Skip to main content

B Cells and Antibodies in Experimental Autoimmune Encephalomyelitis

  • Chapter
Experimental Models of Multiple Sclerosis
  • 2223 Accesses

Abstract

EAE is a T cell mediated disease, but increasing evidence shows an important role for B cells and antibodies in its pathogenesis. This also reflects a role for humoral factors in the pathogenesis of multiple sclerosis. The main functions of B cells and antibodies in EAE are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kabat, E.A., M. Glusman, and V. Knaub, Quantitative estimation of albumin and gamma globulin in normal and pathologic cerebrospinal fluid by immunochemical methods. Am J Med, 1948. 4: 653–62.

    Article  PubMed  CAS  Google Scholar 

  2. Mehta, P.D., H. Lassmann, and H.M. Wisniewski, Immunologic studies of chronic relapsing EAE in guinea pigs: similarities to multiple sclerosis. J Immunol, 1981. 127:334–8.

    PubMed  CAS  Google Scholar 

  3. Rostami, A., R.P. Lisak, N. Blanchard, et al, Oligoclonal IgG in the cerebrospinal fluid of guinea pigs with acute experimental allergic encephalomyelitis. J Neurol Sci, 1982. 53: 433–41.

    Article  PubMed  CAS  Google Scholar 

  4. Rostrom, B., A. Grubb, and R. Holmdahl, Oligoclonal IgG bands synthesized in the central nervous system are present in rats with experimental autoimmune encephalomyelitis. Acta Neurol Scand, 2004. 109: 106–12.

    Article  PubMed  CAS  Google Scholar 

  5. Gallo, P., D. Cupic, F. Bracco, et al.,Experimental allergic encephalomyelitis in the monkey: humoral immunity and blood-brain barrier function. Ital J Neurol Sci, 1989. 10: 561–5.

    PubMed  CAS  Google Scholar 

  6. Storch, M.K., S. Piddlesden, M. Haltia, et al., Multiple sclerosis: in situ evidence for antibody-and complement-mediated demyelination. Ann Neurol, 1998. 43:465–71.

    Article  PubMed  CAS  Google Scholar 

  7. Raine, C.S., B. Cannella, S.L. Hauser, et al., Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol, 1999. 46: 144–60.

    Article  PubMed  CAS  Google Scholar 

  8. Ron, Y. and J. Sprent, T cell priming in vivo: a major role for B cells in presenting antigen to T cells in lymph nodes. J Immunol, 1987. 138: 2848–56.

    PubMed  CAS  Google Scholar 

  9. Morris, S.C., A. Lees, and F.D. Finkelman, In vivo activation of naive T cells by antigen-presenting B cells. J Immunol, 1994. 152: 3777–85.

    PubMed  CAS  Google Scholar 

  10. Constant, S.L., B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J Immunol, 1999. 162: 5695–703.

    PubMed  CAS  Google Scholar 

  11. Ashwell, J.D., Are B lymphocytes the principal antigen-presenting cells in vivo? J Immunol, 1988. 140: 3697–700.

    PubMed  CAS  Google Scholar 

  12. Gold, M.R. and A.L. DeFranco, Biochemistry of B lymphocyte activation. Adv Immunol, 1994. 55: 221–95.

    Article  PubMed  CAS  Google Scholar 

  13. Inaoki, M., S. Sato, B.C. Weintraub, et al., CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes. J Exp Med, 1997. 186: 1923–31.

    Article  PubMed  CAS  Google Scholar 

  14. O’Keefe, T.L., G.T. Williams, F.D. Batista, et al., Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med, 1999. 189: 1307–13.

    Article  PubMed  CAS  Google Scholar 

  15. Cooke, M.P., A.W. Heath, K.M. Shokat, et al., Immunoglobulin signal transduction guides the specificity of B cell-T cell interactions and is blocked in tolerant self-reactive B cells. J Exp Med, 1994. 179: 425–38.

    Article  PubMed  CAS  Google Scholar 

  16. Ho, W.Y., M.P. Cooke, C.C. Goodnow, et al., Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells. J Exp Med, 1994. 179: 1539–49.

    Article  PubMed  CAS  Google Scholar 

  17. Armitage, R.J., W.C. Fanslow, L. Strockbine, et al., Molecular and biological characterization of a murine ligand for CD40. Nature, 1992. 357: 80–2.

    Article  PubMed  CAS  Google Scholar 

  18. Noelle, R.J., M. Roy, D.M. Shepherd, et al., A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci U S A, 1992. 89: 6550–4.

    Article  PubMed  CAS  Google Scholar 

  19. Castle, B.E., K. Kishimoto, C. Stearns, et al., Regulation of expression of the ligand for CD40 on T helper lymphocytes. J Immunol, 1993. 151: 1777–88.

    PubMed  CAS  Google Scholar 

  20. Hodgkin, P.D., L.C. Yamashita, R.L. Coffman, et al., Separation of events mediating B cell proliferation and Ig production by using T cell membranes and lymphokines. J Immunol, 1990. 145: 2025–34.

    PubMed  CAS  Google Scholar 

  21. Fulcher, D.A. and A. Basten, B-cell activation versus tolerance—the central role of immunoglobulin receptor engagement and T-cell help. Int Rev Immunol, 1997. 15: 33–52.

    PubMed  CAS  Google Scholar 

  22. Pulendran, B., R. van Driel, and G.J. Nossal, Immunological tolerance in germinal centres. Immunol Today, 1997. 18: 27–32.

    Article  PubMed  CAS  Google Scholar 

  23. Goodnow, C.C., J.G. Cyster, S.B. Hartley, et al., Self-tolerance checkpoints in B lymphocyte development. Adv Immunol, 1995. 59: 279–368.

    PubMed  CAS  Google Scholar 

  24. Eris, J.M., A. Basten, R. Brink, et al., Anergic self-reactive B cells present self antigen and respond normally to CD40-dependent T-cell signals but are defective in antigen-receptor-mediated functions. Proc Natl Acad Sci U S A, 1994. 91: 4392–6.

    Article  PubMed  CAS  Google Scholar 

  25. Fulcher, D.A., A.B. Lyons, S.L. Korn, et al., The fate of self-reactive B cells depends primarily on the degree of antigen receptor engagement and availability of T cell help. J Exp Med, 1996. 183: 2313–28.

    Article  PubMed  CAS  Google Scholar 

  26. Storch, M. and H. Lassmann, Pathology and pathogenesis of demyelinating diseases. Curr Opin Neurol, 1997. 10: 186–92.

    Article  PubMed  CAS  Google Scholar 

  27. Lucchinetti, C., W. Bruck, J. Parisi, et al., A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain, 1999. 122(Pt 12): 2279–95.

    Article  PubMed  Google Scholar 

  28. Inaba, K. and R.M. Steinman, Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J Exp Med, 1984. 160: 1717–35.

    Article  PubMed  CAS  Google Scholar 

  29. Croft, M. and S.L. Swain, B cell response to fresh and effector T helper cells. Role of cognate T-B interaction and the cytokines IL-2, 1L-4, and IL-6. J Immunol, 1991. 146: 4055–64.

    PubMed  CAS  Google Scholar 

  30. Gausas, J., P.Y. Paterson, E.D. Day, et al., Intact B-cell activity is essential for complete expression of experimental allergic encephalomyelitis in Lewis rats. Cell Immunol, 1982. 72: 360–6.

    Article  PubMed  CAS  Google Scholar 

  31. Willenborg, D.O., P. Sjollema, and G. Danta, Immunoglobulin deficient rats as donors and recipients of effector cells of allergic encephalomyelitis. J Neuroimmunol, 1986. 11: 93–103.

    Article  PubMed  CAS  Google Scholar 

  32. Myers, K.J., J. Sprent, J.P. Dougherty, et al., Synergy between encephalitogenic T cells and myelin basic protein-specific antibodies in the induction of experimental autoimmune encephalomyelitis. J Neuroimmunol, 1992. 41: 1–8.

    Article  PubMed  CAS  Google Scholar 

  33. Lyons, J.A., M. San, M.P. Happ, et al., B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur J Immunol, 1999. 29: 3432–9.

    Article  PubMed  CAS  Google Scholar 

  34. Lyons, J.A., M.J. Ramsbottom, and A.H. Cross, Critical role of antigen-specific antibody in experimental autoimmune encephalomyelitis induced by recombinant myelin oligodendrocyte glycoprotein. Eur J Immunol, 2002. 32: 1905–13.

    Article  PubMed  CAS  Google Scholar 

  35. Hjelmstrom, P., A.E. Juedes, J. Fjell, et al., B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization. J Immunol, 1998. 161: 4480–3.

    PubMed  CAS  Google Scholar 

  36. Dittel, B.N., T.H. Urbania, and C.A. Janeway, Jr., Relapsing and remitting experimental autoimmune encephalomyelitis in B cell deficient mice. J Autoimmun, 2000. 14: 311–8.

    Article  PubMed  CAS  Google Scholar 

  37. Oliver, A.R., G.M. Lyon, and N.H. Ruddle, Rat and human myelin oligodendrocyte glycoproteins induce experimental autoimmune encephalomyelitis by different mechanisms in C57BL/6 mice. J Immunol, 2003. 171: 462–8.

    PubMed  CAS  Google Scholar 

  38. Lebar, R., C. Lubetzki, C. Vincent, et al., The M2 autoantigen of central nervous system myelin, a glycoprotein present in oligodendrocyte membrane. Clin Exp Immunol, 1986. 66: 423–34.

    PubMed  CAS  Google Scholar 

  39. Iglesias, A., J. Bauer, T. Litzenburger, et al., T-and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia, 2001. 36: 220–34.

    Article  PubMed  CAS  Google Scholar 

  40. Brunner, C., H. Lassmann, T.V. Waehneldt, et al., Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2′, 3′-cyclic nucleotide 3′-phosphodiesterase in the CNS of adult rats. J Neurochem, 1989. 52: 296–304.

    Article  PubMed  CAS  Google Scholar 

  41. Lassmann, H., K. Kitz, and H.M. Wisniewski, In vivo effect of sera from animals with chronic relapsing experimental allergic encephalomyelitis on central and peripheral myelin. Acta Neuropathol (Berl), 1981. 55: 297–306.

    Article  PubMed  CAS  Google Scholar 

  42. Moore, G.R., U. Traugott, M. Farooq, et al., Experimental autoimmune encephalomyelitis. Augmentation of demyelination by different myelin lipids. Lab Invest, 1984. 51: 416–24.

    PubMed  CAS  Google Scholar 

  43. Linington, C., M. Bradl, H. Lassmann, et al., Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol, 1988. 130: 443–54.

    PubMed  CAS  Google Scholar 

  44. Lucchinetti, C.F., W. Bruck, M. Rodriguez, et al., Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol, 1996. 6:259–74.

    PubMed  CAS  Google Scholar 

  45. Genain, C.P., B. Cannella, S.L. Hauser, et al., Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med, 1999. 5: 170–5.

    Article  PubMed  CAS  Google Scholar 

  46. Sun, J., H. Link, T. Olsson, et al., T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J Immunol, 1991. 146: 1490–5.

    PubMed  CAS  Google Scholar 

  47. Xiao, B.G., C. Linington, and H. Link, Antibodies to myelin-oligodendrocyte glycoprotein in cerebrospinal fluid from patients with multiple sclerosis and controls. J Neuroimmunol, 1991. 31: 91–6.

    Article  PubMed  CAS  Google Scholar 

  48. Seil, F.J., Effects of humoral factors on myelin in organotypic cultures, in Multiple Sclerosis: Current Status of Research and Treatment, R.M. Herndon and F.J. Seil, Editors. 1994, Demos Publications: New York. p. 33–50.

    Google Scholar 

  49. Gene, K., D.L. Dona, and A.T. Reder, Increased CD80(+) B cells in active multiple sclerosis and reversal by interferon beta-1b therapy. J Clin Invest, 1997. 99:2664–71.

    Google Scholar 

  50. Chang, T.T., C. Jabs, R.A. Sobel, et al., Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J Exp Med, 1999. 190: 733–40.

    Article  PubMed  CAS  Google Scholar 

  51. Kuchroo, V.K., C.A. Martin, J.M. Greer, et al., Cytokines and adhesion molecules contribute to the ability of myelin proteolipid protein-specific T cell clones to mediate experimental allergic encephalomyelitis. J Immunol, 1993. 151:4371–82.

    PubMed  CAS  Google Scholar 

  52. Kennedy, M.K., D.S. Torrance, K.S. Picha, et al., Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that 1L-10 mRNA expression correlates with recovery. J Immunol, 1992. 149: 2496–505.

    PubMed  CAS  Google Scholar 

  53. Khoury, S.J., W.W. Hancock, and H.L. Weiner, Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med, 1992. 176: 1355–64.

    Article  PubMed  CAS  Google Scholar 

  54. Skok, J., J. Poudrier, and D. Gray, Dendritic cell-derived IL-12 promotes B cell induction of Th2 differentiation: a feedback regulation of Th1 development. J Immunol, 1999. 163: 4284–91.

    PubMed  CAS  Google Scholar 

  55. Fillatreau, S., C.H. Sweenie, M.J. McGeachy, et al., B cells regulate autoimmunity by provision of IL-10. Nat Immunol, 2002. 3: 944–50.

    Article  PubMed  CAS  Google Scholar 

  56. Wolf, S.D., B.N. Dittel, F. Hardardottir, et al., Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med, 1996. 184: 2271–8.

    Article  PubMed  CAS  Google Scholar 

  57. Bettelli, E., M.P. Das, E.D. Howard, et al., 1L-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10-and IL-4-deficient and transgenic mice. J Immunol, 1998. 161: 3299–306.

    PubMed  CAS  Google Scholar 

  58. Samoilova, E.B., J.L. Horton, and Y. Chen, Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell Immunol, 1998. 188: 118–24.

    Article  PubMed  CAS  Google Scholar 

  59. Macaulay, A.E., R.H. DeKruyff, C.C. Goodnow, et al., Antigen-specific B cells preferentially induce CD4+ T cells to produce IL-4. J Immunol, 1997. 158:4171–9.

    PubMed  CAS  Google Scholar 

  60. Day, M.J., A.G. Tse, M. Puklavec, et al., Targeting autoantigen to B cells prevents the induction of a cell-mediated autoimmune disease in rats. J Exp Med, 1992. 175: 655–9.

    Article  PubMed  CAS  Google Scholar 

  61. Saoudi, A., S. Simmonds, I. Huitinga, et al., Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of the autoantigen-specific T cells. J Exp Med, 1995. 182: 335–44.

    Article  PubMed  CAS  Google Scholar 

  62. Rodriguez, M., V.A. Lennon, E.N. Benveniste, et al., Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J Neuropathol Exp Neurol, 1987. 46:84–95.

    PubMed  CAS  Google Scholar 

  63. Rodriguez, M. and V.A. Lennon, Immunoglobulins promote remyelination in the central nervous system. Ann Neurol, 1990. 27: 12–7.

    Article  PubMed  CAS  Google Scholar 

  64. Rodriguez, M., Immunoglobulins stimulate central nervous system remyelination: electron microscopic and morphometric analysis of proliferating cells. Lab Invest, 1991. 64: 358–70.

    PubMed  CAS  Google Scholar 

  65. Varitek, V.A., Jr. and E.D. Day, Studies of rat antibodies specific for myelin basic protein (MBP). Antibody-dependent cell-mediated lysis of MBP-sensitized targets in vitro. J Neuroimmunol, 1981. 1: 27–39.

    Article  PubMed  Google Scholar 

  66. Smith, M.E., Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech, 2001. 54: 81–94.

    Article  PubMed  CAS  Google Scholar 

  67. Ahmed, Z., D. Gveric, G. Pryce, et al., Myelin/axonal pathology in interleukin-12 induced serial relapses of experimental allergic encephalomyelitis in the Lewis rat. Am J Pathol, 2001. 158: 2127–38.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lin, X., Constantinescu, C.S. (2005). B Cells and Antibodies in Experimental Autoimmune Encephalomyelitis. In: Lavi, E., Constantinescu, C.S. (eds) Experimental Models of Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25518-4_13

Download citation

Publish with us

Policies and ethics