Skip to main content

On Solving Polynomial, Factorable, and Black-Box Optimization Problems Using the RLT Methodology

  • Chapter
Book cover Essays and Surveys in Global Optimization

Abstract

This paper provides an expository discussion on using the Reformulation-Linearization/Convexification (RLT) technique as a unifying approach for solving nonconvex polynomial, factorable, and certain black-box optimization problems. The principal RLT construct applies a Reformulation phase to add valid inequalities including polynomial and semidefinite cuts, and a Linearization phase to derive higher dimensional tight linear programming relaxations. These relaxations are embedded within a suitable branch-and-bound scheme that converges to a global optimum for polynomial or factorable programs, and results in a pseudo-global optimization method that derives approximate, near-optimal solutions for black-box optimization problems. We present the basic underlying theory, and illustrate the application of this theory to solve various problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann, J. (2002). Robust Control: The Parameter Space Approach. Springer-Verlag, London.

    Google Scholar 

  • Adams, W.P. and Sherali, H.D. (1986). A tight linearization and an algorithm for zero-one programming problems. Management Science, 32(7):1274–1290.

    Article  MathSciNet  Google Scholar 

  • Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38:393–422.

    Article  Google Scholar 

  • Alexandrov, N.M., Dennis, J.E. Jr., Lewis, R.M., and Torczon, V. (1998). A trust-region framework for managing the use of approximation models in optimization. Structural Optimization, 15:16–23.

    Article  Google Scholar 

  • Audet C., Brimberg, J., Hansen, P., Le Digabel, S., and Mladenović, N. (2004). Pooling problem: Alternate formulations and solution methods. Management Science, 50(6):761–776.

    Article  Google Scholar 

  • Audet, C., Hansen, P., Jaumard, B., and Savard, G. (2000). A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Mathematical Programming, A87:131–152.

    MathSciNet  Google Scholar 

  • Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (1993). Nonlinear Programming: Theory and Algorithms. John Wiley & Sons, Inc., 2nd edition, New York, N.Y.

    Google Scholar 

  • Belousov, E.G. and Klatte, D. (2002). A Frank-Wolfe type theorem for convex polynomial programs. Computational Optimization and Applications, 22:37–48.

    Article  MathSciNet  Google Scholar 

  • Ben-Tal, A., Eiger, G., and Gershovitz, V. (1994). Global minimization by reducing the duality gap. Mathematical Programming, 63:193–212.

    Article  MathSciNet  Google Scholar 

  • Bozorg, M. and Sherali, H.D. (2003). Linear Control of Systems with Uncertain Physical Parameters. Working paper. The Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Falk, J.E. and Soland, R.M. (1969). An algorithm for separable nonconvex programming problems. Management Science, 15:550–569.

    Article  MathSciNet  Google Scholar 

  • Floudas, C.A. and Pardalos, P.M. (1990). A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, Berlin.

    Google Scholar 

  • Floudas, C.A. and Visweswaran, V. (1990). A global optimization algorithm for certain classes of nonconvex NLPs-I: Theory. Computers and Chemical Engineering, 14(12):1397–1417.

    Article  CAS  Google Scholar 

  • Floudas, C.A. and Visweswaran, V. (1995). Quadratic optimization. In: R. Horst and P.M. Pardalos (eds.), Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Forgy, E.W. (1966). Cluster analysis of multivariate data: Efficiency versus interpretability of classification. Biometric Society Meetings, Riverside, CA, Abstract in Biometrics 21:768.

    Google Scholar 

  • Gutmann, H.-M. (2001). A radial basis function method for global optimization. Journal of Global Optimization, 19:201–227.

    Article  MATH  MathSciNet  Google Scholar 

  • Helmberg, C. (2002). Semidefinite programming. European Journal of Operational Research, 137:461–482.

    Article  MATH  MathSciNet  Google Scholar 

  • Höppner, F., Klawonn, F., Kruse, R., and Runkler, T. (1999). Fuzzy Cluster Analysis. John Wiley & Sons, Inc., New York, N.Y.

    Google Scholar 

  • Horst, R. (1990). Deterministic methods in constrained global optimization: Some recent advances and new fields of application. Naval Research Logistics Quarterly, 37:433–471.

    Article  MATH  MathSciNet  Google Scholar 

  • Horst, R. and Tuy, H. (1993). Global Optimization: Deterministic Approaches. Springer-Verlag, 2nd ed., Berlin, Germany.

    Google Scholar 

  • Hou, Y.T., Shi, Y., and Sherali, H.D. (2003). On energy Provisioning and Relay Node Placement for Wireless Sensor Networks. Working paper. The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Jones D.R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21(4):345–383.

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, D.R., Pertunnen, C.D., and Stuckmann, B.E. (1993). Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications, 79:157–181.

    Article  MathSciNet  Google Scholar 

  • Jones, D.R., Schonlau, M., and Welch, W.J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13:455–492.

    Article  MathSciNet  Google Scholar 

  • Joshi, S.S., Sherali, H.D., and Tew, J.D. (1998). An enhanced response surface methodology algorithm using gradient deflection and second-order search strategies. Computers and Operations Research, 25(7/8):531–541.

    Article  MathSciNet  Google Scholar 

  • Kamel, M.S. and Selim, S.Z. (1994). New algorithms for solving the fuzzy clustering problem. Pattern Recognition, 27(3):421–428.

    Article  Google Scholar 

  • Konno, H., Kawadai, N., and Tuy, H. (2003). Cutting plane algorithms for nonlinear semidefinite programming problems with applications. Journal of Global Optimization, 25:141–155.

    Article  MathSciNet  Google Scholar 

  • Konno, H. and Kuno, T. (1995). Multiplicative programming problems. In: R. Horst and P.M. Pardalos (eds.), Handbook of Global Optimization, Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Lasserre, J.B. (2001). Global optimization with polynomials and the problem of moments. SIAM Journal of Optimization, 11(3):796–817.

    Article  MATH  MathSciNet  Google Scholar 

  • Lasserre, J.B. (2002). Semidefinite programming versus LP relaxations for polynomial programming. Mathematics of Operations Research, 27(2):347–360.

    Article  MATH  MathSciNet  Google Scholar 

  • Laurent, M. and Rendl, F. (2002). Semidefinite Programming and Integer Programming. Working paper. CWI, Amsterdam, The Netherlands.

    Google Scholar 

  • Li, H.L. and Chang, C.T. (1998). An approximate approach of global optimization for polynomial programming problems. European Journal of Operational Research, 107:625–632.

    Article  Google Scholar 

  • McCormick, G.P. (1976). Computability of global solutions to factorable nonconvex programs: Part I-convex underestimating problems. Mathematical Programming, 10:147–175.

    Article  MATH  MathSciNet  Google Scholar 

  • McQueen, J.B. (1967). Some methods of classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley, CA.

    Google Scholar 

  • Myers, R.H. (1995). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, Inc., New York, N.Y.

    Google Scholar 

  • Neu, W.L., Hughes, O., Mason, W.H., Ni, S., Chen, Y., Ganesan, V., Lin, Z., and Tumma, S. (2000). A prototype tool for multidisciplinary design optimization of ships. Ninth Congress of the International Maritime Association of the Mediterranean, Naples, Italy, April.

    Google Scholar 

  • Sahinidis, N.V. (1996). BARON: A general purpose global optimization software package. Journal of Global Optimization, 8(2):201–205.

    Article  MATH  MathSciNet  Google Scholar 

  • Shectman, J.P. and Sahinidis, N.V. (1996). A finite algorithm for global minimization of separable concave programs. In: C.A. Floudas and P.M. Pardalos (eds.), State of the Art in Global Optimization, Computational Methods and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Sherali, H.D. (1998). Global optimization of nonconvex polynomial programming problems having rational exponents. Journal of Global Optimization, 12:267–283.

    Article  MATH  MathSciNet  Google Scholar 

  • Sherali, H.D. and Adams, W.P. (1990). A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3(3):411–430.

    Article  MathSciNet  Google Scholar 

  • Sherali, H.D. and Adams, W.P. (1994). A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Applied Mathematics, 52:83–106.

    Article  MathSciNet  Google Scholar 

  • Sherali, H.D. and Adams, W.P. (1999). Reformulation-linearization techniques for discrete optimization problems. In: D.-Z. Du and P.M. Pardalos (eds.), Handbook of Combinatorial Optimization, volume 1, pp. 479–532. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Sherali, H.D. and Desai, J. (2004). A global optimization RLT-based approach for solving the hard clustering problem. Journal of Global Optimization. Accepted.

    Google Scholar 

  • Sherali, H.D. and Desai, J. (2004). A Global Optimization RLT-Based Approach for Solving the Fuzzy Clustering Problem. Working paper. The Grado Department of Industrial and Systems Engineering, Virginia, Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Sherali, H.D., Desai, J., and Glickman, T.S. (2003a). Allocating Emergency Response Resources to Minimize Risk with Equity Considerations. Working paper. The Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Sherali, H.D., Desai, J., and Rakha, H. (2003b). A Discrete Optimization Approach for Locating Automatic Vehicle Identification Readers for the Provision of Roadway Travel Times. Working paper. The Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Sherali, H.D. and Fraticelli, B.M.P. (2002). Enhancing RLT relaxations via a new class of semidefinite cuts. Journal of Global Optimization, 22:233–261.

    Article  MathSciNet  Google Scholar 

  • Sherali, H.D. and Ganesan, V. (2003). A pseudo-global optimization approach with application to the design of containerships. Journal of Global Optimization, 26:335–360.

    Article  MathSciNet  Google Scholar 

  • Sherali, H.D., Staats, R.W., and Trani, A.A. (2003c). An airspace planning and collaborative decision-making model: Part I-Probabilistic conflicts, workload, and equity considerations. Transportation Science, 37(4):434–456.

    Article  Google Scholar 

  • Sherali, HD., Subramanian, S., and Loganathan, G.V. (2001). Effective relaxations and partitioning schemes for solving water distribution network design problems to global optimality. Journal of Global Optimization, 19:1–26.

    Article  MathSciNet  Google Scholar 

  • Sherali, H.D., Totlani, R., and Loganathan, G.V. (1998). Enhanced lower bounds for the global optimization of water distribution networks. Water Resources Research, 34(7):1831–1841.

    Article  CAS  ADS  Google Scholar 

  • Sherali, H.D. and Tuncbilek, C.H. (1992). A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique. Journal of Global Optimization, 2:101–112.

    Article  MathSciNet  Google Scholar 

  • Sherali, H.D. and Tuncbilek, C.H. (1995). A reformulation-convexification approach for solving nonconvex quadratic programming problems. Journal of Global Optimization, 7:1–31.

    Article  MathSciNet  Google Scholar 

  • Sherali, H.D. and Tuncbilek, C.H. (1997). Comparison of two Reformulation-Linearization Technique based linear programming relaxations for polynomial programming problems. Journal of Global Optimization, 10:381–390.

    Article  MathSciNet  Google Scholar 

  • Sherali, H.D. and Wang, H. (2001). Global optimization of nonconvex factorable programming problems. Mathematical Programming, 89(3):459–478.

    Article  MathSciNet  Google Scholar 

  • Shor, N.Z. (1998). Nondifferentiable Optimization and Polynomial Problems. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Späth, H. (1980). Cluster Analysis Algorithms for Data Reduction and Classification of Objects. John Wiley and Sons, New York, N.Y.

    Google Scholar 

  • Tawarmalani, M. and Sahinidis, N.V. (2002a). Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Theory, Algorithms, Software, and Applications, Chapter 9. Nonconvex Optimization and it Applications, vol. 65, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Tawarmalani, M. and Sahinidis, N.V. (2002b). Convexification and Global Optimization of the Pooling Problem. Manuscript. Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana Champaign, Urbana Champaign, Illinois.

    Google Scholar 

  • Vandenberghe, L. and Boyd, S. (1996). Semidefinite programming. SIAM Review, 38(1):49–95.

    Article  MathSciNet  Google Scholar 

  • Vanderbei, R.J. and Benson, H.Y. (2000). On Formulating Semidefinite Programming Problems as Smooth Convex Nonlinear Optimization Problems. Working paper. Department of Operations Research and Financial Engineering, Princeton University, Princeton, N.J.

    Google Scholar 

  • Vanderplaats Research and Development, Inc. (1995). Dot Users Manual, Version 4.20, Colorado, Springs, CO.

    Google Scholar 

  • Volkov, E.A. (1990). Numerical Methods. Hemisphere Publishing, New York, N.Y.

    Google Scholar 

  • Walski, T.M. (1984). Analysis of Water Distribution Systems. Van Nostrand Reinhold Company, New York, N.Y.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Sherali, H.D., Desai, J. (2005). On Solving Polynomial, Factorable, and Black-Box Optimization Problems Using the RLT Methodology. In: Audet, C., Hansen, P., Savard, G. (eds) Essays and Surveys in Global Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-387-25570-2_5

Download citation

Publish with us

Policies and ethics