Skip to main content

Correction for Partial Volume Effects in Emission Tomography

  • Chapter
Quantitative Analysis in Nuclear Medicine Imaging

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zaidi H. and Sossi, V., Correction for image degrading factors is essential for accurate quantification of brain function using PET. Med Phys 31: 423–426 (2004).

    Article  Google Scholar 

  2. Links J. M., Lesion detectability and quantitative recovery with FDG-PET. Eur J Nucl Med 26: 681–682 (1999).

    Google Scholar 

  3. Fazio F. and Perani, D., Importance of partial-volume correction in brain PET studies. J Nucl Med 41: 1849–1850 (2000).

    Google Scholar 

  4. Brooks R. A. and Di Chiro, G., Slice geometry in computer assisted tomography. J Comput Assist Tomogr 1: 191–199 (1977).

    Article  Google Scholar 

  5. Gautschi W., “Error functions and Fresnel integrals.” in: Handbook of Mathematical Functions, edited by Abramowitz M and Segun I A Dover, New-York, (1968), pp 295–330.

    Google Scholar 

  6. Abramowitz M. and Segun, I. A., Handbook of Mathematical Functions, Dover publications, New-York, (1965).

    Google Scholar 

  7. Kessler R. M., Ellis, J. R. and Eden, M., Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8: 514–522 (1984).

    Article  Google Scholar 

  8. Hoffman E. J., Huang, S. C., Plummer, D. et al., Quantitation in positron emission computed tomography: 6. effect of nonuniform resolution. J Comput Assist Tomogr 6: 987–999 (1982).

    Article  Google Scholar 

  9. Hoffman E. J., Huang, S. C. and Phelps, M. E., Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3: 299–308 (1979).

    Article  Google Scholar 

  10. Mazziotta J. C., Phelps, M. E., Plummer, D. et al., Quantitation in positron emission computed tomography: 5. Physical-anatomical effects. J Comput Assist Tomogr 5: 734–743 (1981).

    Article  Google Scholar 

  11. Herscovitch P., Auchus, A. P., Gado, M. et al., Correction of positron emission tomography data for cerebral atrophy. J Cereb Blood Flow Metab 6: 120–124 (1986).

    Google Scholar 

  12. Wahl L. M., Asselin, M. C. and Nahmias, C., Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med 40: 1666–1675 (1999).

    Google Scholar 

  13. Huesman R. H., A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography. Phys Med Biol 29: 543–552 (1984).

    Article  Google Scholar 

  14. Tsui B. M., Hu, H., Gilland, D. et al., Implementation of simulataneous attenuation and detector response in SPECT. IEEE Trans Nucl Sci 35: 778–783 (1988).

    Article  ADS  Google Scholar 

  15. Zeng G. L., Gullberg, G. T., Bai, C. et al., Iterative reconstruction of fluorine-18 SPECT using geometric point response correction. J Nucl Med 39: 124–130 (1998).

    Google Scholar 

  16. King M. A. and Miller, T. R., Use of a nonstationary temporal Wiener filter in nuclear medicine. Eur J Nucl Med 10: 458–461 (1985).

    Article  Google Scholar 

  17. Links J. M., Jeremy, R. W., Dyer, S. M. et al., Wiener filtering improves quantification of regional myocardial perfusion with thallium-201 SPECT. J Nucl Med 31: 1230–1236 (1990).

    Google Scholar 

  18. Links J. M., Becker, L. C., Rigo, P. et al., Combined corrections for attenuation, depth-dependent blur, and motion in cardiac SPECT: a multicenter trial. J Nucl Cardiol 7: 414–425 (2000).

    Article  Google Scholar 

  19. Iida H., Kanno, I., Takahashi, A. et al., Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 78: 104–115 (1988).

    Google Scholar 

  20. Iida H., Law, I., Pakkenberg, B. et al., Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison. J Cereb Blood Flow Metab 20: 1237–1251 (2000).

    Article  Google Scholar 

  21. Chawluk J., Alavi, A., R, D. et al., Positron emission tomography in aging and dementia: effect of cerebral atrophy. J Nucl Med 28: 431–437 (1987).

    Google Scholar 

  22. Muller-Gartner H. W., Links, J. M., Prince, J. L. et al., Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 12: 571–583 (1992).

    Google Scholar 

  23. Rousset O., Ma, Y., Kamber, M. et al., 3D simulations of radiotracer uptake in deep nuclei of human brain. Comput Med Imaging Graph 17: 373–379 (1993).

    Article  Google Scholar 

  24. Rousset O. G., Ma, Y. and Evans, A. C., Correction for partial volume effects in PET: principle and validation. J Nucl Med 39: 904–911 (1998).

    Google Scholar 

  25. Meltzer C. C., Kinahan, P. E., Greer, P. J. et al., Comparative evaluation of MRbased partial-volume correction schemes for PET. J Nucl Med 40: 2053–2065 (1999).

    Google Scholar 

  26. Labbe C., Froment, J. C., Kennedy, A. et al., Positron emission tomography metabolic data corrected for cortical atrophy using magnetic resonance imaging. Alzheimer Dis Assoc Disord 10: 141–170 (1996).

    Article  Google Scholar 

  27. Da Silva A. J., Tang, H. R., Wong, K. H. et al., Absolute quantification of regional myocardial uptake of 99mTc-sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med 42: 772–779 (2001).

    Google Scholar 

  28. Chen C. H., Muzic, R. F., Nelson, A. D. et al., A nonlinear spatially variant object-dependent system model for prediction of partial volume effects and scatter in PET. IEEE Trans Med Imaging 17: 214–227 (1998).

    Article  Google Scholar 

  29. Brix G., Bellemann, M. E., Hauser, H. et al., [Recovery coefficients for the quantification of the arterial input functions from dynamic PET measurements: experimental and theoretical determination]. Nuklearmedizin 41: 184–190 (2002).

    Google Scholar 

  30. Geworski L., Knoop, B. O., de Cabrejas, M. L. et al., Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 27: 161–169 (2000).

    Article  Google Scholar 

  31. Blankespoor S. C., Xu, X., Kaiki, K. et al., Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 43: 2263–2274 (1996).

    Article  ADS  Google Scholar 

  32. Sossi V., Buckley, K. R., Snow, B. J. et al., Recovery of the human striatal signal in a slice oriented positron emission tomograph. J Nucl Med 34: 481–487 (1993).

    Google Scholar 

  33. Shepp L. A. and Vardi, Y., Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1: 113–122 (1982).

    Article  Google Scholar 

  34. Hutton B. F. and Lau, Y. H., Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol 43: 1679–1693 (1998).

    Article  Google Scholar 

  35. Pretorius P. H., King, M. A., Pan, T. S. et al., Reducing the influence of the partial volume effect on SPECT activity quantitation with 3D modelling of spatial resolution in iterative reconstruction. Phys Med Biol 43: 407–420 (1998).

    Article  Google Scholar 

  36. Hutton B. F. and Osiecki, A., Correction of partial volume effects in myocardial SPECT. J Nucl Cardiol 5: 402–413 (1998).

    Article  Google Scholar 

  37. Brix G., Doll, J., Bellemann, M. E. et al., Use of scanner characteristics in iterative image reconstruction for high-resolution positron emission tomography studies of small animals. Eur J Nucl Med 24: 779–786 (1997).

    Google Scholar 

  38. Calvini P., Vitali, P., Nobili, F. et al., Enhancement of SPECT reconstructions by means of coregistered MR data. IEEE Trans Nucl Sci 48: 750–755 (2001).

    Article  ADS  Google Scholar 

  39. Kim H. J., Zeeberg, B. R. and Reba, R. C., Compensation for three-dimensional detector response, attenuation and scatter in SPECT grey matter imaging using an iterative reconstruction algorithm which incorporates a high-resolution anatomical image. J Nucl Med 33: 1225–1234 (1992).

    Google Scholar 

  40. Ouyang X., Wong, W., Johnson, V. et al., Incorporation of correlated structural images in PET image-reconstruction. IEEE Trans Med Imaging 13: 627–640 (1994).

    Article  Google Scholar 

  41. Muzic R. F., Chen, C. H. and Nelson, A. D., A method to correct for scatter, spillover, and partial volume effects in region of interest analysis in PET. IEEE Trans Med Imaging 17: 202–213 (1998).

    Article  Google Scholar 

  42. Chen C. H., Muzic, R. F., Nelson, A. D. et al., Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med 40: 118–130 (1999).

    Google Scholar 

  43. Videen T. O., Perlmutter, J. S., Mintun, M. A. et al., Regional correction of positron emission tomography data for the effects of cerebral atrophy. J Cereb Blood Flow Metab 8: 662–670 (1988).

    Google Scholar 

  44. Meltzer C. C., Cantwell, M. N., Greer, P. J. et al., Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction. J Nucl Med 41: 1842–1848 (2000).

    Google Scholar 

  45. Matsuda H., Ohnishi, T., Asada, T. et al., Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 44: 1243–1252 (2003).

    Google Scholar 

  46. Meltzer C. C., Zubieta, J. K., Links, J. M. et al., MR-based correction of brain PET measurements for heterogeneous gray matter radioactivity distribution. J Cereb Blood Flow Metab 16: 650–658 (1996).

    Article  Google Scholar 

  47. Schoenahl F. and Zaidi, H., “Towards optimal model-based partial volume effect correction in oncological PET.” Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, Oct. 19–22, Rome, Italy, (2004) in press

    Google Scholar 

  48. Rousset O. G., Ma, Y., Marenco, S. et al., “In vivo correction for partial volume effects in PET: accuracy and precision.” in: Quantification of brain function using PET, edited by R. Myers, Cunningham, V., Bailey, DL, Jones, T Academic Press, San Diego, (1996), pp 158–165.

    Chapter  Google Scholar 

  49. Spinks T., Guzzardi, R. and Bellina, C. R., Measurement of resolution and recovery in recent generation positron tomographs. Eur J Nucl Med 15: 750–755 (1989).

    Article  Google Scholar 

  50. Kuwert T., Ganslandt, T., Jansen, P. et al., Influence of size of regions of interest on PET evaluation of caudate glucose consumption. J Comput Assist Tomogr 16: 789–794 (1992).

    Article  Google Scholar 

  51. Kuwert T., Morgenroth, C., Woesler, B. et al., Influence of size of regions of interest on the measurement of uptake of 123I-alpha-methyl tyrosine by brain tumours. Nucl Med Commun 17: 609–615 (1996).

    Article  Google Scholar 

  52. Frouin V., Comtat, C., Reilhac, A. et al., Correction of partial volume effect for PET striatal imaging: fast implementation and study of robustness. J Nucl Med 43: 1715–1726 (2002).

    Google Scholar 

  53. Woods R. P., Mazziotta, J. C. and Cherry, S. R., MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17: 536–546 (1993).

    Article  Google Scholar 

  54. Collins D. L., Neelin, P., Peters, T. M. et al., Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18: 192–205 (1994).

    Article  Google Scholar 

  55. Maes F., Vandermeulen, D. and Suetens, P., Medical image registration using mutual information. Proceedings of the IEEE 91: 1699–1722 (2003).

    Article  Google Scholar 

  56. Robbins S., Evans, A., Collins, D. et al., Tuning and comparing spatial normalization methods. Lecture Notes in Computer Science 2879: 910–917 (2003).

    Article  Google Scholar 

  57. Strul D. and Bendriem, B., Robustness of anatomically guided pixel-by-pixel algorithms for partial volume effect correction in positron emission tomography. J Cereb Blood Flow Metab 19: 547–559 (1999).

    Article  Google Scholar 

  58. Quarantelli M., Berkouk, K., Prinster, A. et al., Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med 45: 192–201 (2004).

    Google Scholar 

  59. Slifstein M., Mawlawi, O. and Laruelle, M., “Partial volume effect correction: Methodological consideration.” in: Physiological Imaging of the Brain with PET., edited by SB Hansen A. Gjedde, GM Knudsen, OB Paulson Academic Press, San Diego, (2001), pp 67–75.

    Google Scholar 

  60. Zaidi H., Ruest T., Schoenahl F., Montandon M-L., Comparative assessment of brain MR image segmentation algorithms and their impact on partial volume correction in PET. (2004) submitted

    Google Scholar 

  61. Aston J. A., Cunningham, V. J., Asselin, M. C. et al., Positron emission tomography partial volume correction: estimation and algorithms. J Cereb Blood Flow Metab 22: 1019–1034 (2002).

    Article  Google Scholar 

  62. Evans A., Marrett, S., Neelin, P. et al., Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1: 43–53 (1992).

    Article  Google Scholar 

  63. Rousset O. G., Deep, P., Kuwabara, H. et al., Effect of partial volume correction on estimates of the influx and cerebral metabolism of 6-[(18)F]fluoro-L-dopa studied with PET in normal control and Parkinson’s disease subjects. Synapse 37: 81–89 (2000).

    Article  Google Scholar 

  64. Soret M., Koulibaly, P. M., Darcourt, J. et al., Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med 44: 1184–1193 (2003).

    Google Scholar 

  65. Mullani N. A., A phantom for quantitation of partial volume effects in ECT. IEEE Trans Nucl Sci 36: 983–987 (1989).

    Article  ADS  Google Scholar 

  66. Phelps M. E., Huang, S. C., Hoffman, E. J. et al., An analysis of signal amplification using small detectors in positron emission tomography. J Comput Assist Tomogr 6: 551–565 (1982).

    Article  Google Scholar 

  67. Hoffman E., “Positron Emission Tomography: principles and quantitation.” in: Positron Emission Tomography and Autoradiography, edited by Mazziotta JC and Schelbert HR Phelps ME Raven Press, (1986), pp 237–286.

    Google Scholar 

  68. Hoffman E. J., Cutler, P. D., Digby, W. M. et al., 3-D phantom to simulate cerebral blood flow and metabolic images for PET. IEEE Trans Nucl Sci 37: 616–620 (1990).

    Article  ADS  Google Scholar 

  69. Zubal I. G., Harrell, C. R., Smith, E. O. et al., Computerized 3-dimensional segmented human anatomy. Med Phys 21: 299–302 (1994).

    Article  Google Scholar 

  70. Holmes C. J., Hoge, R., Collins, L. et al., Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22: 324–333 (1998).

    Article  Google Scholar 

  71. Collins D., Holmes, C., Peters, T. et al., Automatic 3-D model-based neuroanatomical segmentation. Human Brain Mapping 3: 190–208 (1995).

    Article  Google Scholar 

  72. Shan Z. Y., Yue, G. H. and Liu, J. Z., Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images. Neuroimage 17: 1587–1598 (2002).

    Article  Google Scholar 

  73. Wong D. F., Harris, J. C., Naidu, S. et al., Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo. Proc Natl Acad Sci U S A 93: 5539–5543 (1996).

    Article  ADS  Google Scholar 

  74. Rousset O. G., Ma, Y., Wong, D. F. et al., “Pixel-versus region-based partial volume correction in PET.” in: Quantitative Functional Imaging with Positron Emission Tomography., edited by RE Carson, Daube-Witherspoon, ME, Herscovitch, P Academic Press, San Diego, (1998), pp 67–75.

    Chapter  Google Scholar 

  75. Alfano B., Brunetti, A., Prinster, A. et al., “STEPBRAIN: a stereolithographed phantom of the brain for nuclear medicine: computed tomography, and magnetic resonance applications. (abstract)” Annual meeting of the Radiological Society of North America, Chicago, USA, (2003).

    Google Scholar 

  76. Szabo Z., Links, J. M., Seki, C. et al., Scatter, spatial resolution, and quantitative recovery in high resolution SPECT. J Comput Assist Tomogr 16: 461–467 (1992).

    Article  Google Scholar 

  77. Zaidi H., Montandon, M.-L. and Slosman, D. O., Magnetic resonance imagingguided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30: 937–948 (2003).

    Article  Google Scholar 

  78. Law I., Iida, H., Holm, S. et al., Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation. J Cereb Blood Flow Metab 20: 1252–1263 (2000).

    Article  Google Scholar 

  79. Braem A., Chamizo Llatas, M., Chesi, E. et al., Feasibility of a novel design of high-resolution parallax-free Compton enhanced PET scanner dedicated to brain research. Phys Med Biol 49: 2547–2562 (2004).

    Article  Google Scholar 

  80. Van Laere K. J. and Dierckx, R. A., Brain perfusion SPECT: age-and sexrelated effects correlated with voxel-based morphometric findings in healthy adults. Radiology 221: 810–817 (2001).

    Article  Google Scholar 

  81. Mignotte M., Meunier, J., Soucy, J.-P. et al., Comparison of deconvolution techniques using a distribution mixture parameter estimation: application in SPECT imagery. J Electron Imag 11: 11–25 (2002).

    Article  ADS  Google Scholar 

  82. Ishii K., Willoch, F., Minoshima, S. et al., Statistical brain mapping of 18F-FDG PET in Alzheimer’s disease: validation of anatomic standardization for atrophied brains. J Nucl Med 42: 548–557 (2001).

    Google Scholar 

  83. Ibanez V., Pietrini, P., Alexander, G. E. et al., Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 50: 1585–1593 (1998).

    Google Scholar 

  84. Knowlton R. C., Laxer, K. D., Klein, G. et al., In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy. Neurology 57: 1184–1190 (2001).

    Google Scholar 

  85. Meltzer C. C., Zubieta, J. K., Brandt, J. et al., Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 47: 454–461 (1996).

    Google Scholar 

  86. Melamed E., Lavy, S., Bentin, S. et al., Reduction in regional cerebral blood flow during normal aging in man. Stroke 11: 31–35 (1980).

    Google Scholar 

  87. Martin A. J., Friston, K. J., Colebatch, J. G. et al., Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab 11: 684–689 (1991).

    Google Scholar 

  88. Matsuda H., Kanetaka, H., Ohnishi, T. et al., Brain SPET abnormalities in Alzheimer’s disease before and after atrophy correction. Eur J Nucl Med Mol Imaging 29: 1502–1505 (2002).

    Article  Google Scholar 

  89. Weckesser M., Hufnagel, A., Ziemons, K. et al., Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy. Eur J Nucl Med 24: 1156–1161 (1997).

    Google Scholar 

  90. Koole M., Laere, K. V., de Walle, R. V. et al., MRI guided segmentation and quantification of SPECT images of the basal ganglia: a phantom study. Comput Med Imaging Graph 25: 165–172 (2001).

    Article  Google Scholar 

  91. Henze E., Huang, S. C., Ratib, O. et al., Measurements of regional tissue and blood-pool radiotracer concentrations from serial tomographic images of the heart. J Nucl Med 24: 987–996 (1983).

    Google Scholar 

  92. Herrero P., Markham, J. and Bergmann, S. R., Quantitation of myocardial blood flow with H2 15O and positron emission tomography: assessment and error analysis of a mathematical approach. J Comput Assist Tomogr 13: 862–873 (1989).

    Article  Google Scholar 

  93. Nichols K., DePuey, E. G., Friedman, M. I. et al., Do patient data ever exceed the partial volume limit in gated SPECT studies? J Nucl Cardiol 5: 484–490 (1998).

    Article  Google Scholar 

  94. Nuyts H., Maes, A., Vrolix, M. et al., Three-dimensional correction for spillover and recovery of myocardial PET images. J Nucl Med 37: 767–774 (1996).

    Google Scholar 

  95. Meltzer C. C., Leal, J. P., Mayberg, H. S. et al., Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr 14: 561–570 (1990).

    Article  Google Scholar 

  96. Dewaraja Y. K., Ljungberg, M. and Koral, K. F., Monte Carlo evaluation of object shape effects in iodine-131 SPET tumor activity quantification. Eur J Nucl Med 28: 900–906 (2001).

    Article  Google Scholar 

  97. Vesselle H., Schmidt, R. A., Pugsley, J. M. et al., Lung cancer proliferation correlates with [F-18]Fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 6: 3837–3844 (2000).

    Google Scholar 

  98. Menda Y., Bushnell, D. L., Madsen, M. T. et al., Evaluation of various corrections to the standardized uptake value for diagnosis of pulmonary malignancy. Nucl Med Commun 22: 1077–1081 (2001).

    Article  Google Scholar 

  99. Soret M., Riddell, C., Hapdey, S. et al., Biases affecting the measurements of tumor-to-background activity ratio in PET. IEEE Trans Nucl Sci 49: 2112–2118 (2002).

    Article  ADS  Google Scholar 

  100. Tatsumi M., Nakamoto, Y., Traughber, B. et al., Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]Fluoro-2-deoxy-D-glucose. Cancer Res 63: 6252–6257 (2003).

    Google Scholar 

  101. Hsieh J., Nonlinear partial volume artifact correction in helical CT. IEEE Trans Nucl Sci 46: 743–747 (1999).

    Article  ADS  Google Scholar 

  102. Zaidi H., Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys 26: 574–608 (1999).

    Article  Google Scholar 

  103. Koole M., Van de Walle, R., Van Laere, K. et al., Study of the quantification of FBP SPECT images with a correction for partial volume effects. IEEE Trans Nucl Sci 49: 69–73 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Rousset, O.G., Zaidi, H. (2006). Correction for Partial Volume Effects in Emission Tomography. In: Zaidi, H. (eds) Quantitative Analysis in Nuclear Medicine Imaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-25444-7_8

Download citation

Publish with us

Policies and ethics