Detectors for Small-Animal SPECT I

Overview of Technologies
  • Harrison H. Barrett
  • William C. J. Hunter


Indirect imaging systems such as SPECT have three essential components: an image-forming element, an image detector, and a reconstruction algorithm. These components act together to transfer information about the object to the end user or observer, which can be a human or a computer algorithm. As we shall see in Chapter 5, the efficacy of this information transfer can be quantified and used as a figure or merit for the overall imaging system or for any component of it. Fundamentally, image quality is defined by the ability of some observer to perform some task of medical or scientific interest.


Point Spread Function Semiconductor Detector Cadmium Zinc Telluride Superconducting Tunnel Junction Scintillation Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Abbey, 1995]
    C. K. Abbey, H. H. Barrett, “Linear iterative reconstruction algorithms: Study of observer performance,” XIVth International Conference on Information Processing in Medical Imaging (IPMI), Ile de Berder, France, pp. 65–76, June 26–30, 1995.Google Scholar
  2. [Abbey, 1996]
    C.K. Abbey, H.H. Barrett, D.W. Wilson, “Observer signal-to-noise ratios for the ML-EM algorithm,” Proc SPIE, vol. 2708, 1996.Google Scholar
  3. [Accorsi, 2001a]
    R. Accorsi, F. Gasparini, R. C. Lanza, “A Coded Aperture for High-Resolution Nuclear Medicine Planar Imaging with a Conventional Anger Camera: experimental results,” IEEE Trans Nucl Sci, vol. 48, no. 6, pp. 2411–2417, December 2001a.CrossRefGoogle Scholar
  4. [Accorsi, 2001b]
    R. Accorsi, F. Gasparini, R. C. Lanza, “Optimal Coded Patterns for Improved SNR in Nuclear Medicine Imaging,” Nucl Instr Meth Phys Res A, vol. 474, pp. 273–284, 2001b.CrossRefGoogle Scholar
  5. [Barrett, 1972]
    H. H. Barrett, “Fresnel zone plate imaging in nuclear medicine,” J. Nucl Med, vol. 13, no. 6, pp. 382–385, 1972.Google Scholar
  6. [Barrett, 1981]
    H.H. Barrett, W. Swindell, Radiological Imaging: Theory of Image Formation, Detection, and Processing, vols. I and II, New York, Academic Press, 1981.Google Scholar
  7. [Barrett, 1990]
    H. H. Barrett, “Objective assessment of image quality: effects of quantum noise and object variability,” J. Opt Soc Am A, vol. 7, pp. 1266–1278, 1990.Google Scholar
  8. [Barrett, 1994]
    H.H. Barrett, H. C. Gifford, “Cone-beam tomography with discrete data sets,” Phys Med Biol, vol. 39, pp. 451–476, 1994.CrossRefGoogle Scholar
  9. [Barrett, 1995a]
    H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt Soc Am A, vol. 12, no. 5, pp. 834–852, 1995a.Google Scholar
  10. [Barrett, 1995b]
    H. H. Barrett, J. D. Eskin, H. B. Barber, “Charge transport in arrays of semiconductor gamma-ray detectors,” Phys Rev Lett, vol. 5, no. 1, pp. 156–159, 1995b.CrossRefGoogle Scholar
  11. [Barrett, 1996a]
    H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, “Generalized NEQ: Fourier analysis where you would least expect to find it,” Proc SPIE, vol. 2708, pp. 41–52, 1996a.CrossRefGoogle Scholar
  12. [Barrett, 1996b]
    H. H. Barrett, W. Swindell, Radiological Imaging: Theory of Image Formation, Detection, and Processing, Paperback edition, New York, Academic Press, 1996b.Google Scholar
  13. [Barrett, 1998]
    H. H. Barrett, B. Gallas, E. Clarkson, A. Clough, “Scattered radiation in nuclear medicine: A case study in the Boltzmann transport equation,” Computational Radiology and Imaging: Therapy and Diagnosis, Borgers, C., Natterer, F. eds., Springer Verlag, 1998.Google Scholar
  14. [Barrett, 2004]
    H. H. Barrett, K. J. Myers, Foundations of Image Science, New York, John Wiley and Sons, 2004.Google Scholar
  15. [Bird, 1993]
    A. J. Bird, T. Carter, A. J. Dean, D. Ramsden, B. M. Swinyard, “The optimisation of small CsI(Tl) gamma-ray detectors,” IEEE Trans Nucl Sci, vol. 40, no. 4, pp. 395–399, 1993.CrossRefGoogle Scholar
  16. [Breskin, 2002]
    A. Breskin, A. Buzulutskov, R. Chechik, B. K. Singh, A. Bondar, L. Shekhtman, “Sealed GEM photomultiplier with a CsI photocathode,” Nucl Instr Meth Phys Res A, vol. 478, pp. 225–229, 2002.CrossRefGoogle Scholar
  17. [Chen, 1997]
    J. C. Chen, “Scatter Rejection in Gamma Cameras for Use in Nuclear Medicine,” Biomed Eng Appl Basis Comm, vol. 9, pp. 20–26, 1997.Google Scholar
  18. [Chung, 2003]
    Y. H. Chung, Y. Choi, G. Cho, Y. S. Choe, K.-H. Lee, B.-T. Kim, “Optimization of Dual Layer Phoswich Detector Consisting of LSO and LuYAP for Small Animal PET,” Proc IEEE Med Imag Conf, 2003.Google Scholar
  19. [Clarkson, 1999]
    E. Clarkson, D. W. Wilson, H. H. Barrett, “The synthetic collimator for 2D and 3D imaging,” Proc SPIE Med Imag, vol. 3659, pp. 107–117, 1999.CrossRefGoogle Scholar
  20. [Derenzo, 1993]
    S. E. Derenzo, W.W. Moses, “Experimental efforts and results in finding new heavy scintillators,” Heavy Scint for Sci and Indust Apps, De Notaristefani, F., LeCoq, P., Schneegans, M. eds., Gif-sur-Yvette, France, Editions Frontieres, pp. 125–135, 1993.Google Scholar
  21. [Dhanasopon, 2003]
    A. P. Dhanasopon, C. S. Levin, A.M.K. Foudray, P.D. Olcott, J. A. Talcott, F. Habte, “Scintillation Crystal Design Features for a Miniature Gamma Ray Camera,” Proc IEEE Med Imag Conf, 2003.Google Scholar
  22. [Dorenbos, 1995]
    P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, “Nonproportinoality in Scintillator Response and Energy Resolution Obtainable with Scintillator Crystals,” IEEE Trans Nucl Sci, vol. 42, pp. 2190–2202, 1995.CrossRefGoogle Scholar
  23. [Eskin, 1999]
    J. D. Eskin, H. H. Barrett, H. B. Barber, “Signals induced in semiconductor gamma-ray imaging detectors,” J. Appl Phys, vol. 85, pp. 647–659, 1999.CrossRefGoogle Scholar
  24. [Furenlid, 2000]
    L. R. Furenlid, E. Clarkson, D. G. Marks, H. H. Barrett, “Spatial pileup considerations for pixellated gamma-ray detectors,” IEEE Trans Nucl Sci, vol. 47, pp. 1399–1402, 2000.CrossRefGoogle Scholar
  25. [Gatti, 1984]
    E. Gatti, P. Rehak, “Semiconductor drift chamber — an application of a novel charge transport scheme,” Nucl Instr Meth, vol. 225, pp. 608–614, 1984.CrossRefGoogle Scholar
  26. [Gunter, 1996]
    D. L. Gunter, “Collimator Characteristics and Design.” In Nuclear Medicine, Henken, R. E., ed., Mosby Year Book, St. Louis, Chap. 8., 1996.Google Scholar
  27. [Hadig, 2002]
    T. Hadig, J. Schwiening, C. Field, G. Mazaheri, M. Jain, D. G. W. S. Leith, B. Ratcliff, J. Va’vra, “Study of Timing and Efficiency Properties of the Hamamatsu H-8500 Photomultiplier,” Proc IEEE Nucl Sci Symp, 2002.Google Scholar
  28. [Inadama, 2003]
    N. Inadama, H. Murayama, M. Watanabe, T. Omura, T. Yamashita, H. Kawai, N. Orita, T. Tsuda, “Performance of 256ch flat panel PSPMT with small crystals for a DOI PET detector,” Proc IEEE Med Imag Conf, 2003.Google Scholar
  29. [Jaszczak, 1994]
    R. J. Jaszczak, J. Li, H. Wang, M. R. Zallutsky, R. E. Coleman, “Pinhole collimation for ultra-high resolution, small-field-of-viewSPECT studies,” Phys Med Biol, vol. 39, pp. 425–437, 1994.CrossRefGoogle Scholar
  30. [Knoll, 1999]
    G. F. Knoll, Radiation Detection and Measurement, 3rd ed., New York, Wiley, 1999.Google Scholar
  31. [Kwo, 1991]
    D. P. Kwo, H. B. Barber, H. H. Barrett, T. S. Hickernell, J. M. Woolfenden, “Comparison of NaI(Tl), HgI2 and CdTe surgical probes II: Effect of scatter compensation on probe performance,” Med Phys, vol. 18, pp. 382–389, 1991.CrossRefGoogle Scholar
  32. [Marks, 1999]
    D. G. Marks, H. B. Barber, H. H. Barrett, J. Tueller, J. M. Woolfenden, “Improving performance of a CdZnTe imaging array by mapping the detector with gamma rays,” Nucl Instr Meth Phys Res A, vol. 428, pp. 102–112, 1999.CrossRefGoogle Scholar
  33. [Matteson, 1997]
    J. L. Matteson, W. Coburn, F. Duttweiler, W. A. Heindl, G. L. Huszar, P. C. LeBlanc, M. R. Pelling, L. E. Peterson, R. E. Rothschild, R. T. Skelton, P. L. Hink, C. Crabtree, “CdZnTe arrays for astrophysics applications,” Proc SPIE, vol. 3115, pp. 160–175, 1997.CrossRefGoogle Scholar
  34. [McCready, 1971]
    V. R. McCready, R. P. Parker, E. M. Gunnersen, R. Ellis, E. Moss, W. G. Gore, “Clinical tests with a prototype semiconductor gamma camera,” Brit J. Radiology, vol. 44, pp. 58, 1971.CrossRefGoogle Scholar
  35. [Meikle, 2003a]
    S. R. Meikle, R. Wojcik, A. G. Weisenberger, M. F. Smith, S. Majewski, P. Kench, S. Eberl, R. R. Fulton, M. Lerch, A. B. Rosenfeld, “CoALA-SPECT: A coded aperture laboratory animal SPECT system for preclinical imaging,” 2002 IEEE Nucl Sci Symp Conference Record, Scott Metzler, ed., Norfolk, Virginia, ISBN 0-7803-7637-4, November 10–16, 2002a.Google Scholar
  36. [Meikle, 2003b]
    S. R. Meikle, P. Kench, A. G. Weisenberger, R. Wojcik, M. F. Smith, S. Majewski, S. Eberl, R. R. Fulton, A. B. Rosenfeld, M. J. Fulham, “A prototype coded aperture detector for small animal SPECT,” IEEE Trans Nucl Sci, vol. 49, pp. 2167–2171, 2003b.CrossRefGoogle Scholar
  37. [Mörmann, 2002]
    D. Mörmann, A. Breskin, R. Chechik, P. Cwetanski, B.K. Singh, “Gas avalanche photomultiplier with a CsI-coated GEM,” Nucl InstrMeth Phys Res A, vol. 478, pp. 230–234, 2002.CrossRefGoogle Scholar
  38. [Moses, 1994]
    W. W. Moses, S. E. Derenzo, “Design studies for a PET detector module using a pin photodiode to measure depth of interaction,” IEEE Trans Nucl Sci, vol. 41, no. 4, pp. 1441–1445, August 1994.CrossRefGoogle Scholar
  39. [Moses, 1995]
    W.W. Moses, S. E. Derenzo, C. L. Melcher, R.A. Manente, “A room temperature LSO/pin photodiode PET detector module that measures depth of interaction,” IEEE Trans Nucl Sci, vol. 42, no. 4, pp. 1085–1089, August 1995.CrossRefGoogle Scholar
  40. [Moses, 2002]
    W. W. Moses, “Current trends in scintillator detectors and materials,” Nucl Instr Meth Phys Res A, vol. 487, pp. 123–128, 2002.CrossRefGoogle Scholar
  41. [Muehllehner, 1985]
    G. Muehllehner, “Effect of resolution improvement on required count density in ECT imaging: a computer simulation,” Phys Med Biol, vol. 30, no. 2, pp. 163–173, 1985.CrossRefGoogle Scholar
  42. [Müller, 1986]
    S. P. Müller, J. F. Polak, M. F. Kijewski, B. L. Holman, “Collimator Selection for SPECT Brain Imaging: The Advantage of High Resolution,” J. Nucl Med, vol. 27, pp. 1729–1738, 1986.Google Scholar
  43. [Myers, 1990]
    K. J. Myers, J. P. Rolland, H. H. Barrett, R. F. Wagner, “Aperture optimization for emission imaging: Effect of a spatially varying background,” J. Opt Soc Am A, vol. 7, pp. 1279–1293, 1990.CrossRefGoogle Scholar
  44. [Orita, 2003]
    N. Orita, H. Murayama, H. Kawai, N. Inadama, T. Tsuda, “Three Dimensional Array of Scintillation Crystals with Proper Reflector Arrangement for a DOI detector,” Proc IEEE Med Imag Conf, 2003.Google Scholar
  45. [Pani, 2003]
    R. Pani, R. Pellegrini, M. N. Cinti, C. Trotta, G. Trotta, R. Scafe, M. Betti, F. Cusanno, L. Montani, G. Iurlaro, F. Garibaldi, Del A. Guerra, “A novel compact gamma camera based on flat panel PMT,” Nucl Instr Meth Phys Res A, vol. 513, no. 1, pp. 36–41, 2003.CrossRefGoogle Scholar
  46. [Pani, 2004]
    R. Pani, R. Pellegrini, M. N. Cinti, M. Mattioli, C. Trotta, L. Montani, G. Iurlaro, G. Trotta, D’L. Addio, S. Ridolfi, De G. Vincentis, I. N. Weinberg, “Recent advances and future perspectives of position sensitive PMT,” Nucl Instr Meth Phys Res B, vol. 213, pp. 197–205, 2004.CrossRefGoogle Scholar
  47. [Radeka, 1988]
    V. Radeka, “Low-noise techniques in detectors,” Ann RevNucl Part Sci, vol. 38, pp. 217–277, 1988.CrossRefGoogle Scholar
  48. [Rodnyi, 1992]
    P. A. Rodnyi, “Core-valence band transitions in wide-gap ionic crystals,” Sov Phys Solid State, vol. 34, pp. 1053–1066, 1992Google Scholar
  49. [Rogulski, 1993]
    M. M. Rogulski, H. B. Barber, H. H. Barrett, R. L. Shoemaker, J. M. Woolfenden, “Ultra-high-resolution brain SPECT: simulation results,” IEEE Trans Nucl Sci, vol. 40, pp. 1123–1129, 1993.CrossRefGoogle Scholar
  50. [Rolland, 1989]
    J. P. Rolland, H. H. Barrett, G. W. Seeley, “Quantitative study of deconvolution and display mappings for long-tailed point-spread functions,” Proc SPIE, vol. 1092, pp. 17–21, 1989.Google Scholar
  51. [Rolland, 1990]
    J. P. Rolland, Factors influencing lesion detection inmedical imaging, Ph.D. Dissertation, University of Arizona, Tucson, Arizona, 1990.Google Scholar
  52. [Rolland, 1991]
    J. P. Rolland, H. H. Barrett, G. W. Seeley, “Ideal versus human observer for long-tailed point spread functions: Does deconvolution help?” Phys Med Biol, vol. 36, no. 8, pp. 1091–1109, 1991.CrossRefGoogle Scholar
  53. [Rolland, 1992]
    J. P. Rolland, H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt Soc Am A, vol. 9, no. 5, pp. 649–658, 1992.Google Scholar
  54. [Ryan, 1995]
    J. M. Ryan, J. R. Macri, M. L. McConnell, B. K. Dann, M. L. Cherry, T.G. Guzik, F. P. Doty, B.A. Apotovsky, J. F. Butler, “Large area sub-millimeter resolution CdZnTe strip detector for astronomy,” Proc SPIE, vol. 301, pp. 2518:292, 1995.Google Scholar
  55. [Schramm, 2002]
    N. Schramm, G. Ebel, U. Engeland, M. Behe, T. Schurrat, T. M. Behr, “Multi-pinhole SPECT for small animal research,” J. Nucl Med, vol. 43, no. 5, pp. S.913, 2002.Google Scholar
  56. [Smith, 1998]
    M. F. Smith, R. Jaszczak, “An analytic model of pinhole aperture penetration for 3D pinhole SPECT image reconstruction,” Phys Med Biol, vol. 43, pp. 761–775, 1998.CrossRefGoogle Scholar
  57. [Stahle, 1996]
    C. M. Stahle, A. Parsons, L. M. Bartlett, P. Kurczynski, J. F. Krizmanic, L.M. Barbier, S.D. Barthelmy, F. Birsa, N. Gehrels, J. Odom, D. Palmer, C. Sappington, P. Shu, Teegarden B. J., J. Tueller, “CdZnTe strip detector for arc second imaging and spectroscopy,” Proc Society Photo-Optical and Instr Eng, vol. 2859, pp. 74–84, 1996.Google Scholar
  58. [Tsui, 1978]
    B. M. W. Tsui, C. E. Metz, F. B. Atkins, S. J. Starr, R. N. Beck, “A Comparison of Optimum Detector Spatial Resolution in Nuclear Imaging based on Statistical Theory and on Observer Performance,” Phys Med Biol, vol. 23, no. 4, pp. 654–676, 1978.CrossRefGoogle Scholar
  59. [Tsui, 1983]
    B.M.W. Tsui, C. E. Metz, Beck, R.N. “Optimum detector spatial resolution for discriminating between tumour uptake distributions scintigraphy,” Phys Med Biol, vol. 28, no. 7, pp. 775–788, 1983.CrossRefGoogle Scholar
  60. [Wagner, 1985]
    R. F. Wagner, D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys Med Biol, vol. 30, no. 6, pp. 489–518, 1985.CrossRefGoogle Scholar
  61. [Wang, 1995]
    Y. J. Wang, B. E. Patt, J. S. Iwanczyk, S. R. Cherry, Y. Shao, “High efficiency CsI(Tl)/HgI2 2 gamma ray spectrometers,” IEEE Trans Nucl Sci, vol. 42, no. 4, pp. 601–605, 1995.CrossRefGoogle Scholar
  62. [White, 1994]
    T. A. White, SPECT reconstruction directly from photomultiplier tube signals, Ph.D. Dissertation, University of Arizona, Tucson, Arizona, 1994.Google Scholar
  63. [Weber, 2002]
    M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lums, vol. 100, pp. 35–45, 2002.CrossRefGoogle Scholar
  64. [Wilson, 2000]
    D. W. Wilson, E. W. Clarkson, H. H. Barrett, “Reconstruction of two-and three-dimensional images from synthetic collimator data,” IEEE Trans Med Im, vol. 19, no. 5, pp. 412–422, 2000.CrossRefGoogle Scholar
  65. [van Eijk, 2002]
    van C. W. E. Eijk, “Inorganic scintillators in medical imaging,” Phys Med Biol, vol. 47, pp. R85–R106, April 21, 2002CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Harrison H. Barrett
  • William C. J. Hunter
    • 1
  1. 1.Department of RadiologyThe University of ArizonaTucson

Personalised recommendations