Skip to main content

A Deterministic Global Optimization Algorithm for Design Problems

  • Chapter
Essays and Surveys in Global Optimization

Abstract

Complete extensions of standard deterministic Branch-and-Bound algorithms based on interval analysis are presented hereafter in order to solve design problems which can be formulated as non-homogeneous mixed-constrained global optimization problems. This involves the consideration of variables of different kinds: real, integer, logical or categorical. In order to solve interesting design problems with an important number of variables, some accelerating procedures must be introduced in these extended algorithms. They are based on constraint propagation techniques and are explained in this chapter. In order to validate the designing methodology, rotating machines with permanent magnets are considered. The corresponding analytical model is recalled and some global optimal design solutions are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Fitan, E., Messine, F., and Nogarede, B. (2003). A general analytical model of electrical permanent magnet machine dedicated to optimal design. COMPEL—International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 22(4):1037–1050.

    Article  Google Scholar 

  • Fitan, E., Messine, F., and Nogarede, B. (2004). The electromagnetical actuators design problem: A general and rational approach. IEEE Transaction on Magnetics, 40(3):1579–1590.

    Article  Google Scholar 

  • Hansen, E. (1992). Global Optimization using Interval Analysis. Marcel Dekker, Inc., 270 Madison Avenue, New York 100016, USA.

    Google Scholar 

  • Kearfott, R.B. (1996). Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Drodrecht, Boston, London.

    Google Scholar 

  • Kone, A.D., Nogarede, B., and Lajoie-Mazenc, M. (1993). Le dimensionnement des actionneurs électriques: un problème de programmation non-linéaire. Journal de Physique, III:285–301.

    Article  ADS  Google Scholar 

  • Messine, F. (1997). Méthodes d'optimisation global basées sur l'analyse d'intervalles pour la résolution de problèmes avec contraintes. Ph.D. Thesis, Institut National de Polytechnique de Toulouse, France.

    Google Scholar 

  • Messine, F. (2004). Deterministic global optimization using interval constraint propagation techniques. RAIRO Operations Research, 38(4):277–294.

    Article  MATH  MathSciNet  Google Scholar 

  • Messine, F., Monturet, V., and Nogarede, B. (2001). An interval branch and bound method dedicated to the optimal design of piezoelectric actuators. In: N. Mastorakis, V. Mladenov, B. Suter, and L.J. Wang (eds.), Advances in Scientific Computing, Computational Intelligence, and Applications, pp. 174–180. Mathematics and Computers in Science and Engineering.

    Google Scholar 

  • Messine, F., Nogarede, B., and Lagouanelle, J.L. (1998). Optimal design of electromechanical actuators: a new method based on global optimization. IEEE Transaction on Magnetics, 34(1):299–307.

    Article  Google Scholar 

  • Moore, R.E. (1966). Interval Analysis. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Neittaanmäki, P., Rudnicki, M., and Savini, A. (1996). Inverse Problems and Optimal Design in Electricity and Magnetism. Clarendon Press, Oxford.

    Google Scholar 

  • Nogarede, B. (2001). Machines tournantes: principles et constitutions. Techniques de l'Ingénieur, D3410 and D3411, France.

    Google Scholar 

  • Nogarede, B., Kone, A.D., and Lajoie-Mazenc, M. (1995). Optimal design of permanent-magnet machines using analytical field modeling. Electromotion, 2(1):25–34.

    Google Scholar 

  • Ratschek, H. and Rokne, J. (1988). New Computer Methods for Global Optimization. Ellis Horwood Limited Market Cross House, England.

    Google Scholar 

  • Van Henterbryck, P., Michel, L., and Deville, Y. (1997). Numerica: A Modelling Language for Global Optimization. MIT Press, Cambridge Mass.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Messine, F. (2005). A Deterministic Global Optimization Algorithm for Design Problems. In: Audet, C., Hansen, P., Savard, G. (eds) Essays and Surveys in Global Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-387-25570-2_10

Download citation

Publish with us

Policies and ethics