Skip to main content

Hormonal and Gender Influences on Experimental Autoimmune Encephalomyelitis

  • Chapter
Book cover Experimental Models of Multiple Sclerosis

Abstract

This chapter highlights the important interactions between the CNS, the endocrine system and the immune system that influence the course of EAE. In particular, we focus on the bi-directional relationship between the hypothalamic-pituitary-adrenal (HPA) axis and EAE, and the influences of gender and sex hormones on EAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacPhee, I. A., Antoni, F. A. & Mason, D. W. Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J Exp Med 169, 431–45 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. del Rey, A., Klusman, I. & Besedovsky, H. O. Cytokines mediate protective stimulation of glucocorticoid output during autoimmunity: involvement of IL-1, Am J Physiol 275, Rl146–51 (1998).

    Google Scholar 

  3. Besedovsky, H. O. & del Rey, A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 17, 64–102 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. Bernton, E. W., Beach, J. E., Holaday, J. W., Smallridge, R. C. & Fein, H. G. Release of multiple hormones by a direct action of interleukin-1 on pituitary cells. Science 238, 519–21 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. Moyer, A., Jervis, G., Black, J., Koprowski, H. & Cox, H. Action of adrenocorticotrophic hormone in experimental allergic encephalomyelitis of the guinea pig. Proc Soc Exp Biol Med 75, 387 (1950).

    PubMed  CAS  Google Scholar 

  6. Reder, A. T., Thapar, M. & Jensen, M. A. A reduction in serum glucocorticoids provokes experimental allergic encephalomyelitis: implications for treatment of inflammatory brain disease. Neurology 44, 2289–94 (1994).

    PubMed  CAS  Google Scholar 

  7. Levine, S., Wenk, E. J., Muldoon, T. N. & Cohen, S. G. Enhancement of experimental allergic encephalomyelitis by adrenalectomy. Proc Soc Exp Biol Med 111, 383–5 (1962).

    PubMed  CAS  Google Scholar 

  8. Bolton, C, O’Neill, J. K., Allen, S. J. & Baker, D. Regulation of chronic relapsing experimental allergic encephalomyelitis by endogenous and exogenous glucocorticoids. Int Arch Allergy Immunol 114, 74–80 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. Stefferl, A. et al. Disease progression in chronic relapsing experimental allergic encephalomyelitis is associated with reduced inflammation-driven production of corticosterone. Endocrinology 142, 3616–24 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. Sternberg, E. M. et al. Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc Natl Acad Sci U S A 86, 2374–8 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. Mason, D., MacPhee, I. & Antoni, F. The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunology 70, 1–5 (1990).

    PubMed  CAS  Google Scholar 

  12. Levine, S., Strebel, R., Wenk, E. J. & Harman, P. J. Suppression of experimental allergic encephalomyelitis by stress. Proc Soc Exp Biol Med 109, 294–8 (1962).

    PubMed  CAS  Google Scholar 

  13. Dowdell, K. C., Gienapp, I. E., Stuckman, S., Wardrop, R. M. & Whitacre, C. C. Neuroendocrine modulation of chronic relapsing experimental autoimmune encephalomyelitis: a critical role for the hypothalamic-pituitary-adrenal axis. J Neuroimmunol 100, 243–51 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. Griffin, A. C., Lo, W. D., Wolny, A. C. & Whitacre, C. C. Suppression of experimental autoimmune encephalomyelitis by restraint stress: sex differences. J Neuroimmunol 44, 103–16 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. Padgett, D. A. & Glaser, R. How stress influences the immune response. Trends Immunol 24, 444–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Ashwell, J. D., Lu, F. W. & Vacchio, M. S. Glucocorticoids in T cell development and function*. Annu Rev Immunol 18, 309–45 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. Elenkov, I. J. & Chrousos, G. P. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci 966, 290–303 (2002).

    PubMed  CAS  Google Scholar 

  18. Whitacre, C. C., Dowdell, K. & Griffin, A. C. Neuroendocrine influences on experimental autoimmune encephalomyelitis. Ann N Y Acad Sci 840, 705–16 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. Smith, T., Schmied, M., Hewson, A. K., Lassmann, H. & Cuzner, M. L. Apoptosis of T cells and macrophages in the central nervous system of intact and adrenalectomized Lewis rats during experimental allergic encephalomyelitis. J Autoimmun 9, 167–74 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt, J. et al. T-cell apoptosis in situ in experimental autoimmune encephalomyelitis following methylprednisolone pulse therapy. Brain 123 (Pt 7), 1431–41 (2000).

    Article  PubMed  Google Scholar 

  21. Golde, S., Coles, A., Lindquist, J. A. & Compston, A. Decreased iNOS synthesis mediates dexamethasone-induced protection of neurons from inflammatory injury in vitro. Eur J Neurosci 18, 2527–37 (2003).

    Article  PubMed  Google Scholar 

  22. Bakker, J. M. et al. Neonatal dexamethasone treatment increases susceptibility to experimental autoimmune disease in adult rats. J Immunol 165, 5932–7 (2000).

    PubMed  CAS  Google Scholar 

  23. Kim, S. & Voskuhl, R. R. Decreased IL-12 production underlies the decreased ability of male lymph node cells to induce experimental autoimmune encephalomyelitis. J Immunol 162, 5561–8 (1999).

    PubMed  CAS  Google Scholar 

  24. Voskuhl, R. R., Pitchekian-Halabi, H., MacKenzie-Graham, A., McFarland, H. F. & Raine, C. S. Gender differences in autoimmune demyelination in the mouse: implications for multiple sclerosis. Ann Neurol 39, 724–33 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. Mertin, L. A. & Rumjanek, V. M. Pregnancy and the susceptibility of Lewis rats to experimental allergic encephalomyelitis. J Neurol Sci 68, 15–24 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. Evron, S., Brenner, T. & Abramsky, O. Suppressive effect of pregnancy on the development of experimental allergic encephalomyelitis in rabbits. Am J Reprod Immunol 5, 109–13(1984).

    PubMed  CAS  Google Scholar 

  27. Bebo, B. F., Jr., Vandenbark, A. A. & Offner, H. Male SJL mice do not relapse after induction of EAE with PLP 139–151. J Neurosci Res 45, 680–9 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. Griffin, A. C. & Whitacre, C. C. Sex and strain differences in the circadian rhythm fluctuation of endocrine and immune function in the rat: implications for rodent models of autoimmune disease. J Neuroimmunol 35, 53–64 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. Papenfuss, T.L., et al. Sex differences in experimental autoimmune encephalomyelitis in multiple murine strains. J. Neuroimmunol., in press, 2004.

    Google Scholar 

  30. Whitacre, C. C. Sex differences in autoimmune disease. Nat Immunol 2, 777–80 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. Bebo, B. F., Jr. et al. Gonadal hormones influence the immune response to PLP 139–151 and the clinical course of relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 84, 122–30 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. Dalai, M., Kim, S. & Voskuhl, R. R. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J Immunol 159, 3–6 (1997).

    Google Scholar 

  33. Bebo, B. F., Jr., Schuster, J. C., Vandenbark, A. A. & Offner, H. Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells. J Immunol 162, 35–40 (1999).

    PubMed  CAS  Google Scholar 

  34. Cua, D. J., Hinton, D. R. & Stohlman, S. A. Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. Th2-mediated suppression of autoimmune disease. J Immunol 155, 4052–9 (1995).

    PubMed  CAS  Google Scholar 

  35. Whitacre, C. C., Reingold, S. C. & O’Looney, P. A. A gender gap in autoimmunity. Science 283, 1277–8 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Gilmore, W., Weiner, L. P. & Correale, J. Effect of estradiol on cytokine secretion by proteolipid protein-specific T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol 158, 446–51 (1997).

    PubMed  CAS  Google Scholar 

  37. Bebo, B. F., Jr. et al. Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J Immunol 166, 2080–9 (2001).

    PubMed  CAS  Google Scholar 

  38. Jansson, L., Olsson, T. & Holmdahl, R. Estrogen induces a potent suppression of experimental autoimmune encephalomyelitis and collagen-induced arthritis in mice. J Neuroimmunol 53, 203–7 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. Matejuk, A. et al. 17 beta-estradiol inhibits cytokine, chemokine, and chemokine receptor mRNA expression in the central nervous system of female mice with experimental autoimmune encephalomyelitis. J Neurosci Res 65, 529–42 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Voskuhl, R. R. & Palaszynski, K. Sex hormones in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Neuroscientist 7, 258–70 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. Kim, S., Liva, S. M, Dalai, M. A., Verity, M. A. & Voskuhl, R. R. Estriol ameliorates autoimmune demyelinating disease: implications for multiple sclerosis. Neurology 52, 1230–8 (1999).

    Article  PubMed  CAS  Google Scholar 

  42. Liu, H. B. et al. Estrogen receptor alpha mediates estrogen’s immune protection in autoimmune disease. J Immunol 171, 6936–40 (2003).

    PubMed  CAS  Google Scholar 

  43. Ito, A. et al. Estrogen treatment down-regulates TNF-alpha production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. J Immunol 167, 542–52 (2001).

    PubMed  CAS  Google Scholar 

  44. Polanczyk, M. et al. The protective effect of 17beta-estradiol on experimental autoimmune encephalomyelitis is mediated through estrogen receptor-alpha. Am J Pathol 163, 1599–605 (2003).

    PubMed  CAS  Google Scholar 

  45. Matejuk, A., Dwyer, J., Hopke, C., Vandenbark, A. A. & Offner, H. 17Beta-estradiol treatment profoundly down-regulates gene expression in spinal cord tissue in mice protected from experimental autoimmune encephalomyelitis. Arch Immunol Ther Exp (Warsz) 51, 185–93 (2003).

    CAS  Google Scholar 

  46. Cid, M. C. et al. Estradiol enhances leukocyte binding to tumor necrosis factor (TNF)-stimulated endothelial cells via an increase in TNF-induced adhesion molecules E-selectin, intercellular adhesion molecule type 1, and vascular cell adhesion molecule type 1. J Clin Invest 93, 17–25 (1994).

    PubMed  CAS  Google Scholar 

  47. Matejuk, A., Dwyer, J., Zamora, A., Vandenbark, A. A. & Offner, H. Evaluation of the effects of 17beta-estradiol (17beta-e2) on gene expression in experimental autoimmune encephalomyelitis using DNA microarray. Endocrinology 143, 313–9 (2002).

    Article  PubMed  CAS  Google Scholar 

  48. Miyaura, H. & Iwata, M. Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids. J Immunol 168, 1087–94 (2002).

    PubMed  CAS  Google Scholar 

  49. Labombarda, F. et al. Cellular basis for progesterone neuroprotection in the injured spinal cord. J Neurotrauma 19, 343–55 (2002).

    Article  PubMed  Google Scholar 

  50. Langer-Gould, A., Garren, H., Slansky, A., Ruiz, P. J. & Steinman, L. Late pregnancy suppresses relapses in experimental autoimmune encephalomyelitis: evidence for a suppressive pregnancy-related serum factor. J Immunol 169, 1084–91 (2002).

    PubMed  CAS  Google Scholar 

  51. Riskind, P. N., Massacesi, L., Doolittle, T. H. & Hauser, S. L. The role of prolactin in autoimmune demyelination: suppression of experimental allergic encephalomyelitis by bromocriptine. Ann Neurol 29, 542–7 (1991).

    Article  PubMed  CAS  Google Scholar 

  52. Dijkstra, C. D. et al. The therapeutic effect of bromocriptine on acute and chronic experimental allergic encephalomyelitis. Ann Neurol 31, 450–1 (1992).

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez-Pena, A. Oligodendrocyte development and thyroid hormone. J Neurobiol 40, 497–512 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. Calza, L., Fernandez, M., Giuliani, A., Aloe, L. & Giardino, L. Thyroid hormone activates oligodendrocyte precursors and increases a myelin-forming protein and NGF content in the spinal cord during EAE. Proc Natl Acad Sci U S A 99, 3258–63 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. Ikushima, H., Kanaoka, M. & Kojima, S. Cutting edge: Requirement for growth hormone-releasing hormone in the development of experimental autoimmune encephalomyelitis. J Immunol 171, 2769–72 (2003).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Gilmore, C., Constantinescu, C.S., Whitacre, C.C. (2005). Hormonal and Gender Influences on Experimental Autoimmune Encephalomyelitis. In: Lavi, E., Constantinescu, C.S. (eds) Experimental Models of Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25518-4_26

Download citation

Publish with us

Policies and ethics