Advertisement

A New Fragile Mesh Watermarking Algorithm for Authentication

  • Hao-Tian Wu
  • Yiu-Ming Cheung
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 181)

Abstract

In this paper, we propose a new fragile watermarking algorithm based on the global characteristics of the mesh geometry to authenticate 3D mesh models. In our method, a sequence of data bits is adaptively embedded into the mesh model by properly adjusting the vertex positions, and the bit information can be blindly extracted from the watermarked mesh model using a key. The embedding process is adaptive to the mesh model so that the watermarked mesh is perceptually indistinguishable from the original. We show that the embedded watermark is invariant to affine transformation but sensitive to other operations. Besides, the embedding strength is adjustable and can be controlled to a certain extent that even a trivial tampering with the watermarked mesh would lead the watermark signal to change. Therefore, unauthorized modifications of the mesh models can be detected and estimated.

Key words

3D models fragile watermarking mesh authentication dither modulation 

Reference

  1. 1.
    B. Chen and G. W. Wornell, Quantization index modulation: A class of provably good methods for digital watermarking and information embedding, IEEE Trans. Inform. Theory, 47, 1423–1443 (2001).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    B. Chen and G. W. Wornell, Digital watermarking and information embedding using dither modulation, IEEE Second Workshop on Multimedia Signal Processing, 273–278 (1998).Google Scholar
  3. 3.
    Z. Q. Yu, H. H. S. Ip and L. F. Kwork, A robust watermarking scheme for 3D triangle mesh models, Pattern Recognition, 36(12), 2603–2614 (2003).CrossRefGoogle Scholar
  4. 4.
    M. M. Yeung and B. L. Yeo, Fragile watermarking of three dimensional objects, Proc. 1998 Int’l Conf. Image Processing, ICIP98, 2, 442–446 (IEEE Computer Society, 1998).CrossRefGoogle Scholar
  5. 5.
    B. L. Yeo and M. M. Yeung, Watermarking 3D objects for verification, IEEE Comput. Graph. Applicat, 36–45 (1999).Google Scholar
  6. 6.
    F. Cayre and B. Macq, Data hiding on 3D triangle meshes, IEEE Trans. Signal. Processing, 51(4), 939–949 (2003).CrossRefMathSciNetGoogle Scholar
  7. 7.
    HsuehYi Lin, Hongyuan Mark Liao, ChunShien Lu and JaChen Lin, Fragile Watermarking for Authenticating 3D Polygonal Meshes, Proc. 16th IPPR Conf on CVGIP, 298–304 (2003).Google Scholar
  8. 8.
    C. Fornaro and A. Sanna, Public Key Watermarking for Authentication of CSG Models, Computer-Aided Design, 32, 727–735 (2000).CrossRefGoogle Scholar
  9. 9.
    O. Benedens, Watermarking of 3D polygon based models with robustness against mesh simplification, Proc. SPIE: Security Watermarking Multimedia Contents, 329–340 (1999).Google Scholar
  10. 10.
    O. Benedens, Geometry based watermarking of 3D models, IEEE Comput. Graph., Special Issue on Image Security, 46–55, Jan./Feb. 1999.Google Scholar
  11. 11.
    O. Benedens, Two high capacity methods for embedding public watermarks into 3D polygonal models, Proc. Multimedia Security Workshop A CM Multimedia, 95–99 (1999).Google Scholar
  12. 12.
    O. Benedens and C. Busch, Toward blind detection of robust watermarks in polygonal models, Proc. EUROGRAPHICS Comput. Graph. Forum, 19(C), 199–208 (2000).CrossRefGoogle Scholar
  13. 13.
    M. G. Wagner, Robust watermarking of polygonal meshes, Proc. Geometric Modeling Processing, Hong Kong, 201–208 (2001).Google Scholar
  14. 14.
    R. Ohbuchi, H. Masuda and M. Aono, Watermarking Three Dimensional Polygonal Models, Proc. ACM Multimedia, Seattle, 261–272 (1997).Google Scholar
  15. 15.
    R. Ohbuchi, H. Masuda and M. Aono, Watermarking Three Dimensional Polygonal Models Through Geometric and Topological Modifications, IEEE J. Select. Areas Commun., 16, 551–560 (1998).CrossRefGoogle Scholar
  16. 16.
    R. Ohbuchi, H. Masuda and M. Aono, Geometrical and Non-geometrical Targets for Data Embedding in Three Dimensional Polygonal Models, Computer Communications, Elsevier, 21, 1344–1354 (1998).CrossRefGoogle Scholar
  17. 17.
    R. Ohbuchi, H. Masuda and M. Aono, A shape preserving data embedding algorithm for NURBS curves and surfaces, Proc. Comput. Graph. Int., June, 1999.Google Scholar
  18. 18.
    R. Ohbuchi, S. Takahashi, T. Miyasawa and A. Mukaiyama, Watermarking 3D polygonal meshes in the mesh spectral domain, Proc.Graphics Interface, Ottawa, 9–17 (2001).Google Scholar
  19. 19.
    H. Date, S. Kanai and T. Kishinami, Digital watermarking for 3D polygonal model based on wavelet transform, Proc. ASME Des. Eng. Techn. Conf., Sept 1999.Google Scholar
  20. 20.
    S. Kanai, H. Date and T. Kishinami, Digital watermarking for 3D polygons using multi-resolution wavelet decomposition, Proc. Sixth Int. Workshop Geometric Modeling: Fundamentals Applicat., Sept 1998.Google Scholar
  21. 21.
    E. Praun, H. Hoppe and A. Finkelstein, Robust mesh watermarking, Proc. SIGGRAPH, 69–76 (1999).Google Scholar
  22. 22.
    Kangkang Yin, Zhigeng Pan, Jiaoying Shi and David Zhang, Robust mesh watermarking based on multi-resolution processing, Computers & Graphics, 25, 409–420 (2001).CrossRefGoogle Scholar
  23. 23.
    F. Cayre, P. RondaoAlface, F. Schmitt, B. Macq and H. Maitre, Application of Spectral Decomposition to Compression and Watermarking of 3D Triangle Mesh Geometry, Signal Processing: Image Communications, 18(4), 309–319 (2003).CrossRefGoogle Scholar
  24. 24.
    Liangjun Zhang, Ruofeng Tong, Feiqi Su and Jinxiang Dong, A Mesh Watermarking Approach for Appearance Attributes, Pacific Conference on Computer Graphics and Applications, Beijing, 450–451 (2002).Google Scholar
  25. 25.
    H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle, Mesh optimization, Computer Graphics (SIGGRAPH’ 93 Proceedings), 19–26 (1993).Google Scholar
  26. 26.
    Z. Kami and C. Gotsman, Spectral compression of mesh geometry, Proc. SIGGRAPH, 279–286 (2000).Google Scholar
  27. 27.
    I. Guskov, W. Sweldens and P. Schroeder, Multi-resolution signal processing for meshes, Proc. SIGGRAPH, 325–334 (1999).Google Scholar
  28. 28.
    P. J. Burt and E. H. Adelson, Laplacian pyramid as a compact image code, IEEE Transactions on Communications, 532–540 (1983).Google Scholar

Copyright information

© International Federation for Information Processing 2005

Authors and Affiliations

  • Hao-Tian Wu
    • 1
  • Yiu-Ming Cheung
    • 1
  1. 1.Department of Computer ScienceHong Kong Baptist UniversityHong KongChina

Personalised recommendations