Advertisement

A Homogenous Microarray for Enzymatic Functional Assays

Chemical Compounds Microarray
  • Haiching Ma
  • Yuan Wang
  • Amy S. Pomaybo
  • Connie Tsai

Abstract

Microarrays as an emerging research tool promises to play a pivotal role in the post genomic era. However, in spite of the fast development of this technology special requirements, such as the immobilization and delivery of bio-reagents on the chip surface limit the utilization of microarrays, especially for small chemical compound libraries. We have developed a unique homogenous microarray system that overcomes these limitations and can be used to array most biofunctional molecules, such as small chemical compounds, peptides and proteins without pre-immobilization. A standard microscope slide containing up to 5000 microarray dots, with volumes less than 2 nanoliter each and acting as individual reaction centers, can be printed with standard DNA arrayer. An aerosol deposition technology was adapted to deliver extremely small volumes of biofluids uniformly into each reaction center. The fluorescence based reaction signals were then scanned and analyzed with standard DNA scanner and DNA array analyzing software. With this platform, we demonstrated that this chip format could be used for not only screening individual but also multiple enzymatic activities simultaneously with different fluorescent tagged small peptide libraries. We further demonstrated that this system could be a very powerful ultra high throughput screening tool for drug discovery, with which we identified potential “hits” after screening chips printed with small chemical compounds against caspases 1 and 3. This highly sensible chip is also able to monitor caspase protein expression profiles by activating the peptide chips with cell lysates undergoing apoptosis.

Key words

Small chemical compounds microarray peptide array enzymatic assay aerosol deposition ultra high-throughput screening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S, Houfek, T, et al. (2000). Analysis of yeast protein kinases using protein chips. Nature Genetics 26, 283–289.CrossRefGoogle Scholar
  2. 2.
    Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M.A. and Snyder, M. (2001). Global analysis of protein activities using proteome chips. Science 293, 2101–2105.CrossRefGoogle Scholar
  3. 3.
    Houseman, B.T., Huh, J.H., Kron, S.J. and Mrksich, M. (2002). Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol. 20, 270–274.CrossRefGoogle Scholar
  4. 4.
    MacBeath, G. and Schreiber, S.L. (2000). Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.Google Scholar
  5. 5.
    Kuruvilla, F.G., Shamji, A.F., Sternson, S.M., Hergenrother, P.J. and Schreiber, S.L. (2002). Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653–657.CrossRefGoogle Scholar
  6. 6.
    De Wildt, R.M.T., Mundy, C. R., Gorick, B.D. and Tomlinson, I.M. (2000). Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. 18, 989–994.CrossRefGoogle Scholar
  7. 7.
    Nicholson, D.W. and Thornberry, N.A. (1997). Caspases: killer proteases. Trends Biochem. Sci. 22, 299–306.CrossRefGoogle Scholar
  8. 8.
    Lee, D., Long, S.A., Adams, J.L., Chan, G., Vaidya, K.S., Francis, T.A., Kikly, K., Winkler, J.D, Sung, C.M, Debouck, C. et al. (2000). Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. J. Biol. Chem. 275, 16007–16014.CrossRefGoogle Scholar
  9. 9.
    Webber, S.E., Tikhe, J., Worland, S.T., Fuhrman, S.A., Hendrickson, T.F., Matthews, D.A., Love, R.A., Patick, A.K., Meador, J.W., Ferre, R.A. et al. (1996). Design, synthesis, and evaluation of nonpeptidic inhibitors of human rhinovirus 3C protease. J. Med. Chem. 39, 5072–5082.CrossRefGoogle Scholar
  10. 10.
    Knezevic, V., Leethanakul, C., Bichsel, V.E., Worth, J.M., Prabhu, V.V., Gutkind, J.S., Liotta, L.A., Munson, P.J., Petricoin, E.F. 3rd, Krizman, D.B. et al. (2001). Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 10, 1271–1278.CrossRefGoogle Scholar
  11. 11.
    Thornberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Timkey, T., Garcia-Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P. et al. (1997). A combinatorial approach defines specificities of members of the caspase family and Granzyme B. J. Biol. Chem. 272, 17907–17911.CrossRefGoogle Scholar
  12. 12.
    Amstad, P.A., Yu, G., Johnson, G.L., Lee, B.W., Dhawan, S. and Phelps, D.J. (2001). Detection of caspase activation in situ by fluorochrome-labeled caspase inhibitors. Biotechniques 3, 608–610.Google Scholar
  13. 13.
    Talanian, R.V., Quinlan, C., Trautz, S., Hackett, M.C., Mankovich, J.A., Banach, D., Ghayur, T., Brady, K.D., Wong, W.W. et al. (1997). Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677–9682.CrossRefGoogle Scholar
  14. 14.
    Garcia-Calvo, M., Peterson, E.P., Leiting, B., Ruel, R., Nicholson, D.W. and Thornberry, N.A. (1998). Inhibition of human caspases by peptide-based and macromolecule inhibitors. J. Biol. Chem. 273, 32608–32613.CrossRefGoogle Scholar
  15. 15.
    Mitchell, P. (2002). A prospective on protein microarrays. Nature Biotech. 20, 225–229.CrossRefGoogle Scholar
  16. 16.
    Morita, T., Kato, H., Iwanaga, S., Takada, K. and Kimura, T. (1977). New fluorogenic substrates for α-thrombin, factor Xa, kallikreins, and urokinase. J. Biochem. 82, 1495–1498.Google Scholar
  17. 17.
    Backes, B.J., Harris, J.L., Leonetti, F., Craik, C.S. and Ellman, J.A. (2000). Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat. Biotechnol. 18, 187–193.CrossRefGoogle Scholar
  18. 18.
    Butenas, S., Drungilaite, V. and Mann, K.G. (1995). Fluorogenic substrates for activated protein C: substrate structure-efficiency correlation. Anal. Biochem. 225, 231–241.CrossRefGoogle Scholar
  19. 19.
    Butenas, S., Ribarik, N. and Mann, K.G. (1993). Synthetic substrates for human factor VIIa and factor VIIa-tissue factor. Biochem. 32, 6531–6538.CrossRefGoogle Scholar
  20. 20.
    Harris, J.L., Backes, B.J., Leonetti, F., Mahrus, S., Ellman, J.A, Craik. C.S. (2000). Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. U S A. 97, 7754–7759.CrossRefGoogle Scholar
  21. 21.
    Toth, M.V. and Marshall, G.R. (1990). A simple, continuous fluorometric assay for HIV protease. Intl. J. Pept. Protein Res. 36, 544–50.CrossRefGoogle Scholar
  22. 22.
    Nishikata, M., Suzuki, K., Yoshimura, Y., Deyama, Y. and Matsumoto, A. (1999). A phosphotyrosine-containing quenched fluorogenic peptide as a novel substrate for protein tyrosine phosphatases. Biochem. J. 343, 385–391.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Haiching Ma
    • 1
  • Yuan Wang
    • 1
  • Amy S. Pomaybo
    • 1
  • Connie Tsai
    • 1
  1. 1.Reaction Biology CorporationMalvernUSA

Personalised recommendations