Skip to main content

Role of the Spine Apparatus in Synaptic Plasticity

  • Chapter
Synaptic Plasticity and Transsynaptic Signaling

7. Conclusions and Outlook

The studies reviewed here have shown that the lack of a spine apparatus in synaptopodin-deficient mice is accompanied by changes in synaptic plasticity which are relevant for spatial learning. As pointed out at several places, further detailed analysis of synaptopodin-deficient mice is needed to better understand the role of synaptopodin in the formation and function of the spine apparatus and to determine to what extent compensatory changes due to the deletion of synaptopodin are involved. So far, we have established a role for synaptopodin in LTP at Schaffer collateral synapses in CA1. Numerous studies have shown that different mechanisms underlie LTP in CA3 which remains to be studied in synaptopodin-deficient mice. Along this line, we have not yet looked at long-term depression (LTD) in synaptopodin-deficient mice. LTD is a form of synaptic plasticity that is regularly observed in Purkinje cells while LTP can hardly be induced in these neurons. Wildtype Purkinje cells do not express synaptopodin and lack a spine apparatus. Can we change synaptic plasticity in these neurons by transfecting them with synaptopodin cDNA? Can transfection of hippocampal neurons from synaptopodin mutants rescue LTP and the formation of spine apparatuses? We are convinced that further analysis of synaptopodin-deficient mice will allow us to learn more about the function of an interesting protein and a characteristic organelle in dendritic spines of the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  • Capani F, Martone ME, Deerinck TJ, Ellisman MH (2001) Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study, J Comp Neurol 435:156–170.

    Article  PubMed  CAS  Google Scholar 

  • Deller T, Merten T, Roth SU, Mundel P, Frotscher M (2000a) Actin-associated protein synaptopodin in the rat hippocampal formation: localization in the spine neck and close association with the spine apparatus of principal neurons, J Comp Neurol 418:164–181.

    Article  PubMed  CAS  Google Scholar 

  • Deller T, Mundel P, Frotscher M (2000b) Potential role of synaptopodin in spine motility by coupling actin to the spine apparatus, Hippocampus 10:569–581.

    Article  PubMed  CAS  Google Scholar 

  • Deller T, Haas CA, Deissenrieder K, Del Turco D, Coulin C, Gebhardt C, Drakew A, Schwarz K, Mundel P, Frotscher M (2002) Laminar distribution of synaptopodin in normal and reeler mouse brain depends on the position of spine-bearing neurons, J Comp Neurol 453:33–44.

    Article  PubMed  CAS  Google Scholar 

  • Deller T, Korte M, Chabanis S, Drakew A, Schwegler H, Stefani GG, Zuniga A, Schwarz K, Bonhoeffer T, Zeller R, Frotscher M, Mundel P (2003) Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity, Proc Natl Acad Sci USA 18:10494–10499.

    Article  CAS  Google Scholar 

  • Emptage N, Bliss TVP, Fine A (1999) Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines, Neuron 22:115–124.

    Article  PubMed  CAS  Google Scholar 

  • Engert E, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity, Nature 339:66–70.

    Google Scholar 

  • Fifkova E, Markham JA, Delay RJ (1983) Calcium in the spine apparatus of dendritic spines in the dentate molecular layer, Brain Res 266:163–168.

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines, Neuron 20:847–854.

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M, Mannsfeld B, Wenzel J (1975) Umweltabhängige Differenzierung der Dendritenspines an Pyramidenneuronen des Hippocampus (CAI) der Ratte, J Hirnforsch 16:443–450.

    PubMed  CAS  Google Scholar 

  • Frotscher M, Hámori J, Wenzel J (1977) Transneuronal effects of entorhinal lesions in the early postnatal period on synaptogenesis in the hippocampus of the rat, Exp Brain Res 30:549–560.

    Article  PubMed  CAS  Google Scholar 

  • Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo, Neuron 38:447–460.

    Article  PubMed  CAS  Google Scholar 

  • Globus A, Scheibel AB (1967) Synaptic loci on visual cortical neurons of the rabbit: the specific afferent radiation, Exp Neurol 18:116–131.

    Article  PubMed  CAS  Google Scholar 

  • Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscopic study, J Anat 83:420–433.

    Google Scholar 

  • Hámori J (1973) The inductive role of presynaptic axons in the development of postsynaptic spines, Brain Res 62:337–344.

    Article  PubMed  Google Scholar 

  • Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluRI and PDZ domain interaction, Science 287:2262–2267.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Kurihara H, Sakai T (2003) Actin filament organization of foot processes in rat podocytes, J Histochem Cytochem 51:1589–1600.

    PubMed  CAS  Google Scholar 

  • Kretz O, Fester L, Wehrenberg U, Zhou L, Brauckmann S, Zhao S, Prange-Kiel J, Naumann T, Jarry H, Frotscher M, Rune GM (2004) Hippocampal synapses depend on hippocampal estrogen synthesis, J Neurosci 24:5913–5921.

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Sheng M (2003) Some assembly required: the development of neuronal synapses, Nat Rev Mol Cell Biol 4:833–841.

    Article  PubMed  CAS  Google Scholar 

  • Lisman JA (1989) A mechanism for the Hebb and anti-Hebb processes underlying learning and memory, Proc Natl Acad Sci USA 86:9574–9578.

    Article  PubMed  CAS  Google Scholar 

  • Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memrory, Nature Rev Neurosci 3:175–190.

    Article  CAS  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines, Nature 429:761–766.

    Article  PubMed  CAS  Google Scholar 

  • Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities, Proc Natl Acad Sci USA 79:7590–7594.

    Article  PubMed  CAS  Google Scholar 

  • Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI, Inouye M, Takagishi Y, Augustine GJ, Kano M (2000) Local calcium release in dendritic spines required for long-term synaptic depression, Neuron 28:233–244.

    Article  PubMed  CAS  Google Scholar 

  • Mundel P, Gilbert P, Kriz W (1991) Podocytes in glomerulus of rat kidney express a characteristic 44 KD protein, J Histochem Cytochem 39;1047–1056.

    PubMed  CAS  Google Scholar 

  • Mundel P, Heid HW, Mundel TM, Kruger M, Reiser J, Kriz W (1997) Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes, J Cell Biol 139:193–204.

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster HD (1991) The Fine Structure of the Nervous System. Neurons and their Supporting Cells, Oxford University Press, Oxford.

    Google Scholar 

  • Racca C, Stephenson FA, Streit P, Robert JD, Somogyi P (2000) NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area, J Neurosci 20:2512–2522.

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal SR (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés, Maloine, Paris.

    Google Scholar 

  • Rumbaugh G, Sia GM, Garner CC, Huganir RL (2003) Synapse-associated protein-97 isoform-specific regulation of surface AMPA receptors and synaptic function in cultured neurons, J Neurosci 23:4567–4576.

    PubMed  CAS  Google Scholar 

  • Rune GM, Wehrenberg U, Prange-Kiel J, Zhou L, Adelmann G, Frotscher M (2002) Estrogen up-regulates estrogen receptor alpha and synaptophysin in slice cultures of rat hippocampus, Neuroscience 113:167–175.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca2+ ions in dendritic spines, Neuron 33:439–452.

    Article  PubMed  CAS  Google Scholar 

  • Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA (2002) Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number, Proc Natl Acad Sci USA 99:13902–13907.

    Article  PubMed  CAS  Google Scholar 

  • Spacek J (1985) Three-dimensional analysis of dendritic spines. II. Spine apparatus and other cytoplasmic components, Anat Embryol 171:235–243.

    Article  PubMed  CAS  Google Scholar 

  • Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat, J Neurosci 17:190–203.

    PubMed  CAS  Google Scholar 

  • Svoboda K, Mainen ZF (1999) Synaptic [Ca2+]: intracellular stores spill their guts, Neuron 22:427–430.

    Article  PubMed  CAS  Google Scholar 

  • Valverde F (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse, Exp Brain Res 3:337–352.

    Article  PubMed  CAS  Google Scholar 

  • Valverde F (1968) Structural changes in the area striata of the mouse after enucleation, Exp Brain Res 5:274–292.

    Article  PubMed  CAS  Google Scholar 

  • Valverde F (1971) Rate and extent of recovery from dark rearing in the visual cortex of the mouse, Brain Res 33:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Woolley CS, McEwen BS (1993) Roles of estradiol and progesterone in regulation of hippocampal spine density during the estrous cycle in the rat, J Comp Neurol 336:293–306.

    Article  PubMed  CAS  Google Scholar 

  • Wyszynski M, Kharazia V, Shanghvi R, Rao A, Beggs AH, Craig AM, Weinberg R, Sheng M (1998) Differential regional expression and ultrastructural localization of alpha-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain, J Neurosci 18:1383–1392.

    PubMed  CAS  Google Scholar 

  • Yamazaki M, Matsuo R, Fukazawa Y, Ozawa F, Inokuchi K (2001) Regulated expression of an actin-associated protein, synaptopodin, during long-term potentiation, J Neurochem 79:192–199.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Frotscher, M., Deller, T. (2005). Role of the Spine Apparatus in Synaptic Plasticity. In: Stanton, P.K., Bramham, C., Scharfman, H.E. (eds) Synaptic Plasticity and Transsynaptic Signaling. Springer, Boston, MA. https://doi.org/10.1007/0-387-25443-9_29

Download citation

Publish with us

Policies and ethics