Skip to main content

Mitochondrial Bioenergetics in the Heart

  • Chapter
  • 908 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 256))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker JE (1992) The NADH: ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25:253–324

    PubMed  CAS  Google Scholar 

  2. Brandt U (1997) Proton-translocation by membrane-bound ligand NADH: ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. Biochim Biophys Acta 1318:79–91

    Article  PubMed  CAS  Google Scholar 

  3. Albracht SP, Mariette A, de Jong P (1997) Bovine-heart NADA: ubiquinone oxidoreductase is a monomer with 8 Fe-S clusters and 2 FMN groups. Biochim Biophys Acta 1997 1318:92–106

    Article  PubMed  CAS  Google Scholar 

  4. Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: An overview. Biochim Biophys Acta 1364:222–35

    Article  PubMed  CAS  Google Scholar 

  5. Cochran B, Capaldi RA, Ackrell BA (1994) The cDNA sequence of beef heart CII-3, a membrane-intrinsic subunit of succinate-ubiquinone oxidoreductase. Biochim Biophys Acta 1188:162–6

    Article  PubMed  CAS  Google Scholar 

  6. Morris AA, Farnsworth L, Ackrell BA, Turnbull DM, Birch-Machin MA (1994) The cDNA sequence of the flavoprotein subunit of human heart succinate dehydrogenase. Biochim Biophys Acta 1185:125–8

    Article  PubMed  CAS  Google Scholar 

  7. Au HC, Ream-Robinson D, Bellew LA, Broomfield PL, Saghbini M, Scheffler IE (1995) Structural organization of the gene encoding the human iron-sulfur subunit of succinate dehydrogenase. Gene 159:249–53

    Article  PubMed  CAS  Google Scholar 

  8. Melefors O (1996) Translational regulation in vivo of the Drosophila melanogaster mRNA encoding succinate dehydrogenase iron protein via iron responsive elements. Biochem Biophys Res Commun 221:437–41

    Article  PubMed  CAS  Google Scholar 

  9. Gonzalez-Halphen D, Lindorfer MA, Capaldi RA (1988) Subunit arrangement in beef heart complex III. Biochemistry 27:7021–31

    Article  PubMed  CAS  Google Scholar 

  10. Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–6

    Article  PubMed  CAS  Google Scholar 

  11. Brandt U, Trumpower B (1994) The protonmotive Q cycle in mitochondria and bacteria. Crit Rev Biochem Mol Biol 29:165–97

    PubMed  CAS  Google Scholar 

  12. Link TA, Haase U, Brandt U, von Jagow G (1993) What information do inhibitors provide about the structure of the hydroquinone oxidation site of ubihydroquinone: cytochrome c oxidoreductase? J Bioenerg Biomembr 25:221–32

    Article  PubMed  CAS  Google Scholar 

  13. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–44

    PubMed  CAS  Google Scholar 

  14. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–9

    Article  PubMed  CAS  Google Scholar 

  15. Huttemann M, Kadenbach B, Grossman LI (2001) Mammalian subunit IV isoforms of cytochrome c oxidase. Gene 267:111–23

    Article  PubMed  CAS  Google Scholar 

  16. Huttemann M, Jaradat S, Grossman LI (2003) Cytochrome c oxidase of mammals contains a testes-specific isoform of subunit VIb-the counterpart to testes-specific cytochrome c. Mol Reprod Dev 66:8–16

    Article  PubMed  CAS  Google Scholar 

  17. Anthony G, Reimann A, Kadenbach B (1993) Tissue-specific regulation of bovine heart cytochrome-c oxidase activity by ADP via interaction with subunit VIa. Proc Natl Acad Sci USA 90:1652–6

    PubMed  CAS  Google Scholar 

  18. Bachman NJ, Riggs PK, Siddiqui N, Makris GJ, Womack JE, Lomax MI (1997) Structure of the human gene (COX6A2) for the heart/muscle isoform of cytochrome c oxidase subunit VIa and its chromosomal location in humans, mice, and cattle. Genomics 42:146–51

    Article  PubMed  CAS  Google Scholar 

  19. Wolz W, Kress W, Mueller CR (1997) Genomic sequence and organization of the human gene for cytochrome c oxidase subunit (COX7A1) VIIa-M. Genomics 45:438–42

    Article  PubMed  CAS  Google Scholar 

  20. Yu M, Jaradat SA, Grossman LI (2002) Genomic organization and promoter regulation of human cytochrome c oxidase subunit VII heart/muscle isoform (COX7AH). Biochim Biophys Acta 1574:345–53

    PubMed  CAS  Google Scholar 

  21. Schagger H, Noack H, Halangk W, Brandt U, von Jagow G (1995) Cytochrome c oxidase in developing rat heart: Enzymic properties and amino-terminal sequences suggest identity of the fetal heart and the adult liver isoform. Eur J Biochem 230:235–41

    Article  PubMed  CAS  Google Scholar 

  22. Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, Krishna S, Walker W, Selby J, Glerum DM, Coster RV, Lyon G, Scalais E, Lebel R, Kaplan P, Shanske S, De Vivo DC, Bonilla E, Hirano M, DiMauro S, Schon EA (1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23:333–7

    Article  PubMed  CAS  Google Scholar 

  23. Antonicka H, Mattman A, Carlson CG, Glerum DM, Hoffbuhr KC, Leary SC, Kennaway NG, Shoubridge EA (2003) Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 72:101–14

    Article  PubMed  CAS  Google Scholar 

  24. Walker JE (1995) Determination of the structures of respiratory enzyme complexes from mammalian mitochondria. Biochim Biophys Acta 1271:221–7

    PubMed  Google Scholar 

  25. Ko YH, Hullihen J, Hong S, Pedersen PL (2000) Mitochondrial F(0)F(1) ATP synthase. Subunit regions on the F1 motor shielded by F(0), Functional significance, and evidence for an involvement of the unique F(0) subunit F(6). J Biol Chem 275:32931–9

    Article  PubMed  CAS  Google Scholar 

  26. Junge W, Lill H, Engelbrecht S (1997) ATP synthase: An electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22:420–3

    Article  PubMed  CAS  Google Scholar 

  27. Kaim G, Matthey U, Dimroth P (1998) Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases. EMBO J 17:688–95

    Article  PubMed  CAS  Google Scholar 

  28. Hong S, Pedersen PL (2003) ATP synthases: Insights into their motor functions from sequence and structural analyses. J Bioenerg Biomembr 35:95–120

    Article  PubMed  CAS  Google Scholar 

  29. Capaldi RA, Aggeler R (2002) Mechanism of the F1F0-type ATP synthase, a biological rotary motor. Trends Biochem Sci 27:154–60

    Article  PubMed  CAS  Google Scholar 

  30. Boyer PD (1997) The ATP synthase: A splendid molecular machine. Annu Rev Biochem 66:717–49

    Article  PubMed  CAS  Google Scholar 

  31. Robinson JB Jr, Inman L, Sumegi B, Srere PA (1987) Further characterization of the Krebs tricarboxylic acid cycle metabolon. J Biol Chem 262:1786–90

    PubMed  CAS  Google Scholar 

  32. Schagger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–28

    PubMed  CAS  Google Scholar 

  33. Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL (2003) Mitochondrial ATP synthasome: Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278:12305–9

    Article  PubMed  CAS  Google Scholar 

  34. Matsuda C, Endo H, Hirata H, Morosawa H, Nakanishi M, Kagawa Y (1993) Tissue-specific isoforms of the bovine mitochondrial ATP synthase gamma-subunit. FEBS Lett 325:281–4

    Article  PubMed  CAS  Google Scholar 

  35. Shoffner JM, Kaufman A, Koontz D, Krawiecki N, Smith E, Topp M, Wallace DC (1995) Oxidative phosphorylation diseases and cerebellar ataxia. Clin Neurosci 3:43–53

    PubMed  CAS  Google Scholar 

  36. Andersson U, Houstek J, Cannon B (1997) ATP synthase subunit c expression: Physiological regulation of the P1 and P2 genes. Biochem J 323:379–85

    PubMed  CAS  Google Scholar 

  37. Tatuch Y, Robinson BH (1993) The mitochondrial DNA mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria. Biochem Biophys Res Commun 192:124–8

    Article  PubMed  CAS  Google Scholar 

  38. Rowan SA, Lake BD (1995) Tissue and cellular distribution of subunit c of ATP synthase in Batten disease (neuronal ceroid-lipofuscinosis). Am J Med Genet 57:172–6

    Article  PubMed  CAS  Google Scholar 

  39. McGeoch JE, Guidotti G (2001) Batten disease and the control of the Fo subunit c pore by cGMP and calcium. Eur J Paediatr Neurol 5:147–50

    PubMed  Google Scholar 

  40. Das AM, Harris DA (1993) Regulation of the mitochondrial ATP synthase is defective in rat heart during alcohol-induced cardiomyopathy. Biochim Biophys Acta 1181:295–9

    PubMed  CAS  Google Scholar 

  41. Houstek J, Klement P, Floryk D, Antonicka H, Hermanska J, Kalous M, Hansikova H, Hout’kova H, Chowdhury SK, Rosipal T, Kmoch S, Stratilova L, Zeman J (1999) A novel deficiency of mitochondrial ATPase of nuclear origin. Hum Mol Genet 8:1967–74

    Article  PubMed  CAS  Google Scholar 

  42. Portman MA (2002) The adenine nucleotide translocator: regulation and function during myocardial development and hyper-trophy. Clin Exp Pharmacol Physiol 29:334–8

    Article  PubMed  CAS  Google Scholar 

  43. Portman MA, Xiao Y, Song Y, Ning XH (1997) Expression of adenine nucleotide translocator parallels maturation of respiratory control in vivo. Am J Physiol Heart Circ Physiol 27:H1977–83

    Google Scholar 

  44. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova OYu, Kuznetsov AV (1994) Metabolic compartmentation and substrate channelling in muscle cells: Role of coupled creatine kinases in in vivo regulation of cellular respiration—A synthesis. Mol Cell Biochem 133–134:155–92

    Article  PubMed  Google Scholar 

  45. Doussiere J, Ligeti E, Brandolin G, Vignais PV (1984) Control of oxidative phosphorylation in rat heart mitochondria: The role of the adenine nucleotide carrier. Biochim Biophys Acta 766:492–500

    Article  PubMed  CAS  Google Scholar 

  46. Schonfeld P. Schild L, Bohnensack R (1996) Expression of the ADP/ATP carrier and expansion of the mitochondria (ATP + ADP) pool contribute to postnatal maturation of the rat heart. Eur J Biochem 241:895–900

    Article  PubMed  CAS  Google Scholar 

  47. Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–7

    PubMed  CAS  Google Scholar 

  48. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16:226–34

    Article  PubMed  CAS  Google Scholar 

  49. Heddi A, Stepien G, Benke PJ, Wallace DC (1999) Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem 274:22968–76

    Article  PubMed  CAS  Google Scholar 

  50. Dorner A, Schulze K, Rauch U, Schultheiss HP (1997) Adenine nucleotide translocator in dilated cardiomyopathy: Pathophysiological alterations in expression and function. Mol Cell Biochem 174:261–9

    Article  PubMed  CAS  Google Scholar 

  51. Schultheiss HP, Bolte HD (1985) Immunological analysis of auto-antibodies against the adenine nucleotide translocator in dilated cardiomyopathy. J Mol Cell Cardiol 17:603–17

    PubMed  CAS  Google Scholar 

  52. Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–47

    Article  PubMed  CAS  Google Scholar 

  53. Jacobus WE (1985) Respiratory control and the integration ofheart high-energy phosphate metabolism by mitochondrial creatine kinase. Annu Rev Physiol 47:707–25

    Article  PubMed  CAS  Google Scholar 

  54. Schlegel J, Zurbriggen B, Wegmann G, Wyss M, Eppenberger HM, Wallimann T (1988) Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: Characterization, localization, and structure-function relationships. J Biol Chem 263:16942–53

    PubMed  CAS  Google Scholar 

  55. Payne RM, Haas RC, Strauss AW (1991) Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes. Biochim Biophys Acta 1089:352–61

    PubMed  CAS  Google Scholar 

  56. Haas RC, Strauss AW (1990) Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem 265:6921–7

    PubMed  CAS  Google Scholar 

  57. Tiivel T, Kadaya L, Kuznetsov A, Kaambre T, Peet N, Sikk P, Braun U, Ventura-Clapier R, Saks V, Seppet EK (2000) Developmental changes in regulation of mitochondrial respiration by ADP and creatine in rat heart in vivo. Mol Cell Biochem 208:119–28

    Article  PubMed  CAS  Google Scholar 

  58. Hoerter JA, Kuznetsov A, Ventura-Clapier R (1991) Functional development of the creatine kinase system in perinatal rabbit heart. Circ Res 69:665–76

    PubMed  CAS  Google Scholar 

  59. Payne RM, Strauss AW (1994) Expression of the mitochondrial creatine kinase genes. Mol Cell Biochem 133–134:235–43

    Article  PubMed  Google Scholar 

  60. Laclau MN, Boudina S, Thambo JB, Tariosse L, Gouverneur G, Bonoron-Adele S, Saks VA, Garlid KD, Dos Santos P (2001) Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adenine nucleotide translocase and creatine kinase. J Mol Cell Cardiol 33:947–56

    Article  PubMed  CAS  Google Scholar 

  61. Dos Santos P, Laclau MN, Boudina S, Garlid KD (2004) Alterations of the bioenergetics systems of the cell in acute and chronic myocardial ischemia. Mol Cell Biochem 256–257:157–66

    Article  PubMed  Google Scholar 

  62. Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci USA 99:10156–61

    Article  PubMed  CAS  Google Scholar 

  63. Abraham MR, Selivanov VA, Hodgson DM, Pucar D, Zingman LV, Wieringa B, Dzeja PP, Alekseev AE, Terzic A (2002) Coupling of cell energetics with membrane metabolic sensing: Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. J Biol Chem 277:24427–34

    Article  PubMed  CAS  Google Scholar 

  64. Steeghs K, Oerlemans F, Wieringa B (1995) Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Biochim Biophys Acta 1230:130–8

    Article  PubMed  Google Scholar 

  65. Steeghs K, Heerschap A, de Haan A, Ruitenbeek W, Oerlemans F, van Deursen J, Perryman B, Pette D, Bruckwilder M, Koudijs J, Jap P, Wieringa B (1997) Use of gene targeting for compromising energy homeostasis in neuromuscular tissues: The role of sarcomeric mitochondrial creatine kinase. J Neurosci Methods 71:29–41

    Article  PubMed  CAS  Google Scholar 

  66. Spindler M, Niebler R, Remkes H, Horn M, Lanz T, Neubauer S (2002) Mitochondrial creatine kinase is critically necessary for normal myocardial high-energy phosphate metabolism. Am J Physiol Heart Circ Physiol 283:H680–7

    PubMed  CAS  Google Scholar 

  67. Boehm E, Ventura-Clapier R, Mateo P, Lechene P, Veksler V (2000) Glycolysis supports calcium uptake by the sarcoplasmic reticulum in skinned ventricular fibres of mice deficient in mitochondrial and cytosolic creatine kinase. J Mol Cell Cardiol 32:891–902

    Article  PubMed  CAS  Google Scholar 

  68. Veksler V, Ventura-Clapier R (1994) In situ study of myofibrils, mitochondria and bound creatine kinases in experimental cardiomyopathies. Mol Cell Biochem 133–134:287–98

    Article  PubMed  Google Scholar 

  69. Ingwall JS, Atkinson DE, Clarke K, Fetters JK (1990) Energetic correlates of cardiac failure: Changes in the creatine kinase system in the failing myocardium. Eur Heart J 11:108–15

    PubMed  CAS  Google Scholar 

  70. Sugden MC, Langdown ML, Harris RA, Holness MJ (2000) Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: Role of thyroid hormone status and lipid supply. Biochem J 352:731–8

    Article  PubMed  CAS  Google Scholar 

  71. Denton RM, McCormack JG, Rutter GA, Burnett P, Edgell NJ, Moule SK, Diggle TA (1996) The hormonal regulation of pyruvate dehydrogenase complex. Adv Enzyme Regul 36:183–98

    Article  PubMed  CAS  Google Scholar 

  72. Huang B, Wu P, Popov KM, Harris RA (2003) Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes 52:1371–6

    PubMed  CAS  Google Scholar 

  73. Srere PA, Sumegi B, Sherry AD (1987) Organizational aspects of the citric acid cycle. Biochem Soc Symp 54:173–8

    PubMed  CAS  Google Scholar 

  74. Brookes PS, Zhang J, Dai L, Zhou F, Parks DA, Darley-Usmar VM, Anderson PG (2001) Increased sensitivity of mitochondrial respiration to inhibition by nitric oxide in cardiac hypertrophy. J Mol Cell Cardiol 33:69–82

    Article  PubMed  CAS  Google Scholar 

  75. Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466:130–4

    Article  PubMed  CAS  Google Scholar 

  76. Territo PR, Mootha VK, French SA, Balaban RS (2000) Ca(2+) activation of heart mitochondrial oxidative phosphorylation: Role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol 278:C423–35

    PubMed  CAS  Google Scholar 

  77. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW (1995) Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Am J Physiol 268:H82–91

    PubMed  CAS  Google Scholar 

  78. Ashruf JF, Coremans JM, Bruining HA, Ince C (1995) Increase of cardiac work is associated with decrease of mitochondrial NADH. Am J Physiol 269:H856–62

    PubMed  CAS  Google Scholar 

  79. Jafri MS, Dudycha SJ, O’Rourke B (2001) Cardiac energy metabolism: Models of cellular respiration. Annu Rev Biomed Eng 3:57–81

    Article  PubMed  CAS  Google Scholar 

  80. Cortassa S, Aon MA, Marban E, Winslow RL, O’Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84:2734–55

    Article  PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Mitochondrial Bioenergetics in the Heart. In: Marín-García, J. (eds) Mitochondria and the Heart. Developments in Cardiovascular Medicine, vol 256. Springer, Boston, MA. https://doi.org/10.1007/0-387-25575-3_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-25575-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25574-3

  • Online ISBN: 978-0-387-25575-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics