Skip to main content

Transmitter-Identified Neurons and Afferent Innervation of the Lateral Hypothalamic Area

Focus on hypocretin and melanin-concentrating hormone

  • Chapter
Hypocretins

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13. References

  1. C. von Economo, Sleep as a problem of localization, J. Nerv. Ment. Dis. 71, 249–259 (1930).

    Article  Google Scholar 

  2. S. W. Ranson, Somnolence caused by hypothalamic lesions in the monkey, Arch. Neurol. Psychiatry. 41, 1–23 (1939).

    Google Scholar 

  3. A. W. Hetherington and S. W. Ranson, Hypothalamic lesions and adiposity in the rat, Anat. Rec. 78, 149–172 (1940).

    Article  Google Scholar 

  4. B. K. Anand and J. R. Brobeck, Hypothalamic control of food intake in rats and cats, Yale J Biol Med. 24, 123–40 (1951a).

    PubMed  CAS  Google Scholar 

  5. B. K. Anand and J. R. Brobeck, Localization of a “feeding center” in the hypothalamus of the rat, Proc Soc Exp Biol Med. 77, 323–4 (1951b).

    PubMed  CAS  Google Scholar 

  6. E. M. Stricker, A. F. Swerdloff and M. J. Zigmond, Intrahypothalamic injections of kainic acid produce feeding and drinking deficits in rats, Brain Res. 158, 470–3 (1978).

    Article  PubMed  CAS  Google Scholar 

  7. E. Stellar, The physiology of motivation, Psychol Rev. 61, 5–22 (1954).

    Article  PubMed  CAS  Google Scholar 

  8. L. L. Bernardis and L. L. Bellinger, The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism, Neurosci Biobehav Rev. 17, 141–93 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. L. L. Bernardis and L. L. Bellinger, The lateral hypothalamic area revisited: ingestive behavior, Neurosci Biobehav Rev. 20, 189–287 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. C. B. Saper, Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections, J Comp Neurol. 237, 21–46 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. H. Kawauchi, I. Kawazoe, M. Tsubokawa, M. Kishida and B. I. Baker, Characterization of melanin-concentrating hormone in chum salmon pituitaries, Nature. 305, 321–3 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. J. M. Vaughan, W. H. Fischer, C. Hoeger, J. Rivier and W. Vale, Characterization of melanin-concentrating hormone from rat hypothalamus, Endocrinology. 125, 1660–5 (1989).

    PubMed  CAS  Google Scholar 

  13. B. Griffond and B. I. Baker, Cell and molecular cell biology of melanin-concentrating hormone, Int Rev Cytol. 213, 233–77 (2002).

    PubMed  CAS  Google Scholar 

  14. G. Skofitsch, D. M. Jacobowitz and N. Zamir, Immunohistochemical localization of a melanin concentrating hormone-like peptide in the rat brain, Brain Res Bull. 15, 635–49 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. F. Presse, G. Hervieu, T. Imaki, P. E. Sawchenko, W. Vale and J. L. Nahon, Rat melanin-concentrating hormone messenger ribonucleic acid expression: marked changes during development and after stress and glucocorticoid stimuli, Endocrinology. 131, 1241–50 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. J. C. Bittencourt, F. Presse, C. Arias, C. Peto, J. Vaughan, J. L. Nahon, W. Vale and P. E. Sawchenko, The melanin-concentrating hormone system of the rat brain: an immuno-and hybridization histochemical characterization, J Comp Neurol. 319, 218–45 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. C. Köhler, L. Haglund and L. W. Swanson, A diffuse alpha MSH-immunoreactive projection to the hippocampus and spinal cord from individual neurons in the lateral hypothalamic area and zona incerta, J Comp Neurol. 223, 501–14 (1984).

    Article  PubMed  Google Scholar 

  18. N. Naito, I. Kawazoe, Y. Nakai, H. Kawauchi and T. Hirano, Coexistence of immunoreactivity for melanin-concentrating hormone and alpha-melanocyte-stimulating hormone in the hypothalamus of the rat, Neurosci Lett. 70, 81–5 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. M. Kawata, K. Hashimoto, J. Takahara and Y. Sano, Immunohistochemical demonstration of the localization of corticotropin releasing factor-containing neurons in the hypothalamus of mammals including primates, Anat Embryol (Berl). 165, 303–13 (1982).

    Article  CAS  Google Scholar 

  20. I. Merchenthaler, S. Vigh, A. V. Schally and P. Petrusz, Immunocytochemical localization of growth hormone-releasing factor in the rat hypothalamus, Endocrinology. 114, 1082–5 (1984).

    PubMed  CAS  Google Scholar 

  21. P. Y. Risold, D. Fellmann, D. Lenys and C. Bugnon, Coexistence of acetylcholinesterase-, human growth hormone-releasing factor(1–37)-, alpha-melanotropin-and melanin-concentrating hormone-like immunoreactivities in neurons of the rat hypothalamus: a light and electron microscope study, Neurosci Lett. 100, 23–8 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. J. L. Nahon, F. Presse, J. C. Bittencourt, P. E. Sawchenko and W. Vale, The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus, Endocrinology. 125, 2056–65 (1989).

    PubMed  CAS  Google Scholar 

  23. C. B. Saper, H. Akil and S. J. Watson, Lateral hypothalamic innervation of the cerebral cortex: immunoreactive staining for a peptide resembling but immunochemically distinct from pituitary/arcuate alpha-melanocyte stimulating hormone, Brain Res Bull. 16, 107–20 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. D. Qu, D. S. Ludwig, S. Gammeltoft, M. Piper, M. A. Pelleymounter, M. J. Cullen, W. F. Mathes, R. Przypek, R. Kanarek and E. Maratos-Flier, A role for melanin-concentrating hormone in the central regulation of feeding behaviour, Nature. 380, 243–7 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. M. Rossi, S. J. Choi, D. O’Shea, T. Miyoshi, M. A. Ghatei and S. R. Bloom, Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight, Endocrinology. 138, 351–5 (1997).

    Article  PubMed  CAS  Google Scholar 

  26. K. M. Gautvik, L. de Lecea, V. T. Gautvik, P. E. Danielson, P. Tranque, A. Dopazo, F. E. Bloom and J. G. Sutcliffe, Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction, Proc Natl Acad Sci U S A. 93, 8733–8 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. L. de Lecea, T. S. Kilduff, C. Peyron, X. Gao, P. E. Foye, P. E. Danielson, C. Fukuhara, E. L. Battenberg, V. T. Gautvik, F. S. Bartlett, 2nd, W. N. Frankel, A. N. van den Pol, F. E. Bloom, K. M. Gautvik and J. G. Sutcliffe, The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity, Proc Natl Acad Sci U S A. 95, 322–7 (1998).

    Article  PubMed  Google Scholar 

  28. T. Sakurai, A. Amemiya, M. Ishii, I. Matsuzaki, R. M. Chemelli, H. Tanaka, S. C. Williams, J. A. Richarson, G. P. Kozlowski, S. Wilson, J. R. Arch, R. E. Buckingham, A. C. Haynes, S. A. Carr, R. S. Annan, D. E. McNulty, W. S. Liu, J. A. Terrett, N. A. Elshourbagy, D. J. Bergsma and M. Yanagisawa, Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior, Cell. 92, 1 page following 696 (1998).

    Google Scholar 

  29. R. M. Chemelli, J. T. Willie, C. M. Sinton, J. K. Elmquist, T. Scammell, C. Lee, J. A. Richardson, S. C. Williams, Y. Xiong, Y. Kisanuki, T. E. Fitch, M. Nakazato, R. E. Hammer, C. B. Saper and M. Yanagisawa, Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation, Cell. 98, 437–51 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. J. Hara, C. T. Beuckmann, T. Nambu, J. T. Willie, R. M. Chemelli, C. M. Sinton, F. Sugiyama, K. Yagami, K. Goto, M. Yanagisawa and T. Sakurai, Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity, Neuron. 30, 345–54 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. C. Broberger, L. De Lecea, J. G. Sutcliffe and T. Hokfelt, Hypocretin/orexin-and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems, J Comp Neurol. 402, 460–74 (1998a).

    Article  PubMed  CAS  Google Scholar 

  32. C. Peyron, D. K. Tighe, A. N. van den Pol, L. de Lecea, H. C. Heller, J. G. Sutcliffe and T. S. Kilduff, Neurons containing hypocretin (orexin) project to multiple neuronal systems, J Neurosci. 18, 9996–10015 (1998).

    PubMed  CAS  Google Scholar 

  33. C. F. Elias, C. B. Saper, E. Maratos-Flier, N. A. Tritos, C. Lee, J. Kelly, J. B. Tatro, G. E. Hoffman, M. M. Ollmann, G. S. Barsh, T. Sakurai, M. Yanagisawa and J. K. Elmquist, Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area, J Comp Neurol. 402, 442–59 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. J. L. Guan, K. Uehara, S. Lu, Q. P. Wang, H. Funahashi, T. Sakurai, M. Yanagizawa and S. Shioda, Reciprocal synaptic relationships between orexin-and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation, Int J Obes Relat Metab Disord. 26, 1523–32 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. E. E. Abrahamson and R. Y. Moore, The posterior hypothalamic area: chemoarchitecture and afferent connections, Brain Res. 889, 1–22 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. P. Kristensen, M. E. Judge, L. Thim, U. Ribel, K. N. Christjansen, B. S. Wulff, J. T. Clausen, P. B. Jensen, O. D. Madsen, N. Vrang, P. J. Larsen and S. Hastrup, Hypothalamic CART is a new anorectic peptide regulated by leptin, Nature. 393, 72–6 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. P. D. Lambert, P. R. Couceyro, K. M. McGirr, S. E. Dall Vechia, Y. Smith and M. J. Kuhar, CART peptides in the central control of feeding and interactions with neuropeptide Y, Synapse. 29, 293–8 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. C. Broberger, Cocaine-and amphetamine-regulated transcript (CART) and food intake: Behavior in search of anatomy, Drug. Dev. Res. 51, 124–142 (2000).

    Article  CAS  Google Scholar 

  39. C. Broberger, Hypothalamic cocaine-and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y, Brain Res. 848, 101–13 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. C. F. Elias, C. E. Lee, J. F. Kelly, R. S. Ahima, M. Kuhar, C. B. Saper and J. K. Elmquist, Characterization of CART neurons in the rat and human hypothalamus, J Comp Neurol. 432, 1–19 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. C. Peyron and Y. Charnay, Hypocretin (orexin) and CART peptides are co-expressed in human but not in rodents’ hypothalamus, FENS Meet Abstr. (2002).

    Google Scholar 

  42. Y. L. Hurd and P. Fagergren, Human cocaine-and amphetamine-regulated transcript (CART) mRNA is highly expressed in limbic-and sensory-related brain regions, J Comp Neurol. 425, 583–98 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. B. Griffond, A. Deray, D. Fellmann, P. Ciofi, D. Croix and C. Bugnon, Colocalization of prolactin-and dynorphin-like substances in a neuronal population of the rat lateral hypothalamus, Neurosci Lett. 156, 91–5 (1993).

    Article  PubMed  CAS  Google Scholar 

  44. T. C. Chou, C. E. Lee, J. Lu, J. K. Elmquist, J. Hara, J. T. Willie, C. T. Beuckmann, R. M. Chemelli, T. Sakurai, M. Yanagisawa, C. B. Saper and T. E. Scammell, Orexin (hypocretin) neurons contain dynorphin, J Neurosci. 21, RC168 (2001).

    PubMed  CAS  Google Scholar 

  45. B. A. Gosnell, J. E. Morley and A. S. Levine, Opioid-induced feeding: localization of sensitive brain sites, Brain Res. 369, 177–84 (1986).

    Article  PubMed  CAS  Google Scholar 

  46. K. S. Eriksson, O. A. Sergeeva, O. Selbach and H. L. Haas, Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons, Eur J Neurosci. 19, 1278–84 (2004).

    Article  PubMed  Google Scholar 

  47. V. Cvetkovic, F. Poncet, D. Fellmann, B. Griffond and P. Y. Risold, Diencephalic neurons producing melanin-concentrating hormone are influenced by local and multiple extra-hypothalamic tachykininergic projections through the neurokinin 3 receptor, Neuroscience. 119, 1113–45 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. R. Cortes, S. Ceccatelli, M. Schalling and T. Hokfelt, Differential effects of intracerebroventricular colchicine administration on the expression of mRNAs for neuropeptides and neurotransmitter enzymes, with special emphasis on galanin: an in situ hybridization study, Synapse. 6, 369–91 (1990).

    Article  PubMed  CAS  Google Scholar 

  49. B. Griffond, P. Ciofi, L. Bayer, C. Jacquemard and D. Fellmann, Immunocytochemical detection of the neurokinin B receptor (NK3) on melanin-concentrating hormone (MCH) neurons in rat brain, J Chem Neuroanat. 12, 183–9 (1997).

    Article  PubMed  CAS  Google Scholar 

  50. F. Brischoux, V. Cvetkovic, B. Griffond, D. Fellmann and P. Y. Risold, Time of genesis determines projection and neurokinin-3 expression patterns of diencephalic neurons containing melanin-concentrating hormone, Eur J Neurosci. 16, 1672–80 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. G. Skofitsch and D. M. Jacobowitz, Immunohistochemical mapping of galanin-like neurons in the rat central nervous system, Peptides. 6, 509–46 (1985).

    Article  PubMed  CAS  Google Scholar 

  52. T. Melander, T. Hokfelt and A. Rokaeus, Distribution of galaninlike immunoreactivity in the rat central nervous system, J Comp Neurol. 248, 475–517 (1986).

    Article  PubMed  CAS  Google Scholar 

  53. M. Håkansson, L. de Lecea, J. G. Sutcliffe, M. Yanagisawa and B. Meister, Leptin receptor-and STAT3-immunoreactivities in hypocretin/orexin neurons of the lateral hypothalamus, J Neuroendocrinol. 11, 653–63 (1999).

    Article  PubMed  Google Scholar 

  54. M. J. Alexander, M. A. Miller, D. M. Dorsa, B. P. Bullock, R. H. Melloni, Jr., P. R. Dobner and S. E. Leeman, Distribution of neurotensin/neuromedin N mRNA in rat forebrain: unexpected abundance in hippocampus and subiculum, Proc Natl Acad Sci U S A. 86, 5202–6 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. B. Griffond, S. Grillon, J. Duval, C. Colard, C. Jacquemard, A. Deray and D. Fellmann, Occurrence of secretogranin II in the prolactin-immunoreactive neurons of the rat lateral hypothalamus: an in situ hybridization and immunocytochemical study, J Chem Neuroanat. 9, 113–9 (1995).

    Article  PubMed  CAS  Google Scholar 

  56. L. Bayer, G. Mairet-Coello, P. Y. Risold and B. Griffond, Orexin/hypocretin neurons: chemical phenotype and possible interactions with melanin-concentrating hormone neurons, Regul Pept. 104, 33–9 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. R. M. Lechan and I. M. Jackson, Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary, Endocrinology. 111, 55–65 (1982).

    PubMed  CAS  Google Scholar 

  58. O. Johansson, T. Hokfelt and R. P. Elde, Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat, Neuroscience. 13, 265–339 (1984).

    Article  PubMed  CAS  Google Scholar 

  59. L. Paut-Pagano, J. L. Valatx, K. Kitahama and M. Jouvet, [Prolactin-secreting neurons in the dorsolateral hypothalamus in Sprague-Dawley rats], C R Acad Sci III. 309, 369–76 (1989).

    PubMed  CAS  Google Scholar 

  60. P. Y. Risold, B. Griffond, T. S. Kilduff, J. G. Sutcliffe and D. Fellmann, Preprohypocretin (orexin) and prolactin-like immunoreactivity are coexpressed by neurons of the rat lateral hypothalamic area, Neurosci Lett. 259, 153–6 (1999).

    Article  PubMed  CAS  Google Scholar 

  61. S. R. Vincent and H. Kimura, Histochemical mapping of nitric oxide synthase in the rat brain, Neuroscience. 46, 755–84 (1992).

    Article  PubMed  CAS  Google Scholar 

  62. D. J. Cutler, R. Morris, M. L. Evans, R. A. Leslie, J. R. Arch and G. Williams, Orexin-A immunoreactive neurons in the rat hypothalamus do not contain neuronal nitric oxide synthase (nNOS), Peptides. 22, 123–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  63. S. O. Fetissov, Z. Q. Xu, L. C. Byrne, H. Hassani, P. Ernfors and T. Hökfelt, Neuropeptide y targets in the hypothalamus: nitric oxide synthesizing neurons express Y1 receptor, J Neuroendocrinol. 15, 754–60 (2003).

    Article  PubMed  CAS  Google Scholar 

  64. T. Hökfelt, O. Johansson, A. Ljungdahl, J. M. Lundberg and M. Schultzberg, Peptidergic neurons, Nature. 284, 515–21 (1980).

    Article  PubMed  Google Scholar 

  65. A. N. van den Pol, J. P. Wuarin and F. E. Dudek, Glutamate, the dominant excitatory transmitter in neuroendocrine regulation, Science. 250, 1276–8 (1990).

    Article  PubMed  Google Scholar 

  66. C. Decavel and A. N. Van den Pol, GABA: a dominant neurotransmitter in the hypothalamus, J Comp Neurol. 302, 1019–37 (1990).

    Article  PubMed  CAS  Google Scholar 

  67. E. E. Abrahamson, R. K. Leak and R. Y. Moore, The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems, Neuroreport. 12, 435–40 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. M. Collin, M. Backberg, M. L. Ovesjo, G. Fisone, R. H. Edwards, F. Fujiyama and B. Meister, Plasma membrane and vesicular glutamate transporter mRNAs/proteins in hypothalamic neurons that regulate body weight, Eur J Neurosci. 18, 1265–78 (2003).

    Article  PubMed  Google Scholar 

  69. D. L. Rosin, M. C. Weston, C. P. Sevigny, R. L. Stornetta and P. G. Guyenet, Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2, J Comp Neurol. 465, 593–603 (2003).

    Article  PubMed  CAS  Google Scholar 

  70. C. S. Lin, M. A. Nicolelis, J. S. Schneider and J. K. Chapin, A major direct GABAergic pathway from zona incerta to neocortex, Science. 248, 1553–6 (1990).

    Article  PubMed  CAS  Google Scholar 

  71. M. Palkovits and H. Van Cuc, Quantitative light and electron microscopic studies on the lateral hypothalamus in rat. Cell and synaptic densities, Brain Res Bull. 5, 643–7 (1980).

    Article  PubMed  CAS  Google Scholar 

  72. K. M. Knigge, D. Baxter-Grillo, J. Speciale and J. Wagner, Melanotropic peptides in the mammalian brain: the melanin-concentrating hormone, Peptides. 17, 1063–73 (1996).

    Article  PubMed  CAS  Google Scholar 

  73. F. C. Barone, M. J. Wayner, S. L. Scharoun, R. Guevara-Aguilar and H. U. Aguilar-Baturoni, Afferent connections to the lateral hypothalamus: a horseradish peroxidase study in the rat, Brain Res Bull. 7, 75–88 (1981).

    Article  PubMed  CAS  Google Scholar 

  74. H. Kita and Y. Oomura, An HRP study of the afferent connections to rat lateral hypothalamic region, Brain Res Bull. 8, 63–71 (1982a).

    Article  PubMed  CAS  Google Scholar 

  75. Y. Date, Y. Ueta, H. Yamashita, H. Yamaguchi, S. Matsukura, K. Kangawa, T. Sakurai, M. Yanagisawa and M. Nakazato, Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems, Proc Natl Acad Sci U S A. 96, 748–53 (1999).

    Article  PubMed  CAS  Google Scholar 

  76. A. N. van den Pol, C. Acuna-Goycolea, K. R. Clark and P. K. Ghosh, Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection, Neuron. 42, 635–52 (2004).

    Article  PubMed  Google Scholar 

  77. J. H. Zhang, S. Sampogna, F. R. Morales and M. H. Chase, Orexin (hypocretin)-like immunoreactivity in the cat hypothalamus: a light and electron microscopic study, Sleep. 24, 67–76 (2001).

    PubMed  CAS  Google Scholar 

  78. P. Trivedi, H. Yu, D. J. MacNeil, L. H. Van der Ploeg and X. M. Guan, Distribution of orexin receptor mRNA in the rat brain, FEBS Lett. 438, 71–5 (1998).

    Article  PubMed  CAS  Google Scholar 

  79. J. N. Marcus, C. J. Aschkenasi, C. E. Lee, R. M. Chemelli, C. B. Saper, M. Yanagisawa and J. K. Elmquist, Differential expression of orexin receptors 1 and 2 in the rat brain, J Comp Neurol. 435, 6–25 (2001).

    Article  PubMed  CAS  Google Scholar 

  80. G. J. Hervieu, J. E. Cluderay, D. C. Harrison, J. C. Roberts and R. A. Leslie, Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord, Neuroscience. 103, 777–97 (2001).

    Article  PubMed  CAS  Google Scholar 

  81. M. Bäckberg, G. Hervieu, S. Wilson and B. Meister, Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake, Eur J Neurosci. 15, 315–28 (2002).

    Article  PubMed  Google Scholar 

  82. A. W. Sailer, H. Sano, Z. Zeng, T. P. McDonald, J. Pan, S. S. Pong, S. D. Feighner, C. P. Tan, T. Fukami, H. Iwaasa, D. L. Hreniuk, N. R. Morin, S. J. Sadowski, M. Ito, A. Bansal, B. Ky, D. J. Figueroa, Q. Jiang, C. P. Austin, D. J. MacNeil, A. Ishihara, M. Ihara, A. Kanatani, L. H. Van der Ploeg, A. D. Howard and Q. Liu, Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R, Proc Natl Acad Sci U S A. 98, 7564–9 (2001).

    Article  PubMed  CAS  Google Scholar 

  83. G. J. Hervieu, J. E. Cluderay, D. Harrison, J. Meakin, P. Maycox, S. Nasir and R. A. Leslie, The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat, Eur J Neurosci. 12, 1194–216 (2000).

    Article  PubMed  CAS  Google Scholar 

  84. Y. Saito, M. Cheng, F. M. Leslie and O. Civelli, Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain, J Comp Neurol. 435, 26–40 (2001).

    Article  PubMed  CAS  Google Scholar 

  85. M. A. Mullett, C. J. Billington, A. S. Levine and C. M. Kotz, Hypocretin I in the lateral hypothalamus activates key feeding-regulatory brain sites, Neuroreport. 11, 103–8 (2000).

    Article  PubMed  CAS  Google Scholar 

  86. X. B. Gao and A. N. van den Pol, Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus, J Physiol. 533, 237–52 (2001).

    Article  PubMed  CAS  Google Scholar 

  87. X. B. Gao and A. N. van den Pol, Melanin-concentrating hormone depresses L-, N-, and P/Q-type voltagedependent calcium channels in rat lateral hypothalamic neurons, J Physiol. 542, 273–86 (2002).

    Article  PubMed  CAS  Google Scholar 

  88. X. B. Gao, P. K. Ghosh and A. N. van den Pol, Neurons synthesizing melanin-concentrating hormone identified by selective reporter gene expression after transfection in vitro: transmitter responses, J Neurophysiol. 90, 3978–85 (2003).

    Article  PubMed  CAS  Google Scholar 

  89. M. G. Dube, S. P. Kalra and P. S. Kalra, Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action, Brain Res. 842, 473–7 (1999).

    Article  PubMed  CAS  Google Scholar 

  90. A. N. van den Pol, X. B. Gao, K. Obrietan, T. S. Kilduff and A. B. Belousov, Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin, J Neurosci. 18, 7962–71 (1998).

    PubMed  Google Scholar 

  91. T. L. Horvath, S. Diano and A. N. van den Pol, Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations, J Neurosci. 19, 1072–87 (1999a).

    PubMed  CAS  Google Scholar 

  92. Y. Li, X. B. Gao, T. Sakurai and A. N. van den Pol, Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system, Neuron. 36, 1169–81 (2002).

    Article  PubMed  CAS  Google Scholar 

  93. C. B. Saper, T. C. Chou and T. E. Scammell, The sleep switch: hypothalamic control of sleep and wakefulness, Trends Neurosci. 24, 726–31 (2001).

    Article  PubMed  CAS  Google Scholar 

  94. C. B. Saper, L. W. Swanson and W. M. Cowan, An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat, J Comp Neurol. 183, 689–706 (1979).

    Article  PubMed  CAS  Google Scholar 

  95. J. G. Veening, L. W. Swanson, W. M. Cowan, R. Nieuwenhuys and L. M. Geeraedts, The medial forebrain bundle of the rat. II. An autoradiographic study of the topography of the major descending and ascending components, J Comp Neurol. 206, 82–108 (1982).

    Article  PubMed  CAS  Google Scholar 

  96. W. J. S. Krieg, The hypothalamus of the albino rat, J. Comp. Neurol. 55, 12–89 (1932).

    Article  Google Scholar 

  97. L. W. Swanson. (1987). The hypothalamus. In The handbook of chemical neuroanatomy (Björklund, A., Hökfelt, T. & Swanson, L. W., eds.), Vol. 5, “Integrated systems of the CNS”, pp. 1–124. Elsevier, Amsterdam.

    Google Scholar 

  98. R. B. Simerly. (1995). Anatomical substrates of hypothalamic integration. In The rat nervous system 2 edit. (Paxinos, G., ed.), pp. 353–376. Academic Press, San Diego.

    Google Scholar 

  99. U. Ungerstedt, Is interruption of the nigro-striatal dopamine system producing the “lateral hypothalamus syndrome”?, Acta Physiol Scand. 80, 35A–36A (1970).

    Article  PubMed  CAS  Google Scholar 

  100. P. E. Sawchenko, Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in, J Comp Neurol. 402, 435–41 (1998).

    Article  PubMed  CAS  Google Scholar 

  101. B. M. Chronwall, Anatomy and physiology of the neuroendocrine arcuate nucleus, Peptides. 6Suppl 2, 1–11 (1985).

    Article  PubMed  CAS  Google Scholar 

  102. B. J. Everitt, B. Meister, T. Hökfelt, T. Melander, L. Terenius, A. Rökaeus, E. Theodorsson-Norheim, G. Dockray, J. Edwardson, C. Cuello, R. Elde, M. Goldstein, H. Hemmings, C. Ouimet, I. Walaas, P. Greengard, W. Vale, E. Weber, J.-Y. Wu and K.-J. Chang, The hypothalamic arcuate nucleus-median eminence complex: immunohistochemistry of transmitters, peptides and DARPP-32 with special reference to coexistence in dopamine neurons, Brain Res. 396, 97–155 (1986).

    Article  PubMed  CAS  Google Scholar 

  103. C. Broberger and T. Hökfelt, Hypothalamic and vagal neuropeptide circuitries regulating food intake, Physiol Behav. 74, 669–82 (2001).

    Article  PubMed  CAS  Google Scholar 

  104. H. J. Grill and J. M. Kaplan, The neuroanatomical axis for control of energy balance, Front Neuroendocrinol. 23, 2–40 (2002).

    Article  PubMed  CAS  Google Scholar 

  105. J. W. Olney, Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate, Science. 164, 719–21 (1969).

    Article  PubMed  CAS  Google Scholar 

  106. J. T. Clark, P. S. Kalra, W. R. Crowley and S. P. Kalra, Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats, Endocrinology. 115, 427–9 (1984).

    Article  PubMed  CAS  Google Scholar 

  107. B. G. Stanley, W. Magdalin, A. Seirafi, W. J. Thomas and S. F. Leibowitz, The perifornical area: the major focus of (a) patchily distributed hypothalamic neuropeptide Y-sensitive feeding system(s), Brain Res. 604, 304–17 (1993).

    Article  PubMed  CAS  Google Scholar 

  108. R. Poggioli, A. V. Vergoni and A. Bertolini, ACTH-(1-24) and alpha-MSH antagonize feeding behavior stimulated by kappa opiate agonists, Peptides. 7, 843–8 (1986).

    Article  PubMed  CAS  Google Scholar 

  109. W. Fan, B. A. Boston, R. A. Kesterson, V. J. Hruby and R. D. Cone, Role of melanocortinergic neurons in feeding and the agouti obesity syndrome, Nature. 385, 165–8 (1997).

    Article  PubMed  CAS  Google Scholar 

  110. T. W. Stephens, M. Basinski, P. K. Bristow, J. M. Bue-Valleskey, S. G. Burgett, L. Craft, J. Hale, J. Hoffmann, H. M. Hsiung, A. Kriauciunas and et al., The role of neuropeptide Y in the antiobesity action of the obese gene product, Nature. 377, 530–2 (1995).

    Article  PubMed  CAS  Google Scholar 

  111. C. F. Elias, C. Aschkenasi, C. Lee, J. Kelly, R. S. Ahima, C. Bjorbaek, J. S. Flier, C. B. Saper and J. K. Elmquist, Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area, Neuron. 23, 775–86 (1999).

    Article  PubMed  CAS  Google Scholar 

  112. T. L. Horvath, I. Bechmann, F. Naftolin, S. P. Kalra and C. Leranth, Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations, Brain Res. 756, 283–6 (1997).

    Article  PubMed  CAS  Google Scholar 

  113. M. L. Ovesjö, M. Gamstedt, M. Collin and B. Meister, GABAergic nature of hypothalamic leptin target neurons in the ventromedial arcuate nucleus, J Neuroendocrinol. 13, 505–16 (2001).

    Article  PubMed  Google Scholar 

  114. F. L. Bai, M. Yamano, Y. Shiotani, P. C. Emson, A. D. Smith, J. F. Powell and M. Tohyama, An arcuato-paraventricular and-dorsomedial hypothalamic neuropeptide Y-containing system which lacks noradrenaline in the rat, Brain Res. 331, 172–5 (1985).

    Article  PubMed  CAS  Google Scholar 

  115. P. E. Sawchenko, L. W. Swanson, R. Grzanna, P. R. Howe, S. R. Bloom and J. M. Polak, Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus, J Comp Neurol. 241, 138–53 (1985).

    Article  PubMed  CAS  Google Scholar 

  116. T. M. Hahn, J. F. Breininger, D. G. Baskin and M. W. Schwartz, Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons, Nat Neurosci. 1, 271–2 (1998).

    Article  PubMed  CAS  Google Scholar 

  117. J. L. Guan, T. Saotome, Q. P. Wang, H. Funahashi, T. Hori, S. Tanaka and S. Shioda, Orexinergic innervation of POMC-containing neurons in the rat arcuate nucleus, Neuroreport. 12, 547–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  118. M. Niimi, M. Sato and T. Taminato, Neuropeptide Y in central control of feeding and interactions with orexin and leptin, Endocrine. 14, 269–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  119. M. R. Jain, T. L. Horvath, P. S. Kalra and S. P. Kalra, Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats, Regul Pept. 87, 19–24 (2000).

    Article  PubMed  CAS  Google Scholar 

  120. A. Yamanaka, K. Kunii, T. Nambu, N. Tsujino, A. Sakai, I. Matsuzaki, Y. Miwa, K. Goto and T. Sakurai, Orexin-induced food intake involves neuropeptide Y pathway, Brain Res. 859, 404–9 (2000).

    Article  PubMed  CAS  Google Scholar 

  121. D. A. Ewald, P. C. Sternweis and R. J. Miller, Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons, Proc Natl Acad Sci U S A. 85, 3633–7 (1988).

    Article  PubMed  CAS  Google Scholar 

  122. Q. Q. Sun, J. R. Huguenard and D. A. Prince, Neuropeptide Y receptors differentially modulate G-protein-activated inwardly rectifying K+ channels and high-voltage-activated Ca2+ channels in rat thalamic neurons, J Physiol. 531, 67–79 (2001).

    Article  PubMed  CAS  Google Scholar 

  123. H. Zheng, M. M. Corkern, S. M. Crousillac, L. M. Patterson, C. B. Phifer and H. R. Berthoud, Neurochemical phenotype of hypothalamic neurons showing Fos expression 23 h after intracranial AgRP, Am J Physiol Regul Integr Comp Physiol. 282, R1773–81 (2002).

    PubMed  CAS  Google Scholar 

  124. B. Beck, S. Richy, T. Dimitrov and A. Stricker-Krongrad, Opposite regulation of hypothalamic orexin and neuropeptide Y receptors and peptide expressions in obese Zucker rats, Biochem Biophys Res Commun. 286, 518–23 (2001).

    Article  PubMed  CAS  Google Scholar 

  125. R. Hanada, M. Nakazato, S. Matsukura, N. Murakami, H. Yoshimatsu and T. Sakata, Differential regulation of melanin-concentrating hormone and orexin genes in the agouti-related protein/melanocortin-4 receptor system, Biochem Biophys Res Commun. 268, 88–91 (2000).

    Article  PubMed  CAS  Google Scholar 

  126. C. Broberger, J. Johansen, C. Johansson, M. Schalling and T. Hökfelt, The neuropeptide Y/agouti generelated protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice, Proc Natl Acad Sci U S A. 95, 15043–8 (1998b).

    Article  PubMed  CAS  Google Scholar 

  127. A. G. Watts, Understanding the neural control of ingestive behaviors: helping to separate cause from effect with dehydration-associated anorexia, Horm Behav. 37, 261–83 (2000).

    Article  PubMed  CAS  Google Scholar 

  128. H. R. Berthoud, Multiple neural systems controlling food intake and body weight, Neurosci Biobehav Rev. 26, 393–428 (2002).

    Article  PubMed  Google Scholar 

  129. R. A. Jacobs, M. I. Jordan, S. J. Nowlan and G. E. Hinton, Adapative mixtures of local experts, Neuronal Comput. 3, 79–87 (1991).

    Google Scholar 

  130. A. M. Graybiel, T. Aosaki, A. W. Flaherty and M. Kimura, The basal ganglia and adaptive motor control, Science. 265, 1826–31 (1994).

    Article  PubMed  CAS  Google Scholar 

  131. D. L. Margules and J. Olds, Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rats, Science. 135, 374–5 (1962).

    Article  PubMed  CAS  Google Scholar 

  132. G. E. Hermann and R. C. Rogers, Convergence of vagal and gustatory afferent input within the parabrachial nucleus of the rat, J Auton Nerv Syst. 13, 1–17 (1985).

    Article  PubMed  CAS  Google Scholar 

  133. L. W. Swanson and G. D. Petrovich, What is the amygdala?, Trends Neurosci. 21, 323–31 (1998).

    Article  PubMed  CAS  Google Scholar 

  134. H. Herbert, M. M. Moga and C. B. Saper, Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat, J Comp Neurol. 293, 540–80 (1990).

    Article  PubMed  CAS  Google Scholar 

  135. G. J. Ter Horst, P. de Boer, P. G. Luiten and J. D. van Willigen, Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat, Neuroscience. 31, 785–97 (1989).

    Article  PubMed  Google Scholar 

  136. R. Y. Moore and V. B. Eichler, Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat, Brain Res. 42, 201–6 (1972).

    Article  PubMed  CAS  Google Scholar 

  137. F. K. Stephan and I. Zucker, Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions, Proc Natl Acad Sci U S A. 69, 1583–6 (1972).

    Article  PubMed  CAS  Google Scholar 

  138. R. M. Buijs and A. Kalsbeek, Hypothalamic integration of central and peripheral clocks, Nat Rev Neurosci. 2, 521–6 (2001).

    Article  PubMed  CAS  Google Scholar 

  139. A. G. Watts, L. W. Swanson and G. Sanchez-Watts, Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat, J Comp Neurol. 258, 204–29 (1987).

    Article  PubMed  CAS  Google Scholar 

  140. S. Taheri, D. Sunter, C. Dakin, S. Moyes, L. Seal, J. Gardiner, M. Rossi, M. Ghatei and S. Bloom, Diurnal variation in orexin A immunoreactivity and prepro-orexin mRNA in the rat central nervous system, Neurosci Lett. 279, 109–12 (2000).

    Article  PubMed  CAS  Google Scholar 

  141. Y. Yoshida, N. Fujiki, T. Nakajima, B. Ripley, H. Matsumura, H. Yoneda, E. Mignot and S. Nishino, Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities, Eur J Neurosci. 14, 1075–81 (2001).

    Article  PubMed  CAS  Google Scholar 

  142. S. Zhang, J. M. Zeitzer, Y. Yoshida, J. P. Wisor, S. Nishino, D. M. Edgar and E. Mignot, Lesions of the Suprachiasmatic Nucleus Eliminate the Daily Rhythm of Hypocretin-1 Release, Sleep. 27, 619–627 (2004).

    PubMed  Google Scholar 

  143. R. M. Buijs, Y. X. Hou, S. Shinn and L. P. Renaud, Ultrastructural evidence for intra-and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus, J Comp Neurol. 340, 381–91 (1994).

    Article  PubMed  CAS  Google Scholar 

  144. J. Lu, Y. H. Zhang, T. C. Chou, S. E. Gaus, J. K. Elmquist, P. Shiromani and C. B. Saper, Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation, J Neurosci. 21, 4864–74 (2001).

    PubMed  CAS  Google Scholar 

  145. H. Kita and Y. Oomura, An anterograde HRP study of retinal projections to the hypothalamus in the rat, Brain Res Bull. 8, 249–53 (1982b).

    Article  PubMed  CAS  Google Scholar 

  146. J. E. Sherin, P. J. Shiromani, R. W. McCarley and C. B. Saper, Activation of ventrolateral preoptic neurons during sleep, Science. 271, 216–9 (1996).

    Article  PubMed  CAS  Google Scholar 

  147. J. E. Sherin, J. K. Elmquist, F. Torrealba and C. B. Saper, Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat, J Neurosci. 18, 4705–21 (1998).

    PubMed  CAS  Google Scholar 

  148. T. C. Chou, A. A. Bjorkum, S. E. Gaus, J. Lu, T. E. Scammell and C. B. Saper, Afferents to the ventrolateral preoptic nucleus, J Neurosci. 22, 977–90 (2002).

    PubMed  CAS  Google Scholar 

  149. S. Satoh, H. Matsumura, A. Fujioka, T. Nakajima, T. Kanbayashi, S. Nishino, Y. Shigeyoshi and H. Yoneda, FOS expression in orexin neurons following muscimol perfusion of preoptic area, Neuroreport. 15, 1127–31 (2004).

    Article  PubMed  CAS  Google Scholar 

  150. P. G. Luiten and P. Room, Interrelations between lateral, dorsomedial and ventromedial hypothalamic nuclei in the rat. An HRP study, Brain Res. 190, 321–32 (1980).

    Article  PubMed  CAS  Google Scholar 

  151. R. H. Thompson and L. W. Swanson, Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat, Brain Res Brain Res Rev. 27, 89–118 (1998).

    Article  PubMed  CAS  Google Scholar 

  152. L. L. Bernardis and L. L. Bellinger, The dorsomedial hypothalamic nucleus revisited: 1998 update, Proc Soc Exp Biol Med. 218, 284–306 (1998).

    PubMed  CAS  Google Scholar 

  153. T. C. Chou, T. E. Scammell, J. J. Gooley, S. E. Gaus, C. B. Saper and J. Lu, Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms, J Neurosci. 23, 10691–702 (2003).

    PubMed  CAS  Google Scholar 

  154. G. J. Ter Horst and P. G. Luiten, Phaseolus vulgaris leuco-agglutinin tracing of intrahypothalamic connections of the lateral, ventromedial, dorsomedial and paraventricular hypothalamic nuclei in the rat, Brain Res Bull. 18, 191–203 (1987).

    Article  PubMed  Google Scholar 

  155. T. L. Horvath, C. Peyron, S. Diano, A. Ivanov, G. Aston-Jones, T. S. Kilduff and A. N. van Den Pol, Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system, J Comp Neurol. 415, 145–59 (1999b).

    Article  PubMed  CAS  Google Scholar 

  156. R. J. Liu, A. N. van den Pol and G. K. Aghajanian, Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions, J Neurosci. 22, 9453–64 (2002).

    PubMed  CAS  Google Scholar 

  157. E. Mignot, S. Taheri and S. Nishino, Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders, Nat Neurosci. 5Suppl, 1071–5 (2002).

    Article  PubMed  CAS  Google Scholar 

  158. J. G. Sutcliffe and L. de Lecea, The hypocretins: setting the arousal threshold, Nat Rev Neurosci. 3, 339–49(2002).

    Article  PubMed  CAS  Google Scholar 

  159. B. Falck, N. Å. Hillarp, G. Thieme and A. Torp, Fluorescence of catechol amines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10, 348–354 (1962).

    CAS  Google Scholar 

  160. N. E. Anden, A. Dahlstrom, K. Fuxe and K. Larsson, Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon, Life Sci. 4, 1275–9 (1965).

    Article  PubMed  CAS  Google Scholar 

  161. K. Fuxe, Evidence for the Existence of Monoamine Neurons in the Central Nervous System. 3. The Monoamine Nerve Terminal, Z Zellforsch Mikrosk Anat. 65, 573–96 (1965).

    Article  PubMed  CAS  Google Scholar 

  162. L. W. Swanson and B. K. Hartman, The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker, J Comp Neurol. 163, 467–505 (1975).

    Article  PubMed  CAS  Google Scholar 

  163. S. F. Leibowitz and L. L. Brown, Histochemical and pharmacological analysis of catecholaminergic projections to the perifornical hypothalamus in relation to feeding inhibition, Brain Res. 201, 315–45(1980).

    Article  PubMed  CAS  Google Scholar 

  164. B. A. Baldo, R. A. Daniel, C. W. Berridge and A. E. Kelley, Overlapping distributions of orexin/hypocretin-and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress, J Comp Neurol. 464, 220–37 (2003).

    Article  PubMed  Google Scholar 

  165. S. F. Leibowitz, M. Jhanwar-Uniyal, B. Dvorkin and M. H. Makman, Distribution of alpha-adrenergic, beta-adrenergic and dopaminergic receptors in discrete hypothalamic areas of rat, Brain Res. 233, 97–114(1982).

    Article  PubMed  CAS  Google Scholar 

  166. A. Yamanaka, Y. Muraki, N. Tsujino, K. Goto and T. Sakurai, Regulation of orexin neurons by the monoaminergic and cholinergic systems, Biochem Biophys Res Commun. 303, 120–9 (2003b).

    Article  PubMed  CAS  Google Scholar 

  167. T. Hökfelt, K. Fuxe, M. Goldstein and O. Johansson, Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain, 66, 235–251 (1974).

    Google Scholar 

  168. H. W. Steinbusch and R. Nieuwenhuys, Localization of serotonin-like immunoreactivity in the central nervous system and pituitary of the rat, with special references to the innervation of the hypothalamus, Adv Exp Med Biol. 133, 7–35 (1981).

    PubMed  CAS  Google Scholar 

  169. M. Collin, M. Backberg, K. Onnestam and B. Meister, 5-HT1A receptor immunoreactivity in hypothalamic neurons involved in body weight control, Neuroreport. 13, 945–51 (2002).

    Article  PubMed  CAS  Google Scholar 

  170. A. Gutierrez, G. Saracibar, L. Casis, E. Echevarria, V. M. Rodriguez, M. T. Macarulla, L. C. Abecia and M. P. Portillo, Effects of fluoxetine administration on neuropeptide y and orexins in obese zucker rat hypothalamus, Obes Res. 10, 532–40 (2002).

    Article  PubMed  CAS  Google Scholar 

  171. M. el Mansari, K. Sakai and M. Jouvet, Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats, Exp Brain Res. 76, 519–29 (1989).

    Article  PubMed  Google Scholar 

  172. C. Peyron, J. Faraco, W. Rogers, B. Ripley, S. Overeem, Y. Charnay, S. Nevsimalova, M. Aldrich, D. Reynolds, R. Albin, R. Li, M. Hungs, M. Pedrazzoli, M. Padigaru, M. Kucherlapati, J. Fan, R. Maki, G. J. Lammers, C. Bouras, R. Kucherlapati, S. Nishino and E. Mignot, A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains, Nat Med. 6, 991–7 (2000).

    Article  PubMed  CAS  Google Scholar 

  173. T. C. Thannickal, R. Y. Moore, R. Nienhuis, L. Ramanathan, S. Gulyani, M. Aldrich, M. Cornford and J. M. Siegel, Reduced number of hypocretin neurons in human narcolepsy, Neuron. 27, 469–74 (2000).

    Article  PubMed  CAS  Google Scholar 

  174. J. H. Haring and J. N. Davis, Acetylcholinesterase neurons in the lateral hypothalamus project to the spinal cord, Brain Res. 268, 275–83 (1983).

    Article  PubMed  CAS  Google Scholar 

  175. L. Bayer, P. Y. Risold, B. Griffond and D. Fellmann, Rat diencephalic neurons producing melaninconcentrating hormone are influenced by ascending cholinergic projections, Neuroscience. 91, 1087–101(1999).

    Article  PubMed  CAS  Google Scholar 

  176. M. Yamada, T. Miyakawa, A. Duttaroy, A. Yamanaka, T. Moriguchi, R. Makita, M. Ogawa, C. J. Chou, B. Xia, J. N. Crawley, C. C. Felder, C. X. Deng and J. Wess, Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean, Nature. 410, 207–12 (2001).

    Article  PubMed  CAS  Google Scholar 

  177. H. Haas and P. Panula, The role of histamine and the tuberomamillary nucleus in the nervous system, Nat Rev Neurosci. 4, 121–30 (2003).

    Article  PubMed  CAS  Google Scholar 

  178. T. Watanabe, Y. Taguchi, S. Shiosaka, J. Tanaka, H. Kubota, Y. Terano, M. Tohyama and H. Wada, Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker, Brain Res. 295, 13–25 (1984).

    Article  PubMed  CAS  Google Scholar 

  179. D. A. McCormick and A. Williamson, Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal, J Neurosci. 11, 3188–99(1991).

    PubMed  CAS  Google Scholar 

  180. K. H. Lee, C. Broberger, U. Kim and D. A. McCormick, Histamine modulates thalamocortical activity by activating a chloride conductance in ferret perigeniculate neurons, Proc Natl Acad Sci U S A. 101, 6716–21 (2004).

    Article  PubMed  CAS  Google Scholar 

  181. G. J. Mogenson, L. W. Swanson and M. Wu, Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat, J Neurosci. 3, 189–202 (1983).

    PubMed  CAS  Google Scholar 

  182. L. Heimer, D. S. Zahm, L. Churchill, P. W. Kalivas and C. Wohltmann, Specificity in the projection patterns of accumbal core and shell in the rat, Neuroscience. 41, 89–125 (1991).

    Article  PubMed  CAS  Google Scholar 

  183. C. S. Maldonado-Irizarry, C. J. Swanson and A. E. Kelley, Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus, J Neurosci. 15, 6779–88 (1995).

    PubMed  CAS  Google Scholar 

  184. B. A. Baldo, L. Gual-Bonilla, K. Sijapati, R. A. Daniel, C. F. Landry and A. E. Kelley, Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment, Eur J Neurosci. 19, 376–86 (2004).

    Article  PubMed  Google Scholar 

  185. H. Zheng, M. Corkern, I. Stoyanova, L. M. Patterson, R. Tian and H. R. Berthoud, Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons, Am J Physiol Regul Integr Comp Physiol. 284, R1436–44 (2003).

    PubMed  CAS  Google Scholar 

  186. A. E. Kelley, Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning, Neurosci Biobehav Rev. 27, 765–76 (2004).

    Article  PubMed  Google Scholar 

  187. H. Kita and Y. Oomura, Reciprocal connections between the lateral hypothalamus and the frontal complex in the rat: electrophysiological and anatomical observations, Brain Res. 213, 1–16 (1981).

    Article  PubMed  CAS  Google Scholar 

  188. R. M. Beckstead, An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat, J Comp Neurol. 184, 43–62 (1979).

    Article  PubMed  CAS  Google Scholar 

  189. M. Steriade, D. A. McCormick and T. J. Sejnowski, Thalamocortical oscillations in the sleeping and aroused brain, Science. 262, 679–85 (1993).

    Article  PubMed  CAS  Google Scholar 

  190. A. Yamanaka, C. T. Beuckmann, J. T. Willie, J. Hara, N. Tsujino, M. Mieda, M. Tominaga, K. Yagami, F. Sugiyama, K. Goto, M. Yanagisawa and T. Sakurai, Hypothalamic orexin neurons regulate arousal according to energy balance in mice, Neuron. 38, 701–13 (2003a).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Broberger, C., Hökfelt, T. (2005). Transmitter-Identified Neurons and Afferent Innervation of the Lateral Hypothalamic Area. In: de Lecea, L., Sutcliffe, J.G. (eds) Hypocretins. Springer, Boston, MA. https://doi.org/10.1007/0-387-25446-3_7

Download citation

Publish with us

Policies and ethics