Skip to main content

Retrograde Messengers in Long-Term Plasticity of Presynaptic Glutamate Release in Hippocampus

  • Chapter
Synaptic Plasticity and Transsynaptic Signaling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Abe K, Watanabe Y, Saito H (1996) Differential role of nitric oxide in long-term potentiation in the medial and lateral amygdala. Eur J Pharmacol 297:43–46.

    PubMed  CAS  Google Scholar 

  • Arai A, Lynch G (1992) Antagonists of the Platelet-activating Factor Receptor Block Long-term Potentiation in Hippocampal Slices. Eur J Neurosci 4:411–419.

    PubMed  Google Scholar 

  • Arancio O, Kandel ER, Hawkins RD (1995) Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature 376:74–80.

    PubMed  CAS  Google Scholar 

  • Arancio O, Kiebler M, Lee CJ, Lev-Ram V, Tsien RY, Kandel ER, Hawkins RD (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87:1025–1035.

    PubMed  CAS  Google Scholar 

  • Arancio O, Antonova I, Gambaryan S, Lohmann SM, Wood JS, Lawrence DS, Hawkins RD (2001) Presynaptic role of cGMP-dependent protein kinase during long-lasting potentiation. J Neurosci 21:143–149.

    PubMed  CAS  Google Scholar 

  • Bailey CP, Trejos JA, Schanne FA, Stanton PK (2003) Pairing elevation of [cyclic GMP] with inhibition of PKA produces long-term depression of glutamate release from isolated rat hippocampal presynaptic terminals. Eur J Neurosci 17:903–908.

    PubMed  Google Scholar 

  • Bashir ZI, Collingridge GL (1994) An investigation of depotentiation of long-term potentiation in the CA1 region of the hippocampus. Exp Brain Res 100:437–443.

    PubMed  CAS  Google Scholar 

  • Bazan NG (2003) Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 44:2221–2233.

    PubMed  CAS  Google Scholar 

  • Bekkers JM, Stevens CF (1990) Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346:724–729.

    PubMed  CAS  Google Scholar 

  • Benke TA, Luthi A, Isaac JT, Collingridge GL (1998) Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393:793–797.

    PubMed  CAS  Google Scholar 

  • Betz WJ, Bewick GS (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255:200–203.

    PubMed  CAS  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48.

    PubMed  CAS  Google Scholar 

  • Blackshaw S, Eliasson MJ, Sawa A, Watkins CC, Krug D, Gupta A, Arai T, Ferrante RJ, Snyder SH (2003) Species, strain and developmental variations in hippocampal neuronal and endothelial nitric oxide synthase clarify discrepancies in nitric oxide-dependent synaptic plasticity. Neurosci 119:979–990.

    CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.

    PubMed  CAS  Google Scholar 

  • Bliss TV, Douglas RM, Errington ML, Lynch MA (1986) Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. J Physiol 377:391–408.

    PubMed  CAS  Google Scholar 

  • Bliss TV, Errington ML, Laroche S, Lynch MA (1987) Increase in K+-stimulated, Ca2+-dependent release of [3H]glutamate from rat dentate gyrus three days after induction of long-term potentiation. Neurosci Lett 83:107–112.

    PubMed  CAS  Google Scholar 

  • Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356.

    PubMed  CAS  Google Scholar 

  • Bohme GA, Bon C, Stutzmann JM, Doble A, Blanchard JC (1991) Possible involvement of nitric oxide in long-term potentiation. Eur J Pharmacol 199:379–381.

    PubMed  CAS  Google Scholar 

  • Bolshakov VY, Siegelbaum SA (1994) Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264:1148–1152.

    PubMed  CAS  Google Scholar 

  • Bolshakov VY, Siegelbaum SA (1995) Hippocampal long-term depression: arachidonic acid as a potential retrograde messenger. Neuropharmacology 34:1581–1587.

    PubMed  CAS  Google Scholar 

  • Bon C, Bohme GA, Doble A, Stutzmann JM, Blanchard JC (1992) A Role for Nitric Oxide in Long-term Potentiation. Eur J Neurosci 4:420–424.

    PubMed  Google Scholar 

  • Bon CL, Garthwaite J (2001a) Nitric oxide-induced potentiation of CA1 hippocampal synaptic transmission during baseline stimulation is strictly frequency-dependent. Neuropharmacology 40:501–507.

    PubMed  CAS  Google Scholar 

  • Bon CL, Garthwaite J (2001b) Exogenous nitric oxide causes potentiation of hippocampal synaptic transmission during low-frequency stimulation via the endogenous nitric oxide-cGMP pathway. Eur J Neurosci 14:585–594.

    PubMed  CAS  Google Scholar 

  • Bon CL, Garthwaite J (2003) On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci 23:1941–1948.

    PubMed  CAS  Google Scholar 

  • Boulton CL, Southam E, Garthwaite J (1995) Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanylyl cyclase. Neuroscience 69:699–703.

    PubMed  CAS  Google Scholar 

  • Boulton CL, Irving AJ, Southam E, Potier B, Garthwaite J, Collingridge GL (1994) The nitric oxide—cyclic GMP pathway and synaptic depression in rat hippocampal slices. Eur J Neurosci 6:1528–1535.

    PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide, a novel neuronal messenger. Neuron 8:3–11.

    PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    PubMed  CAS  Google Scholar 

  • Bredt DS, Glatt CE, Hwang PM, Fotuhi M, Dawson TM, Snyder SH (1991) Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7:615–624.

    PubMed  CAS  Google Scholar 

  • Burette A, Zabel U, Weinberg RJ, Schmidt HH, Valtschanoff JG (2002) Synaptic localization of nitric oxide synthase and soluble guanylyl cyclase in the hippocampus. J Neurosci 22:8961–8970.

    PubMed  CAS  Google Scholar 

  • Burgunder JM, Cheung PT (1994) Expression of soluble guanylyl cyclase gene in adult rat brain. Eur J Neurosci 6:211–217.

    PubMed  CAS  Google Scholar 

  • Buttner N, Siegelbaum SA (2003) Antagonistic modulation of a hyperpolarization-activated Cl current in Aplysia sensory neurons by SCP(B) and FMRFamide. J Neurophysiol 90:586–598.

    PubMed  CAS  Google Scholar 

  • Calabresi P, Gubellini P, Centonze D, Sancesario G, Morello M, Giorgi M, Pisani A, Bernardi G (1999) A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J Neurosci 19:2489–2499.

    PubMed  CAS  Google Scholar 

  • Carroll RC, Lissin DV, von Zastrow M, Nicoll RA, Malenka RC (1999) Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat Neurosci 2:454–460.

    PubMed  CAS  Google Scholar 

  • Centonze D, Gubellini P, Pisani A, Bernardi G, Calabresi P (2003) Dopamine, acetylcholine and nitric oxide systems interact to induce corticostriatal synaptic plasticity. Rev Neurosci 14:207–216.

    PubMed  CAS  Google Scholar 

  • Chavez-Noriega LE, Stevens CF (1994) Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices. J Neurosci 14:310–317.

    PubMed  CAS  Google Scholar 

  • Chetkovich DM, Klann E, Sweatt JD (1993) Nitric oxide synthase-independent long-term potentiation in area CA1 of hippocampus. Neuroreport 4:919–922.

    PubMed  CAS  Google Scholar 

  • Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2003) Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole. Mol Pharmacol 63:1322–1328.

    PubMed  CAS  Google Scholar 

  • Choi S, Klingauf J, Tsien RW (2000) Postfusional regulation of cleft glutamate concentration during LTP at’ silent synapses’. Nat Neurosci 3:330–336.

    PubMed  CAS  Google Scholar 

  • Clark GD, Happel LT, Zorumski CF, Bazan NG (1992) Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron 9:1211–1216.

    PubMed  CAS  Google Scholar 

  • Clark KA, Collingridge GL (1995) Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. J Physiol 482 (Pt 1):39–52.

    PubMed  CAS  Google Scholar 

  • Cummings JA, Nicola SM, Malenka RC (1994) Induction in the rat hippocampus of long-term potentiation (LTP) and long-term depression (LTD) in the presence of a nitric oxide synthase inhibitor. Neurosci Lett 176:110–114.

    PubMed  CAS  Google Scholar 

  • Denninger JW, Marletta MA (1999) Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1411:334–350.

    PubMed  CAS  Google Scholar 

  • Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci U S A 91:4214–4218.

    PubMed  CAS  Google Scholar 

  • Doreulee N, Sergeeva OA, Yanovsky Y, Chepkova AN, Selbach O, Godecke A, Schrader J, Haas HL (2003) Cortico-striatal synaptic plasticity in endothelial nitric oxide synthase deficient mice. Brain Res 964:159–163.

    PubMed  CAS  Google Scholar 

  • Doyle C, Holscher C, Rowan MJ, Anwyl R (1996) The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo. J Neurosci 16:418–424.

    PubMed  CAS  Google Scholar 

  • Doyle CA, Slater P (1997) Localization of neuronal and endothelial nitric oxide synthase isoforms in human hippocampus. Neuroscience 76:387–395.

    PubMed  CAS  Google Scholar 

  • Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13:2910–2918.

    PubMed  CAS  Google Scholar 

  • Duman RS, Terwilliger RZ, Nestler EJ (1993) Alterations in nitric oxide-stimulated endogenous ADP-ribosylation associated with long-term potentiation in rat hippocampus. J Neurochem 61:1542–1545.

    PubMed  CAS  Google Scholar 

  • Endoh M, Maiese K, Wagner JA (1994) Expression of the neural form of nitric oxide synthase by CA1 hippocampal neurons and other central nervous system neurons. Neuroscience 63:679–689.

    PubMed  CAS  Google Scholar 

  • Engert F, Bonhoeffer T (1997) Synapse specificity of long-term potentiation breaks down at short distances. Nature 388:279–284.

    PubMed  CAS  Google Scholar 

  • Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70.

    PubMed  CAS  Google Scholar 

  • Errington ML, Lynch MA, Bliss TV (1987) Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by D(-)aminophosphonovalerate. 20:279–284.

    CAS  Google Scholar 

  • Feasey KJ, Lynch MA, Bliss TV (1986) Long-term potentiation is associated with an increase in calcium-dependent, potassium-stimulated release of [14C]glutamate from hippocampal slices: an ex vivo study in the rat. Brain Res. 364:39–44.

    PubMed  CAS  Google Scholar 

  • Feinmark SJ, Begum R, Tsvetkov E, Goussakov I, Funk CD, Siegelbaum SA, Bolshakov VY (2003) 12-lipoxygenase metabolites of arachidonic acid mediate metabotropic glutamate receptor-dependent long-term depression at hippocampal CA3-CA1 synapses. J Neurosci 23:11427–11435.

    PubMed  CAS  Google Scholar 

  • Foster TC, McNaughton BL (1991) Long-term enhancement of CA1 synaptic transmission is due to increased quantal size, not quantal content. Hippocampus 1:79–91.

    PubMed  CAS  Google Scholar 

  • Friebe A, Schultz G, Koesling D (1996) Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. Embo J 15:6863–6868.

    PubMed  CAS  Google Scholar 

  • Gage AT, Reyes M, Stanton PK (1997) Nitric-oxide-guanylyl-cyclase-dependent and-independent components of multiple forms of long-term synaptic depression. Hippocampus 7:286–295.

    PubMed  CAS  Google Scholar 

  • Galione A, Churchill GC (2002) Interactions between calcium release pathways: multiple messengers and multiple stores. Cell Calcium 32:343–354.

    PubMed  CAS  Google Scholar 

  • Galione A, White A, Willmott N, Turner M, Potter BV, Watson SP (1993) cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 365:456–459.

    PubMed  CAS  Google Scholar 

  • Garbers DL, Lowe DG (1994) Guanylyl cyclase receptors. J Biol Chem 269:30741–30744.

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Garthwaite G (1987) Cellular origins of cyclic GMP responses to excitatory amino acid receptor agonists in rat cerebellum in vitro. J Neurochem 48:29–39.

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B (1995) Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 48:184–188.

    PubMed  CAS  Google Scholar 

  • Goussakov IV, Fink K, Elger CE, Beck H (2000) Metaplasticity of mossy fiber synaptic transmission involves altered release probability. J Neurosci 20:3434–3441.

    PubMed  CAS  Google Scholar 

  • Grassi S, Pettorossi VE (2000) Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei. Neuroscience 101:157–164.

    PubMed  CAS  Google Scholar 

  • Gribkoff VK, Lum-Ragan JT (1992) Evidence for nitric oxide synthase inhibitor-sensitive and insensitive hippocampal synaptic potentiation. J Neurophysiol 68:639–642.

    PubMed  CAS  Google Scholar 

  • Haley JE, Wilcox GL, Chapman PF (1992) The role of nitric oxide in hippocampal long-term potentiation. Neuron 8:211–216.

    PubMed  CAS  Google Scholar 

  • Haley JE, Malen PL, Chapman PF (1993) Nitric oxide synthase inhibitors block long-term potentiation induced by weak but not strong tetanic stimulation at physiological brain temperatures in rat hippocampal slices. Neurosci Lett 160:85–88.

    PubMed  CAS  Google Scholar 

  • Haley JE, Schaible E, Pavlidis P, Murdock A, Madison DV (1996) Basal and apical synapses of CA1 pyramidal cells employ different LTP induction mechanisms. Learn Mem 3:289–295.

    PubMed  CAS  Google Scholar 

  • Hartell NA (2002) Parallel fiber plasticity. Cerebellum 1:3–18.

    PubMed  CAS  Google Scholar 

  • Haul S, Godecke A, Schrader J, Haas HL, Luhmann HJ (1999) Impairment of neocortical long-term potentiation in mice deficient of endothelial nitric oxide synthase. J Neurophysiol 81:494–497.

    PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The Organization of Behavior, Wiley, New York.

    Google Scholar 

  • Holscher C (1999) Nitric oxide is required for expression of LTP that is induced by stimulation phase-locked with theta rhythm. Eur J Neurosci 11:335–343.

    PubMed  CAS  Google Scholar 

  • Holscher C (2002) Different strains of rats show different sensitivity to block of long-term potentiation by nitric oxide synthase inhibitors. Eur J Pharmacol 457:99–106.

    PubMed  CAS  Google Scholar 

  • Ibarra C, Nedvetsky PI, Gerlach M, Riederer P, Schrnidt HH (2001) Regional and age-dependent expression of the nitric oxide receptor, soluble guanylyl cyclase, in the human brain. Brain Res 907:54–60.

    PubMed  CAS  Google Scholar 

  • Ikegaya Y, Saito H, Matsuki N (1994) Involvement of carbon monoxide in long-term potentiation in the dentate gyrus of anesthetized rats. Jpn J Pharmacol 64:225–227.

    PubMed  CAS  Google Scholar 

  • Isaac JT, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15:427–434.

    PubMed  CAS  Google Scholar 

  • Izumi Y, Zorumski CF (1993) Nitric oxide and long-term synaptic depression in the rat hippocampus. Neuroreport 4:1131–1134.

    PubMed  CAS  Google Scholar 

  • Jacoby S, Sims RE, Hartell NA (2001) Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. J Physiol 535:825–839.

    PubMed  CAS  Google Scholar 

  • Kantor DB, Lanzrein M, Stary SJ, Sandoval GM, Smith WB, Sullivan BM, Davidson N, Schuman EM (1996) A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science 274:1744–1748.

    PubMed  CAS  Google Scholar 

  • Kato K, Zorumski CF (1993) Nitric oxide inhibitors facilitate the induction of hippocampal long-term potentiation by modulating NMDA responses. J Neurophysiol 70:1260–1263.

    PubMed  CAS  Google Scholar 

  • Kato K, Clark GD, Bazan NG, Zorumski CF (1994) Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367:175–179.

    PubMed  CAS  Google Scholar 

  • Kishimoto K, Matsumura K, Kataoka Y, Morii H, Watanabe Y (1999) Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92:1061–1077.

    PubMed  CAS  Google Scholar 

  • Kleppisch T, Pfeifer A, Klatt P, Ruth P, Montkowski A, Fassler R, Hofmann F (1999) Long-term potentiation in the hippocampal CA1 region of mice lacking cGMP-dependent kinases is normal and susceptible to inhibition of nitric oxide synthase. J Neurosci 19:48–55.

    PubMed  CAS  Google Scholar 

  • Ko FN, Wu CC, Kuo SC, Lee FY, Teng CM (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84:4226–4233.

    PubMed  CAS  Google Scholar 

  • Ko GY, Kelly PT (1999) Nitric oxide acts as a postsynaptic signaling molecule in calcium/calmodulin-induced synaptic potentiation in hippocampal CA1 pyramidal neurons. J Neurosci 19:6784–6794.

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Ishii S, Kume K, Takahashi T, Shimizu T, Manabe T (1999) Platelet-activating factor receptor is not required for long-term potentiation in the hippocampal CA1 region. Eur J Neurosci 11:1313–16.

    PubMed  CAS  Google Scholar 

  • Kondratskaya EL, Pankratov YV, Lalo UV, Chatterjee SS, Krishtal OA (2004) Inhibition of hippocampal LTP by ginkgolide B is mediated by its blocking action on PAF rather than glycine receptors. Neurochem Int 44:171–177.

    PubMed  CAS  Google Scholar 

  • Kornecki E, Wieraszko A, Chan J, Ehrlich YH (1996) Platelet activating factor (PAF) in memory formation: role as a retrograde messenger in long-term potentiation. J Lipid Mediat Cell Signal 14:115–126.

    PubMed  CAS  Google Scholar 

  • Kuhnt U, Hess G, Voronin LL (1992) Statistical analysis of large excitatory postsynaptic potentials recorded in guinea pig hippocampal slices: binomial model. Exp Brain Res 89:265–274.

    PubMed  CAS  Google Scholar 

  • Kullmann DM, Nicoll RA (1992) Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature 357:240–244.

    PubMed  CAS  Google Scholar 

  • Laroche S, Errington ML, Lynch MA, Bliss TV (1987) Increase in [3H]glutamate release from slices of dentate gyrus and hippocampus following classical conditioning in the rat. Behav Brain Res 25:23–29.

    PubMed  CAS  Google Scholar 

  • Lee HC, Aarhus R, Graeff R, Gurnack ME, Walseth TF (1994) Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370:307–309.

    PubMed  CAS  Google Scholar 

  • Lee HK, Kameyama K, Huganir RL, Bear MF (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21:1151–1162.

    PubMed  CAS  Google Scholar 

  • Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY (2003) Reversing cerebellar long-term depression. Proc Natl Acad Sci U S A 100:15989–15993.

    PubMed  CAS  Google Scholar 

  • Lev-Ram V, Jiang T, Wood J, Lawrence DS, Tsien RY (1997) Synergies and coincidence requirements between NO, cGMP, and Ca2+ in the induction of cerebellar long-term depression. Neuron 18:1025–1038.

    PubMed  CAS  Google Scholar 

  • Lin H, Totterdell S (1998) Light and electron microscopic study of neuronal nitric oxide synthase-immunoreactive neurons in the rat subiculum. J Comp Neurol 395:195–208.

    PubMed  CAS  Google Scholar 

  • Lopez-Figueroa MO, Itoi K, Watson SJ (1998) Regulation of nitric oxide synthase messenger RNA expression in the rat hippocampus by glucocorticoids. Neuroscience 87:439–446.

    PubMed  CAS  Google Scholar 

  • Lu YF, Kandel ER, Hawkins RD (1999) Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 19:10250–10261.

    PubMed  CAS  Google Scholar 

  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414.

    PubMed  CAS  Google Scholar 

  • Lum-Ragan JT, Gribkoff VK (1993) The sensitivity of hippocampal long-term potentiation to nitric oxide synthase inhibitors is dependent upon the pattern of conditioning stimulation. Neurosci 57:973–983.

    CAS  Google Scholar 

  • Lumme A, Soinila S, Sadeniemi M, Halonen T, Vanhatalo S (2000) Nitric oxide synthase immunoreactivity in the rat hippocampus after status epilepticus induced by perforant pathway stimulation. Brain Res 871:303–310.

    PubMed  CAS  Google Scholar 

  • Luo D, Vincent SR (1994) Metalloporphyrins inhibit nitric oxide-dependent cGMP formation in vivo. Eur J Pharmacol 267:263–267.

    PubMed  CAS  Google Scholar 

  • Lynch MA, Errington ML, Bliss TV (1985) Long-term potentiation of synaptic transmission in the dentate gyrus: increased release of [14C]glutamate without increase in receptor binding. Neurosci Lett 62:123–129.

    PubMed  CAS  Google Scholar 

  • Lynch MA, Errington ML, Clements MP, Bliss TV, Redini-Del Negro C, Laroche S (1990) Increases in glutamate release and phosphoinositide metabolism associated with long-term potentiation and classical conditioning. Prog Brain Res 83:251–256.

    PubMed  CAS  Google Scholar 

  • Ma L, Zablow L, Kandel ER, Siegelbaum SA (1999) Cyclic AMP induces functional presynaptic boutons in hippocampal CA3-CA1 neuronal cultures. Nat Neurosci 2:24–30.

    PubMed  CAS  Google Scholar 

  • Maffei A, Prestori F, Shibuki K, Rossi P, Taglietti V, D’Angelo E (2003) NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP. J Neurophysiol 90:2478–2483.

    PubMed  CAS  Google Scholar 

  • Malen PL, Chapman PF (1997) Nitric oxide facilitates long-term potentiation, but not long-term depression. J Neurosci 17:2645–2651.

    PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285:1870–1874.

    PubMed  CAS  Google Scholar 

  • Malinow R, Tsien RW (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346:177–180.

    PubMed  CAS  Google Scholar 

  • Malinow R, Mainen ZF, Hayashi Y (2000) LTP mechanisms: from silence to four-lane traffic. Curr Opin Neurobiol 10:352–357.

    PubMed  CAS  Google Scholar 

  • Matthies H, Reymann KG (1993) Protein kinase A inhibitors prevent the maintenance of hippocampal long-term potentiation. Neuroreport 4:712–714.

    PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263.

    PubMed  CAS  Google Scholar 

  • Meffert MK, Haley JE, Schuman EM, Schulman H, Madison DV (1994) Inhibition of hippocampal heme oxygenase, nitric oxide synthase, and long-term potentiation by metalloporphyrins. Neuron 13:1225–1233.

    PubMed  CAS  Google Scholar 

  • Monfort P, Munoz MD, Kosenko E, Felipo V (2002) Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase, and cGMP-degrading phosphodiesterase. J Neurosci 22:10116–10122.

    PubMed  CAS  Google Scholar 

  • Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967–975.

    PubMed  CAS  Google Scholar 

  • Murphy KP, Williams JH, Bettache N, Bliss TV (1994) Photolytic release of nitric oxide modulates NMDA receptor-mediated transmission but does not induce long-term potentiation at hippocampal synapses. Neuropharmacology 33:1375–1385.

    PubMed  CAS  Google Scholar 

  • Murthy VN, Sckikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682.

    PubMed  CAS  Google Scholar 

  • Neveu D, Zucker RS (1996) Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16:619–629.

    PubMed  CAS  Google Scholar 

  • Normandin M, Gagne J, Bernard J, Elie R, Miceli D, Baudry M, Massicotte G (1996) Involvement of the 12-lipoxygenase pathway of arachidonic acid metabolism in homosynaptic long-term depression of the rat hippocampus. Brain Res 730:40–46.

    PubMed  CAS  Google Scholar 

  • Nowicky AV, Bindman LJ (1993) The nitric oxide synthase inhibitor, N-monomethyl-L-arginine blocks induction of a long-term potentiation-like phenomenon in rat medial frontal cortical neurons in vitro. J Neurophysiol 70:1255–1259.

    PubMed  CAS  Google Scholar 

  • O’Dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci U S A 88:11285–11289.

    PubMed  CAS  Google Scholar 

  • O’Dell TJ, Huang PL, Dawson TM, Dinerman JL, Snyder SH, Kandel ER, Fishman MC (1994) Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science 265:542–6.

    PubMed  CAS  Google Scholar 

  • O’Mara SM, Rowan MJ, Anwyl R (1995) Metabotropic glutamate receptor-induced homosynaptic long-term depression and depotentiation in the dentate gyrus of the rat hippocampus in vitro. Neuropharmacology 34:983–989.

    PubMed  CAS  Google Scholar 

  • Oliet SH, Malenka RC, Nicoll RA (1996) Bidirectional control of quantal size by synaptic activity in the hippocampus. Science 271:1294–1297.

    PubMed  CAS  Google Scholar 

  • Oliet SH, Malenka RC, Nicoll RA (1997) Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18:969–982.

    PubMed  CAS  Google Scholar 

  • Otani S, Connor JA (1995) Long-term depression of naive synapses in adult hippocampus induced by asynchronous synaptic activity. J Neurophysiol 73:2596–2601.

    PubMed  CAS  Google Scholar 

  • Pettorossi VE, Grassi S (2001) Different contributions of platelet-activating factor and nitrix oxide in long-term potentiation of the rat medial vestibular nuclei. Acta Otolaryngol Suppl 545:160–165.

    PubMed  CAS  Google Scholar 

  • Philippides A, Husbands P, O’Shea M (2000) Four-dimensional neuronal signaling by nitric oxide: a computational analysis. J Neurosci 20:1199–1207.

    PubMed  CAS  Google Scholar 

  • Piomelli D, Volterra A, Dale N, Siegelbaum SA, Kandel ER, Schwartz JH, Belardetti F (1987) Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells. Nature 328:38–43.

    PubMed  CAS  Google Scholar 

  • Pyle JL, Kavalali ET, Choi S, Tsien RW (1999) Visualization of synaptic activity in hippocampal slices with FM1-43 enabled by fluorescence quenching. Neuron 24:803–808.

    PubMed  CAS  Google Scholar 

  • Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW (2000) Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28:221–231.

    PubMed  CAS  Google Scholar 

  • Reyes M, Stanton PK (1996) Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J Neurosci 16:5951–5960.

    PubMed  CAS  Google Scholar 

  • Reyes-Harde M, Potter BV, Galione A, Stanton PK (1999a) Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and Ca2+ release from cyclic ADP-ribose-sensitive stores. J Neurophysiol 82:1569–1576.

    PubMed  CAS  Google Scholar 

  • Reyes-Harde M, Empson R, Potter BV, Galione A, Stanton PK (1999b) Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc Natl Acad Sci USA 96:4061–4066.

    PubMed  CAS  Google Scholar 

  • Rosenmund C, Stevens CF (1996) Definition of the readily-releasable pool of vesicles at hippocampal synapses. Neuron 16:1197–1207.

    PubMed  CAS  Google Scholar 

  • Ryan TA, Reuter H, Wendland B, Schweizer FE, Tsien RW, Smith SJ (1993) The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11:713–724.

    PubMed  CAS  Google Scholar 

  • Santschi L, Reyes-Harde M, Stanton PK (1999) Chemically induced, activity-independent LTD elicited by simultaneous activation of PKG and inhibition of PKA. J Neurophysiol 82:1577–1589.

    PubMed  CAS  Google Scholar 

  • Scherer-Singler U, Vincent SR, Kimura H, McGeer EG (1983) Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J Neurosci Methods 9:229–234.

    PubMed  CAS  Google Scholar 

  • Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395.

    PubMed  CAS  Google Scholar 

  • Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:1503–1506.

    PubMed  CAS  Google Scholar 

  • Schuman EM, Meffert MK, Schulman H, Madison DV (1994) An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc Natl Acad Sci USA 91:11958–11962.

    PubMed  CAS  Google Scholar 

  • Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math Biol 4:303–321.

    PubMed  CAS  Google Scholar 

  • Selig DK, Segal MR, Liao D, Malenka RC, Malinow R, Nicoll RA, Lisman JE (1996) Examination of the role of cGMP in long-term potentiation in the CA1 region of the hippocampus. Learn Mem 3:42–48.

    PubMed  CAS  Google Scholar 

  • Sheng M, Lee SH (2001) AMPA receptor trafficking and the control of synaptic transmission. Cell 105:825–828.

    PubMed  CAS  Google Scholar 

  • Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811–1816.

    PubMed  CAS  Google Scholar 

  • Slack JR, Pockett S (1991) Cyclic AMP induces long-term increase in synaptic efficacy in CA1 region of rat hippocampus. Neurosci Lett 130:69–72.

    PubMed  CAS  Google Scholar 

  • Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23:75–80.

    PubMed  CAS  Google Scholar 

  • Son H, Lu YF, Zhuo M, Arancio O, Kandel ER, Hawkins RD (1998) The specific role of cGMP in hippocampal LTP. Learn Mem 5:231–245.

    PubMed  CAS  Google Scholar 

  • Son H, Hawkins RD, Martin K, Kiebler M, Huang PL, Fishman MC, Kandel ER (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87:1015–1023.

    PubMed  CAS  Google Scholar 

  • Southam E, Garthwaite J (1993) The nitric oxide-cyclic GMP signalling pathway in rat brain. Neuropharmacology 32:1267–1277.

    PubMed  CAS  Google Scholar 

  • Sperelakis N, Xiong Z, Haddad G, Masuda H (1994) Regulation of slow calcium channels of myocardial cells and vascular smooth muscle cells by cyclic nucleotides and phosphorylation. Mol Cell Biochem 140:103–117.

    PubMed  CAS  Google Scholar 

  • Stanarius A, Topel I, Schulz S, Noack H, Wolf G (1997) Immunocytochemistry of endothelial nitric oxide synthase in the rat brain: a light and electron microscopical study using the tyramide signal amplification technique. Acta Histochem 99:411–429.

    PubMed  CAS  Google Scholar 

  • Stanton PK (1995) Phospholipase A2 activation is not required for long-term synaptic depression. Eur J Pharmacol 273:R7–9.

    PubMed  CAS  Google Scholar 

  • Stanton PK (1996) LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus 6:35–42.

    PubMed  CAS  Google Scholar 

  • Stanton PK, Gage AT (1996) Distinct synaptic loci of Ca2+/calmodulin-dependent protein kinase II necessary for long-term potentiation and depression. J Neurophysiol 76:2097–2101.

    PubMed  CAS  Google Scholar 

  • Stanton PK, Heinemann U, Muller W (2001) FM1-43 imaging reveals cGMP-dependent long-term depression of presynaptic transmitter release. J Neurosci 21:RC167.

    PubMed  CAS  Google Scholar 

  • Stanton PK, Sarvey JM (1985a) Blockade of norepinephrine-induced long-lasting potentiation in the hippocampal dentate gyrus by an inhibitor of protein synthesis. Brain Res 361:276–283.

    PubMed  CAS  Google Scholar 

  • Stanton PK, Sarvey JM (1985b) The effect of high-frequency electrical stimulation and norepinephrine on cyclic AMP levels in normal versus norepinephrine-depleted rat hippocampal slices. Brain Res 358:343–348.

    PubMed  CAS  Google Scholar 

  • Stanton PK, Sejnowski TJ (1989) Associative long-term depression in the hippocampus induced by hebbian covariance. Nature 339:215–218.

    PubMed  CAS  Google Scholar 

  • Stanton PK, Winterer J, Bailey CP, Kyrozis A, Raginov I, Laube G, Veh RW, Nguyen CQ, Muller W (2003) Long-term depression of presynaptic release from the readily releasable vesicle pool induced by NMDA receptor-dependent retrograde nitric oxide. J Neurosci 23:5936–5944.

    PubMed  CAS  Google Scholar 

  • Stevens CF, Wang Y (1993) Reversal of long-term potentiation by inhibitors of haem oxygenase. Nature 364:147–149.

    PubMed  CAS  Google Scholar 

  • Stevens CF, Wang Y (1994) Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371:704–707.

    PubMed  CAS  Google Scholar 

  • Teichert AM, Miller TL, Tai SC, Wang Y, Bei X, Robb GB, Phillips MJ, Marsden PA (2000) In vivo expression profile of an endothelial nitric oxide synthase promoter-reporter transgene. Am J Physiol Heart Cire Physiol 278:H1352–1361.

    CAS  Google Scholar 

  • Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421–425.

    PubMed  CAS  Google Scholar 

  • Topel I, Stanarius A, Wolf G (1998) Distribution of the endothelial constitutive nitric oxide synthase in the developing rat brain: an immunohistochemical study. Brain Res 788:43–48.

    PubMed  CAS  Google Scholar 

  • Ueda K, Hayaishi O (1985) ADP-ribosylation. Annu Rev Biochem 54:73–100.

    PubMed  CAS  Google Scholar 

  • Valtschanoff JG, Weinberg RJ, Kharazia VN, Nakane M, Schmidt HH (1993) Neurons in rat hippocampus that synthesize nitric oxide. J Comp Neurol 331:111–121.

    PubMed  CAS  Google Scholar 

  • Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259:381–384.

    PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O, Albrecht D, Heinemann U, Schuchmann S (2002) Spatial nitric oxide imaging using 1,2-diaminoanthraquinone to investigate the involvement of nitric oxide in long-term potentiation in rat brain slices. Neuroimage 15:633–639.

    Google Scholar 

  • Voronin LL, Kuhnt U, Gusev AG (1992a) Analysis of fluctuations of “minimal” excitatory postsynaptic potentials during long-term potentiation in guinea pig hippocampal slices. Exp Brain Res 89:288–299.

    PubMed  CAS  Google Scholar 

  • Voronin LL, Kuhnt U, Gusev AG, Hess G (1992b) Quantal analysis of long-term potentiation of “minimal” excitatory postsynaptic potentials in guinea pig hippocampal slices: binomial approach. Exp Brain Res 89:275–287.

    PubMed  CAS  Google Scholar 

  • Wakatsuki H, Gomi H, Kudoh M, Kimura S, Takahashi K, Takeda M, Shibuki K (1998) Layer-specific NO dependence of long-term potentiation and biased NO release in layer V in the rat auditory cortex. J Physiol 513(Pt 1):71–81.

    PubMed  CAS  Google Scholar 

  • Wang LY, Kaezmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394:384–388.

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Saito H, Abe K (1995) Nitric oxide is involved in long-term potentiation in the medial but not lateral amygdala neuron synapses in vitro. Brain Res 688:233–236.

    PubMed  CAS  Google Scholar 

  • Wedel B, Garbers D (2001) The guanylyl cyclase family at Y2K. Annu Rev Physiol 63:215–233.

    PubMed  CAS  Google Scholar 

  • Wendland B, Schweizer FE, Ryan TA, Nakane M, Murad F, Scheller RH, Tsien RW (1994) Existence of nitric oxide synthase in rat hippocampal pyramidal cells. Proc Natl Acad Sci U S A 91:2151–2155.

    PubMed  CAS  Google Scholar 

  • Wexler EM, Stanton PK (1993) Priming of homosynaptic long-term depression in hippocampus by previous synaptic activity. Neuroreport 4:591–594.

    PubMed  CAS  Google Scholar 

  • Wexler EM, Stanton PK, Nawy S (1998) Nitric oxide depresses GABAA receptor function via coactivation of cGMP-dependent kinase and phosphodiesterase. J Neurosci 18:2342–2349.

    PubMed  CAS  Google Scholar 

  • Wieraszko A, Li G, Kornecki E, Hogan MV, Ehrlich YH (1993) Long-term potentiation in the hippocampus induced by platelet-activating factor. Neuron 10:553–557.

    PubMed  CAS  Google Scholar 

  • Williams JH, Errington ML, Lynch MA, Bliss TV (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–742.

    PubMed  CAS  Google Scholar 

  • Williams JH, Li YG, Nayak A, Errington ML, Murphy KP, Bliss TV (1993) The suppression of long-term potentiation in rat hippocampus by inhibitors of nitric oxide synthase is temperature and age dependent. Neuron 11:877–884.

    PubMed  CAS  Google Scholar 

  • Willmott N, Sethi JK, Walseth TF, Lee HC, White AM, Galione A (1996) Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem 271:3699–3705.

    PubMed  CAS  Google Scholar 

  • Wilson RI, Godecke A, Brown RE, Schrader J, Haas HL (1999) Mice deficient in endothelial nitric oxide synthase exhibit a selective deficit in hippocampal long-term potentiation. Neurosci 90:1157–1165.

    CAS  Google Scholar 

  • Wu J, Wang Y, Rowan MJ, Anwyl R (1997) Evidence for involvement of the neuronal isoform of nitric oxide synthase during induction of long-term potentiation and long-term depression in the rat dentate gyrus in vitro. Neuroscience 78:393–398.

    PubMed  CAS  Google Scholar 

  • Wu J, Wang Y, Rowan MJ, Anwyl R (1998) Evidence for involvement of the cGMP-protein kinase G signaling system in the induction of long-term depression, but not long-term potentiation, in the dentate gyrus in vitro. J Neurosci 18:3589–3596.

    PubMed  CAS  Google Scholar 

  • Yip S, Sastry BR (2000) Effects of hemoglobin and its breakdown products on synaptic transmission in rat hippocampal CA1 neurons. Brain Res 864:1–12.

    PubMed  CAS  Google Scholar 

  • Yip S, Ip JK, Sastry BR (1996) Electrophysiological actions of hemoglobin on rat hippocampal CA1 pyramidal neurons. Brain Res 713:134–142.

    PubMed  CAS  Google Scholar 

  • Zakharenko SS, Zablow L, Siegelbaum SA (2001) Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci 4:711–717.

    PubMed  CAS  Google Scholar 

  • Zakharenko SS, Zablow L, Siegelbaum SA (2002) mGluR-dependent LTD alters mode of presynaptic exocytosis. Neuron 35:1099–1110.

    PubMed  CAS  Google Scholar 

  • Zhuo M, Kandel ER, Hawkins RD (1994a) Nitric oxide and cGMP can produce either synaptic depression or potentiation depending on the frequency of presynaptic stimulation in the hippocampus. Neuroreport 5:1033–1036.

    PubMed  CAS  Google Scholar 

  • Zhuo M, Small SA, Kandel ER, Hawkins RD (1993) Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260:1946–1950.

    PubMed  CAS  Google Scholar 

  • Zhuo M, Laitinen JT, Li XC, Hawkins RD (1999) On the respective roles of nitric oxide and carbon monoxide in long-term potentiation in the hippocampus. Learn Mem 6:63–76.

    PubMed  CAS  Google Scholar 

  • Zhuo M, Hu Y, Schultz C, Kandel ER, Hawkins RD (1994b) Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368:635–639.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kyrozis, A., Benameur, K., Zhang, Xl., Winterer, J., Müller, W., Stanton, P.K. (2005). Retrograde Messengers in Long-Term Plasticity of Presynaptic Glutamate Release in Hippocampus. In: Stanton, P.K., Bramham, C., Scharfman, H.E. (eds) Synaptic Plasticity and Transsynaptic Signaling. Springer, Boston, MA. https://doi.org/10.1007/0-387-25443-9_17

Download citation

Publish with us

Policies and ethics