiency virus superinfection experiment in cats. J. Virol. 1999;73:1518–1527.PubMedGoogle Scholar
  58. 58.
    Pu R., Coleman J., Coisman J., Sato E., Tanabe T., Arai M., and Yamamoto J. K. Dualsubtype FIV (Fel-O-Vax FIV) protection against heterologous subtype B FIV isolate. J. Feline Med. Surg. 7:65–70.Google Scholar
  59. 59.
    Pu R., Coleman J., Omori M., Arai M., Hohdatsu T., Huang C., Tanabe T., and Yamamoto J. K. Dual-subtype FIV vaccine protects cats against in vivo swarms of both homologous and heterologous subtype FIV isolates. AIDS 2001;15:1225–1237.PubMedCrossRefGoogle Scholar
  60. 60.
    Pu R., Coleman J., and Yamamoto J. K. Dual-subtype FIV vaccine protection against virulent heterologous subtype B virus. Seventh International Feline Retrovirus Research Symposium, Pisa, Italy. 2004.Google Scholar
  61. 61.
    Pu R., Omori M., Okada S., Rine S. L., Lewis B. A., Lipton E., and Yamamoto J. K. MHC-restricted protection of cats against FIV infection by adoptive transfer of immune cells from FIV-vaccinated donors. Cell Immunol. 1999;198:30–43.PubMedCrossRefGoogle Scholar
  62. 62.
    Reggeti F., and Bienzle D. Feline immunodeficiency virus subtypes A, B and C and intersubtype recombinants in Ontario, Canada. J. Gen. Virol. 2004;85:1843–1852.PubMedCrossRefGoogle Scholar
  63. 63.
    Richardson J., Broche S., Baud S., Leste-Lasserre T., Femenia F., Levy D., Moraillon A., Pancino G., and Sonigo P. Lymphoid activation: a confounding factor in AIDS vaccine development? J. Gen. Virol. 2002;83:2515–2521.PubMedGoogle Scholar
  64. 64.
    Richardson J., Moraillon A., Baud S., Cuisinier A. M., Sonigo P., and Pancino G. Enhancement of feline immunodeficiency virus (FIV) infection after DNA vaccination with the FIV envelope. J. Virol. 1997;71:9640–9649.PubMedGoogle Scholar
  65. 65.
    Sheehy A. M., Gaddis N. C., and Malim M. H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 2003;9:1404–1407.PubMedCrossRefGoogle Scholar
  66. 66.
    Shimojima M., Miyazawa T., Ikeda Y., McMonagle E. L., Haining H., Akashi H., Takeuchi Y., Hosie M. J., and Willett B. J. Use of CD134 as a primary receptor by the feline immunodeficiency virus. Science 2004;303:1192–1195.PubMedCrossRefGoogle Scholar
  67. 67.
    Siebelink K. H., Tijhaar E., Huisman R. C., Huisman W., de Ronde A., Darby I. H., Francis M. J., Rimmelzwaan G. F., and Osterhaus A. D. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines. J. Virol. 1995;69:3704–3711.PubMedGoogle Scholar
  68. 68.
    Sodora D. L., Gettie A., Miller C. J., and Marx P. A. Vaginal transmission of SIV: assessing infectivity and hormonal influences in macaques inoculated with cell-free and cell-associated viral stocks. AIDS Res. Hum. Retroviruses 1998;14(Suppl 1):S119–S123.PubMedGoogle Scholar
  69. 69.
    Steinrigl A., and Klein D. Phylogenetic analysis of feline immunodeficiency virus in Central Europe: a prerequisite for vaccination and molecular diagnostics. J. Gen. Virol. 2003;84:1301–1307.PubMedCrossRefGoogle Scholar
  70. 70.
    Stevens R., Howard K. E., Nordone S., Burkhard M., and Dean G. A. Oral immunization with recombinant Listeria monocytogenes controls virus load after vaginal challenge with feline immunodeficiency virus. J. Virol. 2004;78:8210–8218.PubMedCrossRefGoogle Scholar
  71. 71.
    Tellier M. C., Pu R., Pollock D., Vitsky A., Tartaglia J., Paoletti E., and Yamamoto J. K. Efficacy evaluation of prime-boost protocol: canarypoxvirus-based feline immunodeficiency virus (FIV) vaccine and inactivated FIV-infected cell vaccine against heterologous FIV challenge in cats. AIDS 1998;12:11–18.PubMedCrossRefGoogle Scholar
  72. 72.
    Tijhaar E. J., Huisman W., Huisman R. C., Siebelink K. H., Karlas J. A., de Ronde A., van Herwijnen R., Mooi F. R., and Osterhaus A. D. Salmonella typhimurium aroA recombinants and immune-stimulating complexes as vaccine candidates for feline immunodeficiency virus. J. Gen. Virol. 1997;78 (Pt 12):3265–3275.PubMedGoogle Scholar
  73. 73.
    Tijhaar E. J., Siebelink K. H., Karlas J. A., Burger M. C., Mooi F. R., and Osterhaus A. D. Induction of feline immunodeficiency virus specific antibodies in cats with an attenuated Salmonella strain expressing the Gag protein. Vaccine 1997;15:587–596.PubMedCrossRefGoogle Scholar
  74. 74.
    Veazey R., and Lackner A. The mucosal immune system and HIV-1 infection. AIDS Rev. 2003;5:245–252.PubMedGoogle Scholar
  75. 75.
    Verschoor E. J., van Vliet A. L., Egberink H. F., Hesselink W., van Alphen W. E., Joosten I., Boog C. J., Horzinek M. C., and de Ronde A. Vaccination against feline immunodeficiency virus using fixed infected cells. Vet. Immunol. Immunopathol. 1995;46:139–149.PubMedCrossRefGoogle Scholar
  76. 76.
    Whitney J. B., and Ruprecht R. M. Live attenuated HIV vaccines: pitfalls and prospects. Curr. Opin. Infect. Dis. 2004;17:17–26.PubMedCrossRefGoogle Scholar
  77. 77.
    Willett B. J., Hosie M. J., Callanan J. J., Neil J. C., and Jarrett O. Infection with feline immunodeficiency virus is followed by the rapid expansion of a CD8+ lymphocyte subset. Immunology 1993;78:1–6.PubMedGoogle Scholar
  78. 78.
    Willett B. J., Hosie M. J., Neil J. C., Turner J. D., and Hoxie J. A. Common mechanism of infection by lentiviruses [letter]. Nature 1997;385:587.PubMedCrossRefGoogle Scholar
  79. 79.
    Willett B. J., Picard L., Hosie M. J., Turner J. D., Adema K., and Clapham P. R. Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. J. Virol. 1997;71:6407–6415.PubMedGoogle Scholar
  80. 80.
    Willey R. L., Byrum R., Piatak M., Kim Y. B., Cho M. W., Rossio J. J., Jr., Bess J. J., Jr., Igarashi T., Endo Y., Arthur L. O., Lifson J. D., and Martin M. A. Control of viremia and prevention of simian-human immunodeficiency virus-induced disease in rhesus macaques immunized with recombinant vaccinia viruses plus inactivated simian immunodeficiency virus and human immunodeficiency virus type 1 particles. J. Virol. 2003;77:1163–1174.PubMedCrossRefGoogle Scholar
  81. 81.
    Yamamoto J. K., Hohdatsu T., Olmsted R. A., Pu R., Louie H., Zochlinski H. A., Acevedo V., Johnson H. M., Soulds G. A., and Gardner M. B. Experimental vaccine protection against homologous and heterologous strains of feline immunodeficiency virus. J. Virol. 1993;67:601–605.PubMedGoogle Scholar
  82. 82.
    Yamamoto J. K., Okuda T., Ackley C. D., Louie H., Pembroke E., Zochlinski H., Munn R. J., and Gardner M. B. Experimental vaccine protection against feline immunodeficiency virus. AIDS Res. Hum. Retroviruses 1991;7:911–922.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Stephen Dunham
    • 1
  • Oswald Jarrett
    • 1
  1. 1.Retrovirus Research Laboratory, Institute of Comparative MedicineUniversity of Glasgow, Faculty of Veterinary MedicineGlasgowUK

Personalised recommendations