Advertisement

New Paradigm in Graph-Based Visual Secret Sharing Scheme by Accepting Reversal in Black-White Images

  • Yuji Suga
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 181)

Abstract

The visual secret sharing scheme (for short the VSS scheme) with access structure based on graph has been proposed as one of the (2,n)-threshold visual secret sharing schemes. Ateniese et al.1 showed a decomposition method into star graphs from a given graph which edges are specified by qualified sets, that is, two different participants (two vertices in the graph) have a common edge if and only if they can decrypt the secret image by stacking each share images. In this paper, we expand the definition of black-white visual secret sharing scheme and propose new decomposition methods by splitting complete n-partite graphs. These methods improve contrast of the decoded secret image. Moreover, we obtain several optimal examples and evaluate on graph-based VSS schemes.

Key words

visual secret sharing scheme n-partite graph complete n-partite graph 

References

  1. 1.
    G. Ateniese, C. Blundo, A.D. Santis, D.R. Stinson, Visual Cryptography for General Access Structures, Information and Computation 129, 86–106, 1996.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    C. Blundo, A.D. Santis, D.R. Stinson, U. Vaccaro, Graph decompositions and secret sharing schemes, EUROCRYPT’92, pp.1–24, 1992.Google Scholar
  3. 3.
    E. Bannai and T. Ito, Algebraic Combinatorics I:Association schemes, Benjamin / Cummings, Menlo Park, California, 1984.MATHGoogle Scholar
  4. 4.
    C. Blundo, A.D. Santis, D.R. Stinson, On the Contrast in Visual Cryptography Schemes, Journal of Cryptology 12, 261–289, 1999.MATHCrossRefGoogle Scholar
  5. 5.
    J. Clark, D.A. Holton, A First Look at Graph Theory, World Scientific Publishing, 1991.Google Scholar
  6. 6.
    New results on visual cryptography, CRYPTO’96, pp.401–415, 1996Google Scholar
  7. 7.
    M. Iwamoto, H. Ymamamoto, A visual secret sharing scheme for plural images (in Japanese), SITA2001, pp.565–568, 2001.Google Scholar
  8. 8.
    T. Kato, H. Imai, An extended construction method of visual secret sharing scheme (in Japanese), IEICE Trans., vol. J79-A, no.8, pp.1344–1351, 1996.Google Scholar
  9. 9.
    H. Koga, H. Yamamoto, Proposal of a Lattice-Based VSSS for Color and Gray-scale Images, IEICE Trans. on Fundmentals, vol. E81-A, no.6, pp.1262–1269, 1998.Google Scholar
  10. 10.
    H. Kuwakado, H. Tanaka, Polynomial representation of visual secret sharing scheme for black-white images, 2001 Symposium on Cryptography and Information Security, pp.417–422, 2001.Google Scholar
  11. 11.
    M. Naor, A. Shamir, Visual Cryptography, EUROCRYPT’94, pp.1–12, 1994.Google Scholar
  12. 12.
    M. Naor, A. Shamir, Visual Cryptography 2, Lecture Notes in Computer Science 1189, pp. 179–202, 1997.Google Scholar
  13. 13.
    A. Shamir, “How to Share a Secret”, Commun.of ACM, Vol.22, No. 11, pp.612–613, 1979.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Y. Suga, K. Iwamura, K. Sakurai, H. Imai, Extended Graph-type Visual Secret Sharing Schemes with Embedded Plural Secret Images (in Japanese), IPSJ JOURNAL Vol.42 No.08, pp.2106–2113, 2001.MathSciNetGoogle Scholar
  15. 15.
    E.R. Verheul, H.C.A. van Tilborg, Constructions and properties of k out of n visual secret sharing scheme, Designs, Codes, and Cryptography, vol.1, no.2, pp.179–196, 1997.CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2005

Authors and Affiliations

  • Yuji Suga
    • 1
  1. 1.PF Technology Development CenterCanon Inc.TokyoJapan

Personalised recommendations