Skip to main content

Pulmonary Cell-Mediated Immunity (CMI) to Cryptococcus neoformans

  • Chapter
Fungal Immunology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguirre, K., Havell, E.A., Gibson, G.W., and Johnson, L.L. (1995). Role of tumor necrosis factor and gamma interferon in acquired resistance to Cryptococcus neoformans in the central nervous system of mice. Infect. Immun. 63(5): 1725–1731.

    CAS  PubMed  Google Scholar 

  • Almeida, G.M., Andrade, R.M., and Bento, C.A. (2001). The capsular polysaccharides of Cryptococcus neoformans activate normal CD4(+) T cells in a dominant Th2 pattern. J. Immunol. 167(10): 5845–5851.

    CAS  PubMed  Google Scholar 

  • Arora, S., Hernandez, Y.H., Erb-Downward, J.R., McDonald, R.A., Toews, G.B., and Huffnagle, G.B. (2005a). Role of IFN-γ in regulating T2 immunity and the development of alternatively activated macrophages during Cryptococcus neoformans infection. J. Immunol. (in press).

    Google Scholar 

  • Bauman, S.K., Huffnagle, G.B., and Murphy, J.W. (2003). Effects of tumor necrosis factor alpha on dendritic cell accumulation in lymph nodes draining the immunization site and the impact on the anticryptococcal cell-mediated immune response. Infect. Immun. 71(1): 68–74.

    Article  CAS  PubMed  Google Scholar 

  • Baumgarth, N. and Kelso, A. (1996). Functionally distinct T cells in three compartments of the respiratory tract after influenza virus infection. Eur. J. Immunol. 26(9): 2189–2197.

    CAS  PubMed  Google Scholar 

  • Bennett, S.R., Carbone, F.R., Karamalis, F., Flavell, R.A., Miller, J.F., and Heath, W.R. (1998). Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393(6684): 478–480.

    CAS  PubMed  Google Scholar 

  • Betz, M. and Fox, B.S. (1991). Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol. 146(1): 108–113.

    CAS  PubMed  Google Scholar 

  • Biondo, C., Beninati, C., Delfino, D., Oggioni, M., Mancuso, G., Midiri, A., Bombaci, M., Tomaselli, G., and Teti, G. (2002). Identification and cloning of a cryptococcal deacetylase that produces protective immune responses. Infect. Immun. 70(5): 2383–2391.

    Article  CAS  PubMed  Google Scholar 

  • Blackstock, R. and Murphy, J.W. (2004). Role of interleukin-4 in resistance to Cryptococcus neoformans infection. Am. J. Respir. Cell Mol. Biol. 30(1): 109–117.

    CAS  PubMed  Google Scholar 

  • Buchanan, K.L. and Murphy, J.W. (1998). What makes Cryptococcus neoformans a pathogen? Emerg. Infect. Dis. 4(1): 71–83.

    CAS  PubMed  Google Scholar 

  • Chen, G.H., Curtis, J.L., Mody, C.H., Christensen, P.J., Armstrong, L.R., and Toews, G.B. (1994). Effect of granulocyte-macrophage colony-stimulating factor on rat alveolar macrophage anticryptococcal activity in vitro. J. Immunol. 152(2): 724–734.

    CAS  PubMed  Google Scholar 

  • Chiapello, L.S., Aoki, M.P., Rubinstein, H.R., and Masih, D.T. (2003). Apoptosis induction by glucuronoxylomannan of Cryptococcus neoformans. Med. Mycol. 41(4): 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Chiller, T., Farrokhshad, K., Brummer, E., and Stevens, D.A. (2002). Effect of granulocyte colony-stimulating factor and granulocytemacrophage colony-stimulating factor on polymorphonuclear neutrophils, monocytes or monocyte-derived macrophages combined with voriconazole against Cryptococcus neoformans. Med. Mycol. 40(1): 21–26.

    CAS  PubMed  Google Scholar 

  • Collins, H.L. and Bancroft, G.J. (1991). Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses. Infect. Immun. 59(11): 3883–3888.

    CAS  PubMed  Google Scholar 

  • Collins, H.L. and Bancroft, G.J. (1992). Cytokine enhancement of complement-dependent phagocytosis by macrophages: Synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur. J. Immunol. 22(6): 1447–1454.

    CAS  PubMed  Google Scholar 

  • Curtis, J.L., Huffnagle, G.B., Chen, G.H., Warnock, M.L., Gyetko, M.R., McDonald, R.A., Scott, P.J., and Toews, G.B. (1994). Experimental murine pulmonary cryptococcosis. Differences in pulmonary inflammation and lymphocyte recruitment induced by two encapsulated strains of Cryptococcus neoformans. Lab. Invest. 71(1): 113–126.

    CAS  PubMed  Google Scholar 

  • Decken, K., Kohler, G., Palmer-Lehmann, K., Wunderlin, F., Mattner, F., Magram, J., Gately, M.K., and Alber, G. (1998). Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect. Immun. 66(10): 4994–5000.

    CAS  PubMed  Google Scholar 

  • Dong, Z.M. and Murphy, J.W. (1993). Mobility of human neutrophils in response to Cryptococcus neoformans cells, culture filtrate antigen, and individual components of the antigen. Infect. Immun. 61(12): 5067–5077.

    CAS  PubMed  Google Scholar 

  • Dong, Z.M. and Murphy, J.W. (1995). Intravascular cryptococcal culture filtrate (CneF) and its major component, glucuronoxylomannan, are potent inhibitors of leukocyte accumulation. Infect. Immun. 63(3): 770–778.

    CAS  PubMed  Google Scholar 

  • Dong, Z.M., Jackson, L., and Murphy, J.W. (1999). Mechanisms for induction of L-selectin loss from T lymphocytes by a cryptococcal polysaccharide, glucuronoxylomannan. Infect. Immun. 67(1): 220–229.

    CAS  PubMed  Google Scholar 

  • Fries, B.C., Taborda, C.P., Serfass, E., and Casadevall, A. (2001). Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection. J. Clin. Invest. 108(11): 1639–1648.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, K., Kobayashi, M., Sasaki, H., Herndon, D.N., Pollard, R.B., and Suzuki, F. (2002). Cryptococcal encephalitis in thermally injured mice is accelerated by type 2 T-cell responses. Crit. Care Med. 30(7): 1419–1424.

    CAS  PubMed  Google Scholar 

  • Goerdt, S. and Orfanos, C.E. (1999). Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity 10(2): 137–142.

    Article  CAS  PubMed  Google Scholar 

  • Goldman, D.L., Fries, B.C., Franzot, S.P., Montella, L., and Casadevall, A. (1998). Phenotypic switching in the human pathogenic fungus Cryptococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc. Natl. Acad. Sci. USA 95(25): 14967–14972.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, J.R., Noble, A., Denning, D.W., and Stevens, D.A. (1991). Performance of Cryptococcus antigen latex agglutination kits on serum and cerebrospinal fluid specimens of AIDS patients before and after pronase treatment. J. Clin. Microbiol. 29(2): 333–339.

    CAS  PubMed  Google Scholar 

  • Harrison, T.S., Kornfeld, H., and Levitz, S.M. (1995). The effect of infection with human immunodeficiency virus on the anticryptococcal activity of lymphocytes and monocytes. J. Infect. Dis. 172(3): 665–671.

    CAS  PubMed  Google Scholar 

  • Hernandez, Y.H., Erb-Downward, J.R., McDonald, R.A., Toews, G.B., and Huffnagle, G.B. (2005a). Distinct roles for IL-4 and IL-10 in regulating T2 immunity during allergic bronchopulmonary mycosis. J. Immunol. 174(2): 1027–1036.

    CAS  PubMed  Google Scholar 

  • Herring, A.C., Lee, J., McDonald, R.A., Toews, G.B., and Huffnagle, G.B. (2002). Induction of interleukin-12 and gamma interferon requires tumor necrosis factor alpha for protective T1-cell-mediated immunity to pulmonary Cryptococcus neoformans infection. Infect. Immun. 70(6): 2959–2964.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J.O. and Harmsen, A.G. (1991). Intrapulmonary growth and dissemination of an avirulent strain of Cryptococcus neoformans in mice depleted of CD4+ or CD8+ T cells. J. Exp. Med. 173(3): 755–758.

    CAS  PubMed  Google Scholar 

  • Hoag, K.A., Lipscomb, M.F., Izzo, A.A., and Street, N.E. (1997). IL-12 and IFN-gamma are required for initiating the protective Th1 response to pulmonary cryptococcosis in resistant C.B-17 mice. Am. J. Respir. Cell Mol. Biol. 17(6): 733–739.

    CAS  PubMed  Google Scholar 

  • Honda, K., Arima, M., Cheng, G., Taki, S., Hirata, H., Eda, F., Fukushima, F., Yamaguchi, B., Hatano, M., Tokuhisa, T., and Fukuda, T. (2003). Prostaglandin D2 reinforces Th2 type inflammatory responses of airways to low-dose antigen through bronchial expression of macrophage-derived chemokine. J. Exp. Med. 198(4): 533–543.

    Article  CAS  PubMed  Google Scholar 

  • Howard, A.D. and Zwilling, B.S. (1998). Cytokine production by CD4 and CD8 T cells during the growth of Mycobacterium tuberculosis in mice. Clin. Exp. Immunol. 113(3): 443–449.

    Article  CAS  PubMed  Google Scholar 

  • Hoy, J.F., Lewis, D.E., and Miller, G.G. (1988). Functional versus phenotypic analysis of T cells in subjects seropositive for the human immunodeficiency virus: A prospective study of in vitro responses to Cryptococcus neoformans. J. Infect. Dis. 158(5): 1071–1078.

    CAS  PubMed  Google Scholar 

  • Hoy, J.F., Murphy, J.W., and Miller, G.G. (1989). T cell response to soluble cryptococcal antigens after recovery from cryptococcal infection. J. Infect. Dis. 159(1): 116–119.

    CAS  PubMed  Google Scholar 

  • Huang, C., Nong, S.H., Mansour, M.K., Specht, C.A., and Levitz, S.M. (2002). Purification and characterization of a second immunoreactive mannoprotein from Cryptococcus neoformans that stimulates T-cell responses. Infect. Immun. 70(10): 5485–5493.

    Article  CAS  PubMed  Google Scholar 

  • Huffnagle, G.B., Yates, J.L., and Lipscomb, M.F. (1991a). Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells. J. Exp. Med. 173(4): 793–800.

    Article  CAS  PubMed  Google Scholar 

  • Huffnagle, G.B., Yates, J.L, and Lipscomb, M.F. (1991b). T cell-mediated immunity in the lung: A Cryptococcus neoformans pulmonary infection model using SCID and athymic nude mice. Infect. Immun. 59(4): 1423–1433.

    CAS  PubMed  Google Scholar 

  • Huffnagle, G.B., Lipscomb, M.F., Lovchik, J.A., Hoag, K.A., and Street, N.E. (1994). The role of CD4+ and CD8+ T cells in the protective inflammatory response to a pulmonary cryptococcal infection. J. Leukoc. Biol. 55(1): 35–42.

    CAS  PubMed  Google Scholar 

  • Huffnagle, G.B., Chen, G.H., Curtis, J.L., McDonald, R.A., Strieter, R.M., and Toews, G.B. (1995a). Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J. Immunol. 155(7): 3507–3516.

    CAS  PubMed  Google Scholar 

  • Huffnagle, G.B., Strieter, R.M., Standiford, T.J., McDonald, R.A., Burdick, M.D., Kunkel, S.L., and Toews, G.B. (1995b). The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection. J. Immunol. 155(10): 4790–4797.

    CAS  PubMed  Google Scholar 

  • Huffnagle, G.B., Toews, G.B., Burdick, M.D., Boyd, M.B., McAllister, K.S., McDonald, R.A., Kunkel, S.L., and Strieter, R.M. (1996). Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J. Immunol. 157(10): 4529–4536.

    CAS  PubMed  Google Scholar 

  • Huffnagle, G.B., Strieter, R.M., McNeil, L.K., McDonald, R.A., Burdick, M.D., Kunkel, S.L., and Toews, G.B. (1997). Macrophage inflammatory protein-1 alpha (MIP-1alpha) is required for the efferent phase of pulmonary cell-mediated immunity to a Cryptococcus neoformans infection. J. Immunol. 159(1): 318–327.

    CAS  PubMed  Google Scholar 

  • Huffnagle, G.B., Boyd, M.B., Street, N.E., and Lipscomb, M.F. (1998). IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J. Immunol. 160(5): 2393–2400.

    CAS  PubMed  Google Scholar 

  • Huffnagle, G.B., McNeil, L.K., McDonald, R.A., Murphy, J.W., Toews, G.B., Maeda, N., and Kuziel, W.A. (1999). Cutting edge: Role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans. J. Immunol. 163(9): 4642–4646.

    CAS  PubMed  Google Scholar 

  • Humphreys, I.R., Edwards, L., Walzl, G., Rae, A.J., Dougan, G., Hill, S., and Hussell, T. (2003). OX40 Ligation on activated T cells enhances the control of Cryptococcus neoformans and reduces pulmonary eosinophilia. J. Immunol. 170(12): 6125–6132.

    CAS  PubMed  Google Scholar 

  • Iezzi, G., Scheidegger, D., and Lanzavecchia, A. (2001). Migration and function of antigenprimed nonpolarized T lymphocytes in vivo. J. Exp. Med. 193(8): 987–993.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami, K., Tohyama, M., Teruya, K., Kudeken, N., Xie, Q., and Saito, A. (1996a). Contribution of interferon-gamma in protecting mice during pulmonary and disseminated infection with Cryptococcus neoformans. FEMS Immunol. Med. Microbiol. 13(2): 123–130.

    CAS  PubMed  Google Scholar 

  • Kawakami, K., Tohyama, M., Xie, Q., and Saito, A. (1996b). IL-12 protects mice against pulmonary and disseminated infection caused by Cryptococcus neoformans. Clin. Exp. Immunol. 104(2): 208–214.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami, K., Qureshi, M.H., Zhang, T., Okamura, H., Kurimoto, M., and Saito, A. (1997). IL-18 protects mice against pulmonary and disseminated infection with Cryptococcus neoformans by inducing IFN-gamma production. J. Immunol. 159(11): 5528–5534.

    CAS  PubMed  Google Scholar 

  • Kawakami, K., Koguchi, Y., Qureshi, M.H., Kinjo, Y., Yara, S., Miyazato, A., Kurimoto, M., Takeda, K., Akira, S., and Saito, A. (2000). Reduced host resistance and Th1 response to Cryptococcus neoformans in interleukin-18 deficient mice. FEMS Microbiol. Lett. 186(1): 121–126.

    CAS  PubMed  Google Scholar 

  • Kawakami, K., Kinjo, Y., Uezu, K., Yara, S., Miyagi, K., Koguchi, Y., Nakayama, T., Taniguchi, M., and Saito, A. (2001a). Monocyte chemoattractant protein-1-dependent increase of V alpha 14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J. Immunol. 167(11): 6525–6532.

    CAS  PubMed  Google Scholar 

  • Kawakami, K., Kinjo, Y., Yara, S., Koguchi, Y., Uezu, K., Nakayama, T., Taniguchi, M., and Saito, A. (2001b). Activation of Vα4+ natural killer T cells by α-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun. 69(1): 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Kurup, V.P. and Grunig, G. (2002). Animal models of allergic bronchopulmonary aspergillosis. Mycopathologia 153(4): 165–177.

    Article  CAS  PubMed  Google Scholar 

  • Levitz, S.M. and Dupont, M.P. (1993). Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro. J. Clin. Invest. 91(4): 1490–1498.

    CAS  PubMed  Google Scholar 

  • Levitz, S.M., Dupont, M.P., and Smail, E.H. (1994). Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans. Infect. Immun. 62(1): 194–202.

    CAS  PubMed  Google Scholar 

  • Levitz, S.M., Nong, S., Mansour, M.K., Huang, C., and Specht, C.A. (2001). Molecular characterization of a mannoprotein with homology to chitin deacetylases that stimulates T cell responses to Cryptococcus neoformans. Proc. Natl. Acad. Sci. USA 98(18): 10422–10427.

    Article  CAS  PubMed  Google Scholar 

  • Lim, T.S. and Murphy, J.W. (1980). Transfer of immunity to cryptococcosis by T-enriched splenic lymphocytes from Cryptococcus neoformans-sensitized mice. Infect. Immun. 30(1): 5–11.

    CAS  PubMed  Google Scholar 

  • Lindell, D.M., G.B. Toews, R.A. McDonald and G.B. Huffnagle (2005a). Distinct Compartmentalization of CD4+ T Cell Effector function versus Proliferative Capacity During Pulmonary Cryptococcosis. Submitted for publication.

    Google Scholar 

  • Lindell, D.M., G.B. Toews, R.A. McDonald and G.B. Huffnagle (2005b). Generation of Antifungal Effector CD8+ T cells in the Absence of CD4+ T cells During Cryptococcus neoformans Infection. Submitted for publication.

    Google Scholar 

  • Lovchik, J.A., Lyons, C.R., and Lipscomb, M.F. (1995). A role for gamma interferon-induced nitric oxide in pulmonary clearance of Cryptococcus neoformans. Am. J. Respir. Cell Mol. Biol. 13(1): 116–124.

    CAS  PubMed  Google Scholar 

  • Ma, L.L., Spurrell, J.C., Wang, J.F., Neely, G.G., Epelman, S., Krensky, A.M., and Mody, C.H. (2002). CD8 T cell-mediated killing of Cryptococcus neoformans requires granulysin and is dependent on CD4 T cells and IL-15. J. Immunol. 169(10): 5787–5795.

    CAS  PubMed  Google Scholar 

  • Mansour, M.K., Schlesinger, L.S., and Levitz, S.M. (2002). Optimal T cell responses to Cryptococcus neoformans mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. J. Immunol. 168(6): 2872–2879.

    CAS  PubMed  Google Scholar 

  • Mariano Andrade, R., Monteiro Almeida, G., Alexandre DosReis, G., and Alves Melo Bento, C. (2003). Glucuronoxylomannan of Cryptococcus neoformans exacerbates in vitro yeast cell growth by interleukin 10-dependent inhibition of CD4+ T lymphocyte responses. Cell. Immunol. 222(2): 116–125.

    Article  CAS  PubMed  Google Scholar 

  • McGaha, T. and Murphy, J.W. (2000). CTLA-4 down-regulates the protective anticryptococcal cell-mediated immune response. Infect. Immun. 68(8): 4624–4630.

    Article  CAS  PubMed  Google Scholar 

  • Mednick, A.J., Feldmesser, M., Rivera, J., and Casadevall, A. (2003). Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosis. Eur. J. Immunol. 33(6): 1744–1753.

    Article  CAS  PubMed  Google Scholar 

  • Mencacci, A., Del Sero, G., Cenci, E., d’Ostiani, C.F., Bacci, A., Montagnoli, C., Kopf, M., and Romani, L. (1998). Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. J. Exp. Med. 187(3): 307–317.

    Article  CAS  PubMed  Google Scholar 

  • Micallef, M.J., Ohtsuki, T., Kohno, K., Tanabe, F., Ushio, S., Namba, M., Tanimoto, T., Torigoe, K., Fujii, M., Ikeda, M., Fukuda, S., and Kurimoto, M. (1996). Interferon-gammainducing factor enhances T helper 1 cytokine production by stimulated human T cells: Synergism with interleukin-12 for interferongamma production. Eur. J. Immunol. 26(7): 1647–1651.

    CAS  PubMed  Google Scholar 

  • Miller, G.P. and Puck, J. (1984). In vitro human lymphocyte responses to Cryptococcus neoformans. Evidence for primary and secondary responses in normals and infected subjects. J. Immunol. 133(1): 166–172.

    CAS  PubMed  Google Scholar 

  • Mody, C.H., Lipscomb, M.F., Street, N.E., and Toews, G.B. (1990). Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J. Immunol. 144(4): 1472–1477.

    CAS  PubMed  Google Scholar 

  • Mody, C.H., Chen, G.H., Jackson, C., Curtis, J.L., and Toews, G.B. (1993a). Depletion of murine CD8+ T cells in vivo decreases pulmonary clearance of a moderately virulent strain of Cryptococcus neoformans. J. Lab. Clin. Med. 121(6): 765–773.

    CAS  PubMed  Google Scholar 

  • Mody, C.H., Paine, R. III, Jackson, C.J., and Toews, G.B. (1993b). CD8 cells mediate delayed hypersensitivity following intrapulmonary infection with Cryptococcus neoformans. Chest 103(2 Suppl.): 118S.

    CAS  PubMed  Google Scholar 

  • Mody, C.H., Chen, G.H., Jackson, C., Curtis, J.L., and Toews, G.B. (1994). In vivo depletion of murine CD8 positive T cells impairs survival during infection with a highly virulent strain of Cryptococcus neoformans. Mycopathologia 125(1): 7–17.

    Article  CAS  PubMed  Google Scholar 

  • Mody, C.H., Sims, K.L., Wood, C.J., Syme, R.M., Spurrell, J.C., and Sexton, M.M. (1996). Proteins in the cell wall and membrane of Cryptococcus neoformans stimulate lymphocytes from both adults and fetal cord blood to proliferate. Infect. Immun. 64(11): 4811–4819.

    CAS  PubMed  Google Scholar 

  • Mody, C.H., Wood, C.J., Syme, R.M., and Spurrell, J.C. (1999). The cell wall and membrane of Cryptococcus neoformans possess a mitogen for human T lymphocytes. Infect. Immun. 67(2): 936–941.

    CAS  PubMed  Google Scholar 

  • Munder, M., Eichmann, K., and Modolell, M. (1998). Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: Competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160(11): 5347–5354.

    CAS  PubMed  Google Scholar 

  • Murphy, J.W. and Pahlavan, N. (1979). Cryptococcal culture filtrate antigen for detection of delayed-type hypersensitivity in cryptococcosis. Infect. Immun. 25(1): 284–292.

    CAS  PubMed  Google Scholar 

  • Murphy, J.W., Hidore, M.R., and Wong, S.C. (1993). Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J. Clin. Invest. 91(4): 1553–1566.

    CAS  PubMed  Google Scholar 

  • Murphy, J.W., Schafer, F., Casadevall, A., and Adesina, A. (1998). Antigen-induced protective and nonprotective cell-mediated immune components against Cryptococcus neoformans. Infect. Immun. 66(6): 2632–2639.

    CAS  PubMed  Google Scholar 

  • Muth, S.M. and Murphy, J.W. (1995). Direct anticryptococcal activity of lymphocytes from Cryptococcus neoformans-immunized mice. Infect. Immun. 63(5): 1637–1644.

    CAS  PubMed  Google Scholar 

  • Noverr, M.C., Phare, S.M., Toews, G.B., Coffey, M.J., and Huffnagle, G.B. (2001). Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect. Immun. 69(5): 2957–2963.

    Article  CAS  PubMed  Google Scholar 

  • Noverr, M.C., Toews, G.B., and Huffnagle, G.B. (2002). Production of prostaglandins and leukotrienes by pathogenic fungi. Infect. Immun. 70(1): 400–402.

    Article  CAS  PubMed  Google Scholar 

  • Noverr, M.C., Cox, G.M., Perfect, J.R., and Huffnagle, G.B. (2003a). Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect. Immun. 71(3): 1538–1547.

    Article  CAS  PubMed  Google Scholar 

  • Noverr, M.C., Erb-Downward, J.R., and Huffnagle, G.B. (2003b). Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin. Microbiol. Rev. 16(3): 517–533.

    Article  CAS  PubMed  Google Scholar 

  • Okamura, H., Tsutsi, H., Komatsu, T., Yutsudo, M., Hakura, A., Tanimoto, T., Torigoe, K., Okura, T., Nukada, Y., Hattori, K., and et al. (1995). Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378(6552): 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Okamura, H., Tsutsui, H., Kashiwamura, S., Yoshimoto, T., and Nakanishi, K. (1998). Interleukin-18: A novel cytokine that augments both innate and acquired immunity. Adv. Immunol. 70: 281–312.

    CAS  PubMed  Google Scholar 

  • Olszewski, M.A., Huffnagle, G.B., McDonald, R.A., Lindell, D.M., Moore, B.B., Cook, D.N., and Toews, G.B. (2000). The role of macrophage inflammatory protein-1 alpha/CCL3 in regulation of T cell-mediated immunity to Cryptococcus neoformans infection. J. Immunol. 165(11): 6429–6436.

    CAS  PubMed  Google Scholar 

  • Olszewski, M.A., Huffnagle, G.B., Traynor, T.R., McDonald, R.A., Cook, D.N., and Toews, G.B. (2001). Regulatory effects of macrophage inflammatory protein 1α/CCL3 on the development of immunity to Cryptococcus neoformans depend on expression of early inflammatory cytokines. Infect. Immun. 69(10): 6256–6263.

    Article  CAS  PubMed  Google Scholar 

  • Pietrella, D., Perito, S., Bistoni, F., and Vecchiarelli, A. (2001). Cytotoxic T lymphocyte antigen costimulation influences T-cell activation in response to Cryptococcus neoformans. Infect. Immun. 69(3): 1508–1514.

    Article  CAS  PubMed  Google Scholar 

  • Pietrella, D., Mazzolla, R., Lupo, P., Pitzurra, L., Gomez, M.J., Cherniak, R., and Vecchiarelli, A. (2002). Mannoprotein from Cryptococcus neoformans promotes T-helper type 1 anticandidal responses in mice. Infect. Immun. 70(12): 6621–6627.

    Article  CAS  PubMed  Google Scholar 

  • Pitzurra, L., Cherniak, R., Giammarioli, M., Perito, S., Bistoni, F., and Vecchiarelli, A. (2000). Early induction of interleukin-12 by human monocytes exposed to Cryptococcus neoformans mannoproteins. Infect. Immun. 68(2): 558–563.

    Article  CAS  PubMed  Google Scholar 

  • Qureshi, M.H., Zhang, T., Koguchi, Y., Nakashima, K., Okamura, H., Kurimoto, M., and Kawakami, K. (1999). Combined effects of IL-12 and IL-18 on the clinical course and local cytokine production in murine pulmonary infection with Cryptococcus neoformans. Eur. J. Immunol. 29(2): 643–649.

    Article  CAS  PubMed  Google Scholar 

  • Retini, C., Casadevall, A., Pietrella, D., Monari, C., Palazzetti, B., and Vecchiarelli, A. (1999). Specific activated T cells regulate IL-12 production by human monocytes stimulated with Cryptococcus neoformans. J. Immunol. 162(3): 1618–1623.

    CAS  PubMed  Google Scholar 

  • Retini, C., Kozel, T.R., Pietrella, D., Monari, C., Bistoni, F., and Vecchiarelli, A. (2001). Interdependency of interleukin-10 and interleukin-12 in regulation of T-cell differentiation and effector function of monocytes in response to stimulation with Cryptococcus neoformans. Infect. Immun. 69(10): 6064–6073.

    Article  CAS  PubMed  Google Scholar 

  • Ricchetti, A., Landis, B.N., Maffioli, A., Giger, R., Zeng, C., and Lacroix, J.S. (2002). Effect of anti-fungal nasal lavage with amphotericin B on nasal polyposis. J. Laryngol. Otol. 116(4): 261–263.

    Article  PubMed  Google Scholar 

  • Rivera, J., Mukherjee, J., Weiss, L.M., and Casadevall, A. (2002). Antibody efficacy in murine pulmonary Cryptococcus neoformans infection: A role for nitric oxide. J. Immunol. 168(7): 3419–3427.

    CAS  PubMed  Google Scholar 

  • Roberts, C.W., Ferguson, D.J., Jebbari, H., Satoskar, A., Bluethmann, H., and Alexander, J. (1996). Different roles for interleukin-4 during the course of Toxoplasma gondii infection. Infect. Immun. 64(3): 897–904.

    CAS  PubMed  Google Scholar 

  • Salkowski, C.A. and Balish, E. (1990). Pathogenesis of Cryptococcus neoformans in congenitally immunodeficient beige athymic mice. Infect. Immun. 58(10): 3300–3306.

    CAS  PubMed  Google Scholar 

  • Schoenberger, S.P., Toes, R.E., van der Voort, E.I., Offringa, R., and Melief, C.J. (1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393(6684): 480–483.

    Article  CAS  PubMed  Google Scholar 

  • Segal, B.H., Bow, E.J., and Menichetti, F. (2002). Fungal infections in nontransplant patients with hematologic malignancies. Infect. Dis. Clin. North Am. 16(4): 935–964, vii.

    Article  PubMed  Google Scholar 

  • Sergeeva, M.G., Gonchar, M.V., Mevkh, A.T., and Varfolomeyev, S.D. (1997). Prostaglandin E2 biphasic control of lymphocyte proliferation: Inhibition by picomolar concentrations. FEBS Lett. 418(3): 235–238.

    Article  CAS  PubMed  Google Scholar 

  • Shedlock, D.J. and Shen, A. (2003). Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300(5617): 337–339.

    Article  CAS  PubMed  Google Scholar 

  • Snijdewint, F.G., Kalinski, P., Wierenga, E.A., Bos, J.D., and Kapsenberg, M.L. (1993). Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J. Immunol. 150(12): 5321–5329.

    CAS  PubMed  Google Scholar 

  • Stein, M., Keshav, S., Harris, N., and Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J. Exp. Med. 176(1): 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Steinman, R.M. (1996). Dendritic cells and immune-based therapies. Exp. Hematol. 24(8): 859–862.

    CAS  PubMed  Google Scholar 

  • Syme, R.M., Wood, C.J., Wong, H., and Mody, C.H. (1997). Both CD4+ and CD8+ human lymphocytes are activated and proliferate in response to Cryptococcus neoformans. Immunology 92(2): 194–200.

    Article  CAS  PubMed  Google Scholar 

  • Syme, R.M., Bruno, T.F., Kozel, T.R., and Mody, C.H. (1999). The capsule of Cryptococcus neoformans reduces T-lymphocyte proliferation by reducing phagocytosis, which can be restored with anticapsular antibody. Infect. Immun. 67(9): 4620–4627.

    CAS  PubMed  Google Scholar 

  • Syme, R.M., Spurrell, J.C., Ma, L.L., Green, F.H., and Mody, C.H. (2000). Phagocytosis and protein processing are required for presentation of Cryptococcus neoformans mitogen to T lymphocytes. Infect. Immun. 68(11): 6147–6153.

    Article  CAS  PubMed  Google Scholar 

  • Syme, R.M., Spurrell, J.C.L., Amankwah, E.K., Green, F.H.Y., and Mody, C.H. (2002). Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcγ receptor II for presentation to T lymphocytes. Infect Immun. 70(11): 5972–5981.

    Article  CAS  PubMed  Google Scholar 

  • Traynor, T.R. and Huffnagle, G.B. (2001). Role of chemokines in fungal infections. Med. Mycol. 39(1): 41–50.

    CAS  PubMed  Google Scholar 

  • Traynor, T.R., Kuziel, W.A., Toews, G.B., and Huffnagle, G.B. (2000). CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J. Immunol. 164(4): 2021–2027.

    CAS  PubMed  Google Scholar 

  • Traynor, T.R., Herring, A.C., Dorf, M.E., Kuziel, W.A., Toews, G.B., and Huffnagle, G.B. (2002). Differential roles of CC chemokine ligand 2/monocyte chemotactic protein-1 and CCR2 in the development of T1 immunity. J. Immunol. 168(9): 4659–4666.

    CAS  PubMed  Google Scholar 

  • Vecchiarelli, A. (2000). Immunoregulation by capsular components of Cryptococcus neoformans. Med. Mycol. 38(6): 407–417.

    CAS  PubMed  Google Scholar 

  • Vecchiarelli, A., Monari, C., Retini, C., Pietrella, D., Palazzetti, B., Pitzurra, L., and Casadevall, A. (1998). Cryptococcus neoformans differently regulates B7-1 (CD80) and B7-2 (CD86) expression on human monocytes. Eur. J. Immunol. 28(1): 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Vecchiarelli, A., Pietrella, D., Lupo, P., Bistoni, F., McFadden, D.C., and Casadevall, A. (2003). The polysaccharide capsule of Cryptococcus neoformans interferes with human dendritic cell maturation and activation. J. Leukoc. Biol. 74(3): 370–378.

    Article  CAS  PubMed  Google Scholar 

  • Venarske, D.L. and deShazo, R.D. (2002). Sinobronchial allergic mycosis: The SAM syndrome. Chest 121(5): 1670–1676.

    Article  PubMed  Google Scholar 

  • Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., Green, J.M., Thompson, C.B., and Bluestone, J.A. (1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5): 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Walzl, G., Humphreys, I.R., Marshall, B.G., Edwards, L., Openshaw, P.J.M., Shaw, R.J., and Hussell, T. (2003). Prior exposure to live Mycobacterium bovis BCG decreases Cryptococcus neoformans-induced lung eosinophilia in a gamma interferon-dependent manner. Infect. Immun. 71(6): 3384–3391.

    Article  CAS  PubMed  Google Scholar 

  • Wuthrich, M., Filutowicz, H.I., Warner, T., Deepe, G.S. Jr., and Klein, B.S. (2003). Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: Implications for vaccine development in immune-deficient hosts. J. Exp. Med. 197(11): 1405–1416.

    Article  CAS  PubMed  Google Scholar 

  • Yamazumi, T., Pfaller, M.A., Messer, S.A., Houston, A.K., Boyken, L., Hollis, R.J., Furuta, I., and Jones, R.N. (2003). Characterization of heteroresistance to fluconazole among clinical isolates of Cryptococcus neoformans. J. Clin. Microbiol. 41(1): 267–272.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, R.R., Casadevall, A., Oh, J., and Scharff, M.D. (1997). T cells cooperate with passive antibody to modify Cryptococcus neoformans infection in mice. Proc. Natl. Acad. Sci. USA 94(6): 2483–2488.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, R., Clynes, R., Oh, J., Ravetch, J.V., and Scharff, M.D. (1998a). Antibody-mediated modulation of Cryptococcus neoformans infection is dependent on distinct Fc receptor functions and IgG subclasses. J. Exp. Med. 187(4): 641–648.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, R.R., Spira, G., Oh, J., Paizi, M., Casadevall, A., and Scharff, M.D. (1998b). Isotype switching increases efficacy of antibody protection against Cryptococcus neoformans infection in mice. Infect. Immun. 66(3): 1057–1062.

    CAS  PubMed  Google Scholar 

  • Zhang, T., Kawakami, K., Qureshi, M.H., Okamura, H., Kurimoto, M., and Saito, A. (1997). Interleukin-12 (IL-12) and IL-18 synergistically induce the fungicidal activity of murine peritoneal exudate cells against Cryptococcus neoformans through production of gamma interferon by natural killer cells. Infect. Immun. 65(9): 3594–3599.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lindell, D.M., Huffnagle, G.B. (2005). Pulmonary Cell-Mediated Immunity (CMI) to Cryptococcus neoformans. In: Fidel, P.L., Huffnagle, G.B. (eds) Fungal Immunology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25445-5_8

Download citation

Publish with us

Policies and ethics