Advertisement

The Potential of Biotechnology to Promote Agricultural Development and Food Security

Chapter
Part of the Natural Resource Management and Policy book series (NRMP, volume 27)

Abstract

To satisfy the food demand of—and provide purchasing power to—the additional two billion people to be born in the next 30 years, mostly in developing countries, technological innovation, be it biotechnology and/or genetic engineering, is required to improve agricultural productivity. In fact, some technological advanced developing countries are not only applying the diverse range of biotechnology tools in agricultural research but also allowing the cultivation of the controversial genetically modified (GM) crops. There is also increasing evidence that the first generation of GM crops, developed for industrial agriculture, is having positive impacts on smallholders in some developing countries. Most importantly, biotechnology tools allow tremendous progress in tackling major production constraints that conventional means have failed to solve, such as biotic stress caused by diseases and insect pests and abiotic stresses caused by high temperature, salinity, drought, flooding, and problem soils. Preliminary research also indicates that GM technology can help to raise yield potential and produce crops that are more efficient in nutrient uptake, thus reducing not only fertilizer requirements but also food production costs, hence lowering food prices and making food more affordable to more people and contributing to food security and agricultural development.

Key words

agricultural biotechnology agricultural development biotic and abiotic stresses environmental conservation food security genetically modified crops gene revolution green revolution innovation nutritional quality improvement yield stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Africa News Service, 2000, Central Kenya Farmers Embrace Biotech Farming, (November 1, 2000).Google Scholar
  2. Apse, M. P., Aharon, G. S., Snedden, W. A., and Blumwald, E., 1999, Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis, Sci. 285:1256–1258.CrossRefGoogle Scholar
  3. Arntzen, C. J., 1995, Oral immunization with a recombinant bacterial antigen produced in transgenic plants, Sci. 268:714–716.ADSCrossRefGoogle Scholar
  4. Arntzen, C. J., 1996, Crop Biotechnology in the Service of Medical and Veterinary Science, NABC, Ithaca, New York.Google Scholar
  5. Atkinson, R. C, Beachy, R. N., Conway, G., Cordova, F. A., Fox, M. A., Holbrook, K. A., Klessig, D. F., McCormick, R. L., McPherson, P. M., Rawlings III, H. R., Rapson, R., Vanderhoef, L. N., Wiley, J. D., and Young, C. E., 2003, Public sector collaboration for agricultural IP management, Sci. 301:174–175.CrossRefGoogle Scholar
  6. Bakan, B., Melcion, D., Richard-Molard, D., and Cahagnier, B., 2002, Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain, J. Agric. Food Chem. 50:728–731.PubMedCrossRefGoogle Scholar
  7. Bhattacharya, S., 2003, KwaZulu farmers boosted by GM cotton, New Sci. Online News 16:31-; http://www.newscientist.com/hottopics/gm/gm.jsp?id=ns99993473.Google Scholar
  8. Borroto, C, 2000, Biotechnology seminar: Cuban national program on agricultural biotechnology: Achievements, present and future, seminar held at the Food and Agriculture Organization of the United Nations, Rome, Italy (October 11, 2000).Google Scholar
  9. Brophy, B., Smolenski, G., Wheeler, T., Wells, D., L’Huillier, P., and Laible, G., 2003, Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein, Nat. Biotech. 21(2):157–162.CrossRefGoogle Scholar
  10. Carnus, J. M., Parrotta, J., Brockerholl, E. G., Arbez, M., Jactel, H., Kremer, A., Lamb, D., O’Hara, K., and Walters, B., 2003, Planted forests and biodiversity, paper presented at the UNFF Intersessional Experts Meeting on the Role of Planted Forests in Sustainable Forest Management, New Zealand (March, 24–30, 2003).Google Scholar
  11. Chakraborty, S., Chakraborty, N., and Datta, A., 2000, Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus, PNAS 97:3724–3729.PubMedCrossRefADSGoogle Scholar
  12. Chapman, A. J., Stupka, E., Putnam, N., Chia, J. M., Dehal, P., Christoffels, A., Rash, S., Hoon, S., Smit, A., Gelpke, M. D., Roach, J., Oh, T., Ho, I. Y., Wong, ML, Detter, C, Verhoef, F., Predki, P., Tay, A., Lucas, S., Richardson, P., Smith, S. F., Clark, M. S., Edwards, Y. J., Doggett, N., Zharkikh, A., Tavtigian, S. V., Pruss, D., Barnstead, M., Evans, C, Baden, H., Powell, J., Glusman, G., Rowen, L., Hood, L., Tan, Y. H., Elgar, G., Hawkins, T., Venkatesh, B., Rokhsar, D., and Brenner, S., 2002, Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes, Sci. 297(5585):1283–1285.Google Scholar
  13. Che, D., Meagher, R. B., Heaton, A. C. P., Lima, A., Rugh, C. L., and Merkle, S. A., 2003, Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance, Plant Biotech. J. 1(4):311–317.CrossRefGoogle Scholar
  14. Chen, L., Marmey, P., Taylor, N. J., Brizard, J. P., Espinoza, C, D’Cruz, P., Huet, H., Zhang, S., de Kochko, A., Beachy, R. N., and Fauquet, C. M., 1998, Expression and inheritance of multiple transgenes in rice, Nature Biotech. 16:1060–1064.CrossRefGoogle Scholar
  15. Coghlan, A., 2003, Genetically modified ‘protato’ to feed India’s poor, New Sci. (January, 2003); http://www.newscientist.com/news/news.jsp?id=ns99993219.Google Scholar
  16. Cohen, J., Komen, I., Falck-Zepeda, J., and Zambrano, P., 2003, ISNAR-IBS Next Harvest©, data presented at an Expert Consultation on Biotechnology Next Harvest© —Advancing Biotechnology’s Public Good: Technology Assessment, Regulation and Dissemination (October, 7–9, 2002), ISNAR Headquarters, The Hague.Google Scholar
  17. Dahwan, V., 2002, Personal communication.Google Scholar
  18. Datta, S., 2002, Personal communication.Google Scholar
  19. De la Fuente, J., Ramirez-Rodriguez, M, Cabrera Ponce, J. J., and Herrera-Estrella, L., 1997, Aluminum tolerance in GM plants by alteration of citrate synthesis, Sci. 276:1566–1568.CrossRefGoogle Scholar
  20. DellaPenna, D., 1999, Nutritional genomics: Manipulating plant micronutrients to improved human health, Sci. 285:375–379.CrossRefGoogle Scholar
  21. Entis, E., 1998, Taste testing at a top Canadian restaurant, Aqua Bounty Farms, 1:1–4.Google Scholar
  22. Entis, E., 2003, Biotech at sea: Innovation required; http://pewagbiotech.org/ events/0131/.Google Scholar
  23. FAO, 1999, Committee on Agriculture, 15th Session, Biotechnology; http://www.fao.org/ unfao/bodies/COAG/COAG 15/X0074E.htm.Google Scholar
  24. FAO, 2002, World Food Summit: Five years later (Draft declaration), Article 25; http://www.fao.org/DOCREP/MEETING/004/Y6948E.HTM.Google Scholar
  25. FAO-BioDec, 2003; http://www.fao.org/biotech/inventory_admin/dep/default.asp (accessed July 11,2003).Google Scholar
  26. Fenning, T. M., and Gershenzon, J., 2002, Where will the wood come from? Plantation forest and the role of biotechnology, Trends in Biotech. 20:291–296.CrossRefGoogle Scholar
  27. French, C. E., Rosser, S. J., Davies, G. J., Nicklin, S., and Bruce, N. C, 2001, Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase, Nature Biotech. 19:1168–1172.CrossRefGoogle Scholar
  28. Fresco, L. O., 2003, A new social contract on biotechnology; http://www.fao.org/ag/ magazine/0305spl.htm.Google Scholar
  29. Fuglie, K., Zhang, L., Salazar, L. F., and Walker, T., 2001, Economic Impact of Virus-Free Sweet Potato Planting Material in Shandong Province, China, Future Harvest, Washington, D. C.Google Scholar
  30. Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Do Choi, Y., Kochian, L. V., and Wu, R. J., 2002, Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses, PNAS 99:15898–15903.PubMedCrossRefADSGoogle Scholar
  31. Gartland, K. M. A., Kellison, R. C, and Fenning, T. M., 2002, Forest biotechnology and Europe’s forests of the future, paper presented at the Forest Botechnology in Europe: Impending Barriers, Policy, and Implications, Edinburgh.Google Scholar
  32. Goure, W., 2002, Mendel biotechnology’s transcription factors genes and food security in developing countries, paper presented at the Symposium on Plant Biotechnology: Perspective from Developing Countries (November 12–14, 2002), Annual Meetings of the American Society of Agronomy, the Crop Science Society of America and the Soil Science Society of America, Indianapolis, Indiana.Google Scholar
  33. Guillen, I., Berlanga, J., Valenzuela, C. M., Morales, A., Toledo, J., Estrada, M. P., Puentes, P., Hayes, O., and de la Fuente, J., 1999, Safety evaluation of transgenic tilapia with accelerated growth, Marine Biotech. 1:2–14.CrossRefGoogle Scholar
  34. Guy, C. L., Irani, T., Gabriel, D., and Fehr, W., 2000, Workshop reports: Workshop C: Food and environmental issues associated with the bio-based economy of the 21st century, NABC News 19:8–11.Google Scholar
  35. Hallerman, E., 2003, Status of development of transgenic aquatic animals, ISB News Report; http://www.isb.vt.edu/news/2003/news03.apr.html#apr0304.Google Scholar
  36. Hamilton, C. M., Frary, A., Lewis, C, and Tanksley, S. D., 1996, Stable transfer of intact high molecular weight DNA into plant chromosomes, PNAS 93:9975–9979.PubMedCrossRefADSGoogle Scholar
  37. Hannink, N., Rosser, S. J., French, C. E., Basran, A. J., Murray, A. H., Nicklin, S., and Bruce, N. C., 2001, Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase, Nature Biotech. 10:1038–1168.Google Scholar
  38. Herrera-Estrella, L., 2002, Plant biotechnology in the postgenomic era: Can it benefit developing countries? Paper presented at ISNAR-FAO Expert Workshop on Policy Planning and Decision Support: The Case of Biosafety (May 14–16, 2002), Rome.Google Scholar
  39. Houdebine, L. M., 2002, Transgenesis to improve animal production, Livestock Prod. Sci. 74(3):255–268.CrossRefGoogle Scholar
  40. Hu, W. J., Harding, S. A., Lung, J., Popko, J. L., Ralph, J., Stokke, D. D., Tsai, C. J., and Chiang, V. L., 1999, Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees, Nature Biotech. 17(8):808–812.CrossRefGoogle Scholar
  41. Huang, J., and Wang, Q., 2002, Agricultural biotechnology development and policy in China, paper presented at the Symposium on Plant Biotechnology: Perspective from Developing Countries, Annual Meetings of the American Society of Agronomy, the Crop Science Society of America and the Soil Science Society of America, Indianapolis, Indiana (November 12–14, 2002).Google Scholar
  42. Hulata, G., 2001, Israeli aquaculture genetic improvement programs, in: Fish Genetics Research in MemberCountries and Institutions of the International Network on Genetics in Aquaculture, M. V. Gupta and B. O. Acosta, eds., ICLARM Conf. Proc. 64, Penang, Malaysia, pp. 103–108.Google Scholar
  43. IFPRI, 1999, Are we ready for a meat revolution? 20/20 Vision News & Views; http://www.ifpri.org/2020/newslet/nv_0399/nv0399a.htm.Google Scholar
  44. Ismaël, Y., Beyers, L., Lin, L., and Thirtle, C, 2001, Smallholder adoption and economic impacts of Bt cotton in the Makhathini Flats, South Africa, paper presented at the 5th International Conference, Biotechnology, Science and Modern Agriculture: A New Industry at the Dawn of the Century, Ravello (June 15–18, 2001).Google Scholar
  45. Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O., and Thomashow, M. F., 1998, Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance, Sci. 280:104–106.CrossRefADSGoogle Scholar
  46. James, C, 2001, Global Status of Commercialized Transgenic Crops 2001, ISAAA Briefs No. 24. Preview, ISAAA, Ithaca, New York; http://www.isaaa.org/ publications/briefs/Brief_24.htm.Google Scholar
  47. James, C, 2002, Global Status of Commercialized Transgenic Crops 2002, ISAAA Briefs No. 27, ISAAA, Ithaca, New York.Google Scholar
  48. James, C, 2003, Global Status of Commercialized Transgenic Crops 2003, Preview, ISAAA, Ithaca, New York.Google Scholar
  49. Kirch, H. H., Nair, A., and Bartels, D., 2001, Novel ABA-and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana, Plant J. 28(5):555–567.PubMedCrossRefGoogle Scholar
  50. Kobayashi, N. T., Yoshiba, M., Sanada, Y., Wada, Y., Tsukaya, K., Kakubari, H., Yamaguchi-Shinozaki, K., and Shinozaki, K., 1999, Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nature Biotech. 17:287–291.CrossRefGoogle Scholar
  51. Kong, Q. K., Richter, L., Yang, Y. F., Arntzen, C, Mason, H. S., and Thanavala, Y., 2001, Oral immunization with hepatitis B surface antigen expressed in transgenic plants, Proc. Natl. Acad. Sci. 98:11539–11544.PubMedCrossRefADSGoogle Scholar
  52. Ku, M. S. B., Cho, D., Ranade, U., Hsu, T.-P., Li, X., Jiao, D.-M., Ehleringer, J., Miyao, M., and Matsuoka, M., 2000, Photosynthetic performance of transgenic rice plants overexpressing the maize C4 photosynthesis enzymes, in: Redesigning Rice Photosynthesis to Increase Yield, J. Sheehy, P. Mitchell, and B. Hardy, eds., IRRI, Los Baños, Philippines.Google Scholar
  53. Langridge, W. H. R., 2000, Edible vaccines, Scientific Amer. 283:66–71; www.scientific american.com/2000/0900issue/0900langridge.html.CrossRefGoogle Scholar
  54. Le, H., 2001, The potential of agricultural biotechnology, in: Farming Systems and Poverty: Improving Farmers’ Livelihoods in a Changing World, J. Dixon, and A. Dixon, with D. Gibbon, eds., FAO and WB, Rome and Washington, D. C., pp. 366–374; http://www.fao.org/docrep/003/y1860e/y1860e12.htm#P147_26118.Google Scholar
  55. Lehman, V., 2000, Cuban agrobiotechnology: Diverse agenda in times of limited food production, Biotech. and Dev. Monitor, 42:18–21.Google Scholar
  56. Li, L., Zhou, Y., Cheng, X., Sun, J., Marita, J. M., Ralph, J., and Chiang, V. L, 2003, Combinatorial modification of multiple lignin traits in trees through multigene cotransformation, PNAS, 100(8):4939–4944.PubMedCrossRefADSGoogle Scholar
  57. Lubick, N., 2002, Designing trees, Scientific Amer.; http://www.sciam.com/article.cfm? articleID=0000BA96-AE60-1CDA-B4A8809EC588EEDF&pageNumber=l.Google Scholar
  58. Lucca, P., Hurrell, R., and Potrykus, I., 2002, Fighting iron deficiency anemia with iron-rich rice, J. of the Amer. College of Nutr. 21:184S–190S.Google Scholar
  59. Mackey, M., 2002, The applications of biotechnology to nutrition: An overview, J. of the Amer. College of Nutr. 21:157S–160S.Google Scholar
  60. Mazur, B., Krebbers, E., and Tingley, S., 1999, Gene discovery and product development for grain quality traits, Sci. 285:372–375.CrossRefGoogle Scholar
  61. McLean, M. A., Frederick, R. J., Traynor, P., Cohen, J. I., and Komen, J., 2002, A Conceptual Framework for Implementing Biosafety: Linking Policy, Capacity and Regulation, Briefing Paper No. 47, 12 pp.Google Scholar
  62. Meilan, R., 2001, Personal communication.Google Scholar
  63. Mesfin, T. S., Temple, J., Allan, D. L., Vance, C. P., and Samac, D. A., 2001, Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum, Plant Physiol. 127:1836–1844.CrossRefGoogle Scholar
  64. Mouse Genome Sequencing Consortium, 2002, Initial sequencing and comparative analysis of the mouse genome, Nature, 420:520–562.CrossRefGoogle Scholar
  65. Muchhal, U. S., and Raghothama, K. G., 1999, Transcriptional regulation of plant phosphate transporters, PNAS, 96(10):5868–5872.PubMedCrossRefADSGoogle Scholar
  66. Mukatira, U. T., Liu, C, Varadarajan, D. K., and Raghothama, K. G., 2001, Negative regulation of phosphate starvation-induced genes, Plant Physiol. 127:1854–1862.PubMedCrossRefGoogle Scholar
  67. Nambiar, E. K. S., 1999, Pursuit of sustainable plantation forestry, S. Afr. For. J. 184:45–62.Google Scholar
  68. NAS (National Academy of Sciences), 2002, Animal Biotechnology: Science-Based Concerns, NAS, USA.Google Scholar
  69. NAS, 2000, Transgenic Plants and World Agriculture; http://www.nap.edu/html/ transgenic/.Google Scholar
  70. Natural Resource Canada, 2003, http://www.nrcan-rncan.gc.ca/cfs-scf/science/ biotechnology /treeim_e.html).Google Scholar
  71. Orf, J. H., Diers, B. W., and Boerma, H. R., 2004, Genetic improvement: Conventional and molecular-based strategies, in: Soybeans: Improvement, Production, and Uses, H. R. Boerma, and J. E. Specht, eds., ASA-CSSA-SSSA, 3rd ed., Madison, Wisconsin, pp. 417–450.Google Scholar
  72. Potrykus, I., 2001, Potrykus responds to Greenpeace criticism of ‘Golden Rice’, Agbioworld, 9 February; http://www.agbioworld.org/biotech_info/topics/goldenrice/ criticism.html.Google Scholar
  73. Pray, C. E., Ma, D., Huang, J., and Qiao, F., 2001, Impact of Bt-cotton in China, World Dev. 29:813–825.CrossRefGoogle Scholar
  74. Pursel, V. G., Wall, R. J., Solomon, M. B., Bolt, D. J., Murray, J. D., and Ward, K. A., 1997, Transfer of an ovine metallothionein-oveine growth hormone fusion gene into swine, J. of Animal Sci. 75:2208–2214.Google Scholar
  75. Pursel, V. G., Coleman, M. E., and Wall, R. J., 1996, Regulatory avian skeleton-acting directs expression of insuline-like growth factor-1 to skeletal muscle of transgenic pigs, Theriogen. 35:348.CrossRefGoogle Scholar
  76. Qaim, M., 2000, A prospective evaluation of biotechnology in semi-subsistence agriculture, paper presented at the XXIV Conference of the International Association of Agricultural Economists, Berlin.Google Scholar
  77. Qu, S., Coaker, G., Francis, D., Zhou, B., and Wang, G. L., 2003, Development of a new transformation-competent artificial (TAC) vector and construction of tomato and rice TAC libraries, Mol. Breed. New Strat. in Plant Improv. 12(4):297–308.Google Scholar
  78. Ragot, M., 2003, Personal communication.Google Scholar
  79. Sang, H., 2003, Genetically modified livestock and poultry and their potential effects on human health and nutrition, Trends in Food Sci. and Tech. 14(5–8):253–263.CrossRefGoogle Scholar
  80. Sayre, R., 2000, Cyanogen reduction in GM cassava: Generation of a safer product for subsistence farmers, ISB News Report (August, 2000).Google Scholar
  81. Smith, T., 2003, Brazil to lift ban on crops with genetic modification, The New York Times, September 27, 2003.Google Scholar
  82. Somerville, C, and Somerville, S., 1999, Plant functional genomics, Sci. 285:380–383.CrossRefGoogle Scholar
  83. Strauss, S. H., DiFazio, S. P., and Meilan, R., 2001, Genetically modified poplars in context, For. Chron. 77(2):271–279.Google Scholar
  84. Tabashnik, B. E, Carriere, Y., Dennehy, T. J., Morina, S., Sisterson, M. S., Roush, R. T., Shelton, A. M., and Zhao, J. Z., 2003, Insect resistance to Bt Crops: Lessons from the first seven years, ISB News Report, Virginia Tech., Blacksburg, VA (November, 2003); http://www.isb.vt.edu/news/2003/nov03.pdf.Google Scholar
  85. Tabashnik, B., Patin, A. L., Dennehy, T. J., Liu, Y. B., Carriere, Y., Sims, M. A., and Antilla, L., 2000, Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm, Proc. Natl Acad. Sci. 97(24): 12980–12984.PubMedCrossRefADSGoogle Scholar
  86. Takahashi, M, Nakanishi, H., Kawasaki, S., Nishizawa, N. K., and Mori, S., 2001, Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes, Nature Biotech. 19(5):466–469.CrossRefGoogle Scholar
  87. Terry, E., Monyo, J., and Matlon, P., 2002, A technology transfer model for smallholder farmers in sub-Saharan Africa, Paper presented at the Symposium on Plant Biotechnology: Perspective from Developing Countries, Annual Meetings of the American Society of Agronomy, the Crop Science Society of America and the Soil Science Society of America, Indianapolis, Indiana (November, 12–14, 2002).Google Scholar
  88. The International Genome Sequencing Consortium, 2001, Initial sequencing and analysis of the human genome, Nature, 409:860–921.CrossRefGoogle Scholar
  89. Thompson, J., 2001, Appropriate technology for sustainable food security, Modern Technology for African Agriculture, IFPRI 20/20 Focus 7; http://www.ifpri.org/2020/focus/focus07/focus07_05.htm.Google Scholar
  90. Tian, L., and DellaPenna, D., 2001, The Promise of Agricultural Biotechnology for Human Health, Meeting report on the Keystone Symposium “Plant Foods for Human Health: Manipulating “Plant Metabolism to Enhance Nutritional Quality,” Breckenridge, CO (April 6–11, 2001); http://scope.educ.washington.edu/gmfood/member/commentary/show.php?author=Tian.Google Scholar
  91. Traxler, G., Godoy-Avila, S., Falck-Zepeda, J., and Espinoza-Arellano, D. J., 2001, Transgenic cotton in Mexico: Economic and environmental impacts, Paper presented at the 5th ICABR International Conference, Biotechnology, Science and Modern Agriculture: A New Industry at the Dawn of the Century, Ravello (June 15–19, 2001).Google Scholar
  92. Ward, R., 2003, Personal communication.Google Scholar
  93. Webster, J., 2000, Enabling biotechnology in Africa: Current situation and future needs, Seminar presented December 8, 2000, FAO, Rome.Google Scholar
  94. Zhang, H. X., and Blumwald, E., 2001, Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit, Nature Biotech. 19(8):765–768.CrossRefGoogle Scholar
  95. Zhang, H. X., Hodson, J. N., Williams, J. P., and Blumwald, E., 2001, Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation, Proc. Natl. Acad. Sci. 98:12832–12836.PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Plant Production and Protection Division, Food and Agriculture Organization of the United NationsRomeItaly

Personalised recommendations